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Abstract. In this paper, we introduce and study a new class of completely general-
ized nonlinear variational inclusions for fuzzy mappings and construct some new iterative
algorithms. We prove the existence of solutions for this kind of completely generalized
nonlinear variational inclusions and the convergence of iterative sequences generated by the
algorithms.
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1. Introduction

Variational inequalities, introduced and studied by Hartman and Stampacchia [12]

in the early sixties, are very powerful tools of the current mathematical technology.
These inequalities have been extended and generalized to study a wide class of prob-

lems arising in mechanics, physics, optimization and control, operations research,
nonlinear programming, economics and transportation equilibrium and engineering

sciences etc. Quasivariational inequalities are generalized forms of variational in-
equalities in which the constraint set depends on the solution. They were introduced

and studied by Bensoussan, Goursat and Lions [3] in 1973. For further details we
refer to [1, 2, 4, 5, 21].

In 1991, Chang and Huang [7, 8] introduced and studied a new class of complemen-
tarity problems and variational inequalities for set-valued mappings with compact

values in Hilbert spaces. In 1994, Hassouni and Moudafi [13] studied a new class of
variational inclusions, which included many variational and quasivariational inequal-

ities considered by Noor [23–25], Isac [18], Siddiqi and Ansari [28, 29] as special cases.
In 1996, the author [14] introduced and studied a new class of set-valued nonlinear
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generalized variational inclusions, which have improved and extended many results

in recent years.

On the other hand, Chang and Zhu [11] were the first to introduce and study a

class of variational inequalities for fuzzy mappings in 1989. Recently, several kinds
of variational inequalities and complementarity problems for fuzzy mappings were

considered and studied by Chang [6], Chang and Huang [9, 10], Huang [15, 16], Noor
[26] and Lee et al. [19, 20]. These papers may lead to new and significant results in
these areas [27].

Inspired and motivated by the recent research papers going on in this filed, in

this paper we introduce and study a new class of completely generalized nonlinear
variational inclusions for fuzzy mappings which include many known classes as special
cases. We also construct some new iterative algorithms, and discuss the existence of

solutions for this class of completely generalized nonlinear variational inclusions and
the convergence of iterative sequences generated by these algorithms. Our results

extend and improve some known results in this field.

2. Preliminaries

Let H be a real Hilbert space endowed with a norm ‖ · ‖ and inner product 〈·, ·〉.
Let F (H) be a collection of all fuzzy sets on H . A mapping F from H into F (H)
is called a fuzzy mapping on H . If F is a fuzzy mapping on H , then F (x)(we denote

it by Fx in the sequel) is a fuzzy set on H and Fx(y) is the membership function of
y in Fx.

Let M ∈ F (H), q ∈ [0, 1]. Then the set

(M)q = {x ∈ H : M(x) � q}

is called a q−cut set of M .
Let T, A : H → F (H) be two fuzzy mappings satisfying the following condi-

tion (I):

(I) There exist two mappings a, b : H → [0, 1] such that for all x ∈ H , we have
(Tx)a(x) ∈ CB(H) and (Ax)b(x) ∈ CB(H), where CB(H) denotes the family of all

nonempty bounded closed subsets of H .

By using the fuzzy mappings T and A, we can define two set-valued mappings T̃

and Ã as follows:

T̃ : H → CB(H), x �−→ (Tx)a(x),

Ã : H → CB(H), x �−→ (Ax)b(x).
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In the sequel, T̃ and Ã are called the set-valued mappings induced by the fuzzy

mappings T and A, respectively.

Given mappings a, b : H → [0, 1], fuzzy mappings T, A : H → F (H), single-valued

mappings f, p : H → H , and a set-valued mapping g : H → 2H with Im g
⋂
dom(∂ϕ)

�= ∅ (where 2H denotes the family of all nonempty subsets of H), we consider the

following problem:

Find u, w, y, z ∈ H such that

(2.1)

{
Tu(w) � a(u), Au(y) � b(u), z ∈ g(u)

⋂
dom(∂ϕ),

〈f(w) − p(y), v − z〉 � ϕ(z)− ϕ(v), ∀v ∈ H,

where ∂ϕ denotes the subdifferential of a proper, convex and lower semicontinu-

ous function ϕ : H → R ∪ {+∞}. This problem is called a completely generalized
nonlinear variational inclusion for a fuzzy mapping.

If g : H → H is a single-valued mapping, then the problem (2.1) is equivalent to
finding u, w, y ∈ H such that

(2.2)

{
Tu(w) � a(u), Au(y) � b(u), g(u)

⋂
dom(∂ϕ) �= ∅,

〈f(w)− p(y), v − g(u)〉 � ϕ(g(u))− ϕ(v), ∀v ∈ H,

which is called a generalized nonlinear variational inclusion for a fuzzy mapping.

As examples, we now consider some particular variational inclusions for fuzzy

mappings.

Example 1. If F, G, g : H → 2H are classical set-valued mappings, by using F

and G, we can define two fuzzy mappings:

T : H → F (H), x �−→ χF (x),

A : H → F (H), x �−→ χG(x),

where χF (x) and χG(x) are the characteristic functions of the set F (x) and G(x),
respectively. Taking a(x) = 1, b(x) = 1 for all x ∈ H , the problem (2.1) is equivalent

to finding u, w, y, z ∈ H such that

(2.3)

{
w ∈ Fu, y ∈ Gu, z ∈ g(u)

⋂
dom(∂ϕ),

〈f(w) − p(y), v − z〉 � ϕ(z)− ϕ(v), ∀v ∈ H,

which is called a completely generalized nonlinear variational inclusion for set-valued
mappings.
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Example 2. If F, G : H → 2H are classical set-valued mappings and g : H → H

is a single-valued mapping, by using F and G we define two fuzzy mappings T and
A as in Example 1. Taking a(x) = 1, b(x) = 1 for all x ∈ H , the problem (2.1) is
equivalent to finding u, w, y ∈ H , such that

(2.4)

{
w ∈ Fu, y ∈ Gu, g(u)

⋂
dom(∂ϕ) �= ∅,

〈f(w)− p(y), v − g(u)〉 � ϕ(g(u))− ϕ(v), ∀v ∈ H,

which is called a set-valued nonlinear generalized variational inclusion which was
introduced and studied by Huang [14].

Remark 2.1. For appropriate and suitable choices of the mappings f , p, g, T ,
A and the functions a, b, ϕ, the variational inclusion (2.1) includes a number of

known classes of variational inequalities and quasi-variational inequalities studied
previously by many authors in [5, 7, 8, 10, 13, 14, 17, 18, 23–25, 28–30] as special

cases.

3. Iterative Algorithms

First, let us prove the following lemma.

Lemma 3.1. u, w, y and z are a solution of problem (2.1) if and only if w ∈
T̃ u, y ∈ Ãu and z ∈ g(u) such that

u = u− z + Jϕ
α (z − α(f(w) − p(y))),

where α > 0 is a constant and Jϕ
α = (I + α∂ϕ)−1 is the so-called proximal mapping

on H .

�����. From the definition of Jϕ
α one has

z − α(f(w)− p(y)) ∈ z + α∂ϕ(z),

hence
p(y)− f(w) ∈ ∂ϕ(z).

From the definition of ∂ϕ we have

ϕ(v) � ϕ(z) + 〈p(y)− f(w), v − z〉, ∀v ∈ H.

Thus u, w, y and z are a solution of problem (2.1).
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Conversely, if u, w, y and z are a solution of problem (2.1), we know that w ∈ T̃ u,

y ∈ Ãu, z ∈ g(u)
⋂
dom(∂ϕ) and

ϕ(v) � ϕ(z) + 〈p(y)− f(w), v − z〉, ∀v ∈ H.

This implies

p(y)− f(w) ∈ ∂ϕ(z)

and
z − α(f(w)− p(y)) ∈ z + α∂ϕ(z).

Therefore
u = u− z + Jϕ

α (z − α(f(w) − p(y))).

This completes the proof. �

Based on Lemma 3.1, we construct our algorithms.
Suppose that T, A : H → F (H) satisfy the conditon (I) and g : H → CB(H).

Let T̃ , Ã : H → CB(H) be set-valued mappings induced by T, A, respectively. For
a given u0 ∈ H , let w0 ∈ T̃ u0, y0 ∈ Ãu0, z0 ∈ g(u0) and

u1 = u0 − z0 + Jϕ
α (z0 − α(f(w0)− p(y0))).

By [22] there exist w1 ∈ T̃ u1, y1 ∈ Ãu1 and z1 ∈ g(u1) such that

‖w1 − w0‖ � (1 + 1)Ĥ(T̃ u1, T̃ u0),

‖y1 − y0‖ � (1 + 1)Ĥ(Ãu1, Ãu0),

‖z1 − z0‖ � (1 + 1)Ĥ(g(u1), g(u0)),

where Ĥ is the Hausdorff metric on CB(H). By induction we can obtain our algo-
rithm as follows.

Algorithm 3.1. Suppose that T, A : H → F (H) satisfy the conditon (I) and

g : H → CB(H). Let T̃ , Ã : H → CB(H) be set-valued mappings induced by T, A,

respectively, and f, p : H → H. For a given u0 ∈ H, we can get an algorithm for

(2.1) as follows:

(3.1)





un+1 = un − zn + Jϕ
α (zn − α(f(wn)− p(yn))),

wn ∈ T̃ un, ‖wn+1 − wn‖ � (1 + (1 + n)−1) Ĥ(T̃ un+1, T̃ un),

yn ∈ Ãun, ‖yn+1 − yn‖ � (1 + (1 + n)−1) Ĥ(Ãun+1, Ãun),

zn ∈ g(un), ‖zn+1 − zn‖ � (1 + (1 + n)−1) Ĥ(g(un+1), g(un)),

for n = 0, 1, 2, . . . .
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Similarly, we have

Algorithm 3.2. Suppose that T, A : H → F (H) satisfy the conditon (I). Let

T̃ , Ã : H → CB(H) be set-valued mappings induced by T, A, respectively, and f, p, g :
H → H. For a given u0 ∈ H, we can get an algorithm for (2.2) as follows:

un+1 = un − g(un) + Jϕ
α (g(un)− α(f(wn)− p(yn))),

wn ∈ T̃ un, ‖wn+1 − wn‖ � (1 + (1 + n)−1) Ĥ(T̃ un+1, T̃ un),

yn ∈ Ãun ‖yn+1 − yn‖ � (1 + (1 + n)−1) Ĥ(Ãun+1, Ãun),

for n = 0, 1, 2, . . . .

Algorithm 3.3. Let F, G, g : H → CB(H) be set-valued mappings and f, p :
H → H. For a given u0 ∈ H, we can get an algorithm for (2.3) as follows:

un+1 = un − zn + Jϕ
α (zn − α(f(wn)− p(yn))),

wn ∈ Fun, ‖wn+1 − wn‖ � (1 + (1 + n)−1) Ĥ(Fun+1, Fun),

yn ∈ Gun, ‖yn+1 − yn‖ � (1 + (1 + n)−1) Ĥ(Gun+1, Gun),

zn ∈ g(un), ‖zn+1 − zn‖ � (1 + (1 + n)−1) Ĥ(g(un+1), g(un)),

for n = 0, 1, 2, . . . .

Remark 3.1. The algorithms 3.1–3.3 include several known algorithms of [5, 7,
8, 10, 13, 14, 18, 23–25, 28–30] as special cases.

4. Existence and Convergence

Definition 4.1. A mapping g : H → H is said to be
(i) strongly monotone if there exists δ > 0 such that

〈g(u1)− g(u2), u1 − u2〉 � δ‖u1 − u2‖2, ∀ui ∈ H, i = 1, 2;

(ii) Lipschitz continuous if there exists σ > 0 such that

‖g(u1)− g(u2)‖ � σ‖u1 − u2‖, ∀ui ∈ H, i = 1, 2.

Definition 4.2. A set-valued mapping T : H → 2H is said to be
(i) strongly monotone if there exists δ > 0 such that

〈w1 − w2, u1 − u2〉 � δ‖u1 − u2‖2, ∀ui ∈ H, wi ∈ Tui, i = 1, 2;
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(ii) strongly monotone with respect to a mapping f : H → H if there exists β > 0

such that

〈f(w1)− f(w2), u1 − u2〉 � β‖u1 − u2‖2, ∀ui ∈ H, wi ∈ Tui, i = 1, 2;

(iii) Ĥ-Lipschitz continuous if there exists γ > 0 such that

Ĥ(Tu1, Tu2) � γ‖u1 − u2‖, ∀ui ∈ H, i = 1, 2.

Theorem 4.1. Let g : H → CB(H) be strongly monotone and Ĥ-Lipschitz
continuous, f, p : H → H Lipschitz continuous, let T, A : H → F (H) be fuzzy map-
pings satisfying the condition (I). Let T̃ , Ã : H → CB(H) be set-valued mappings

induced by T, A, respectively, and let T̃ , Ã be Ĥ-Lipschitz continuous and T̃ strongly

monotone with respect to f . If the following conditions hold:

∣∣∣∣α−
β + εµ(k − 1)
η2γ2 − ε2µ2

∣∣∣∣ <

√
(β + (k − 1)εµ)2 − (γ2 − ε2µ2)k(2− k)

η2γ2 − ε2µ2
,(4.1)

β > (1− k)εµ+
√
(η2γ2 − ε2µ2)k(2− k), ηγ > εµ,(4.2)

αµε < 1− k, k = 2
√
1− 2δ + σ2, k < 1,(4.3)

where β and δ are constants of strong monotonicity of T̃ and g, respectively, σ, γ and

µ are Ĥ-Lipschitz constants of g, T̃ and Ã, respectively, η and ε are the Lipschitz

constants of f and p, respectively, then there exist u, w, y, z ∈ H such that (2.1) is
satisfied. Moreover, un → u, wn → w, yn → y, zn → z, n → ∞, where {un}, {wn},
{yn} and {zn} are defined in Algorithm 3.1.

�����. From (3.1) we have

‖un+1 − un‖ = ‖un − un−1 − (zn − zn−1) + Jϕ
α (h(un))− Jϕ

α (h(un−1))‖,

where h(un) = zn − α(f(wn)− p(yn)). Also we have

‖Jϕ
α (h(un))− Jϕ

α (h(un−1))‖ � ‖h(un)− h(un−1)‖
� ‖un − un−1 − α(f(wn)− f(wn−1))‖
+ ‖un − un−1 − (zn − zn−1)‖+ α‖p(yn)− p(yn−1)‖.

That is,

‖un+1 − un‖ � 2‖un − un−1 − (zn − zn−1)‖(4.4)

+ ‖un − un−1 − α(f(wn)− f(wn−1))‖
+ α‖p(yn)− p(yn−1)‖.
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By Ĥ-Lipschitz continuity and strong monotonicity of g we obtain

(4.5) ‖un − un−1 − (zn − zn−1)‖2 � (1 − 2δ + (1 + n−1)2σ2)‖un − un−1‖2.

Also from Ĥ-Lipschitz continuity and strong monotonicity of T̃ with respect to f ,
and Lipschitz continuity of f , we have

(4.6)
‖un − un−1 − α(f(wn)− f(wn−1))‖2 � (1− 2βα+ α2η2(1 + n−1)2γ2)‖un − un−1‖2.

By Ĥ-Lipschitz continuity of Ã, Lipschitz continuity of p and (3.1), we know

(4.7) α‖p(yn)− p(yn−1)‖ � αε(1 + n−1)µ‖un − un−1‖.

So by combining (4.4)–(4.7), we have

‖un+1 − un‖ � θn‖un − un−1‖,

where

θn := 2
√
1− 2δ + (1 + n−1)2σ2 +

√
1− 2βα+ α2η2(1 + n−1)2γ2 + αε(1 + n−1)µ.

Letting θ := 2
√
1− 2δ + σ2+

√
1− 2βα+ α2η2γ2+αεµ, we know that θn ↘ θ. It

follows from (4.1)–(4.3) that θ < 1. Hence θn < 1, for n sufficiently large. Therefore
{un} is a Cauchy sequence and we can suppose that un → u ∈ H.

Now we prove that wn → w ∈ T̃ u, yn → y ∈ Ãu, zn → z ∈ g(u). In fact, it follows
from Algorithm 3.1 that

‖wn − wn−1‖ � (1 + n−1)γ‖un − un−1‖,
‖yn − yn−1‖ � (1 + n−1)µ‖un − un−1‖,
‖zn − zn−1‖ � (1 + n−1)σ‖un − un−1‖,

i.e. {wn}, {yn} and {zn} are Cauchy sequences. Let wn → w, yn → y and zn → z.
Further we have

�(w, T̃ u) = inf{‖w − z‖ : z ∈ T̃ u}
� ‖w − wn‖+ �(wn, T̃ u)

� ‖w − wn‖+ Ĥ(T̃ un, T̃ u)

� ‖w − wn‖+ γ‖un − u‖ → 0.

Hence, w ∈ T̃ u. Similarly, y ∈ Ãu and z ∈ g(u). This completes the proof. �
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Remark 4.1. (i) If we replace the conditions (4.1)–(4.3) by

θ = 2
√
1− 2δ + σ2 +

√
1− 2βα+ α2η2γ2 + αεµ < 1,

the conclusions of Theorem 4.1 are still true.

(ii) For an appropriate and suitable choice of the constants α, β, γ, η, µ, σ, δ, ε,
the conditions (4.1)–(4.3) in Theorem 4.1 can be satisfied.

From Theorem 4.1 we can get the following results.

Theorem 4.2. Let g : H → H be strongly monotone and Lipschitz continuous,

f, p : H → H Lipschitz continuous, let T, A : H → F (H) be fuzzy mappings satis-

fying the condition (I). Let T̃ , Ã : H → CB(H) be set-valued mappings induced by
T , A, respectively, and let T̃ , Ã be Ĥ-Lipschitz continuous and T̃ strongly monotone

with respect to f . If the conditions (4.1)–(4.3) of Theorem 4.1 hold, where β and

δ are constants of strong monotonicity of T̃ and g, respectively, γ and µ are Ĥ-
Lipschitz constants of T̃ and Ã, respectively, σ, η and ε are the Lipschitz constants

of g, f and p, respectively, then there exist u, w, y ∈ H such that (2.2) is satisfied.

Moreover, un → u, wn → w, yn → y, n → ∞, where {un}, {wn} and {yn} are
defined in Algorithm 3.2.

Theorem 4.3. Let g : H → CB(H) be strongly monotone and Ĥ-Lipschitz con-
tinuous, f, p : H → H Lipschitz continuous, let F, G : H → CB(H) be Ĥ-Lipschitz
continuous and F strongly monotone with respect to f . If the conditions (4.1)–(4.3)

of Theorem 4.1 hold, where β and δ are constants of strong monotonicity of F and g,

respectively, σ, γ and µ are Ĥ-Lipschitz constants of g, F and G, respectively, η and

ε are the Lipschitz constants of f and p, respectively, then there exist u, w, y, z ∈ H

such that (2.3) is satisfied. Moreover, un → u, wn → w, yn → y, zn → z, n → ∞,
where {un}, {wn}, {yn} and {zn} are defined in Algorithm 3.3.

Remark 4.2. Theorems 4.1–4.3 include some known results of [5, 7, 8, 10, 14,
18, 23–25, 29–30] as special cases.

Acknowledgement. I would like to express my thanks to the referees for their
helpful suggestions.
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