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OF THE FIRST ORDER
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Abstract. We consider the mixed problem for the hyperbolic partial differential-functional
equation of the first order

Dxz(x, y) = f(x, y, z(x,y), Dyz(x, y)),

where z(x,y) : [−τ, 0] × [0, h] → � is a function defined by z(x,y)(t, s) = z(x + t, y + s),
(t, s) ∈ [−τ, 0]× [0, h]. Using the method of bicharacteristics and the method of successive
approximations for a certain integral-functional system we prove, under suitable assump-
tions, a theorem of the local existence of generalized solutions of this problem.

Keywords: partial differential-functional equations, mixed problem, generalized solu-
tions, local existence, bicharacteristics, successive approximations
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1. Introduction

IfX, Y are any metric spaces then we denote by C(X ;Y ) the class of all continuous
functions fromX to Y . LetB = [−τ, 0]×[0, h], where h = (h1, . . . , hn) ∈ �

n
+ , τ ∈ �+ ,

(�+ = [0,+∞)). For a given function z : [−τ, a]× [−b, b+ h]→ �, where a > 0, b =
(b1, . . . , bn), bi > 0, i = 1, . . . , n, and a point (x, y) = (x, y1, . . . , yn) ∈ [0, a]× [−b, b],

we consider the function z(x,y) : B → � defined by

z(x,y)(t, s) = z(x+ t, y + s), (t, s) ∈ B.
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For any a ∈ (0, a] we define sets

E∗
0 = [−τ, 0]× [−b, b+ h], ∂0Ea = [0, a]× [−b, b+ h] \ [0, a]× [−b, b),

Ea = [0, a]× [−b, b], E∗
a = E∗

0 ∪ ∂0Ea ∪ Ea.

For given functions f : Ea×C(B;�)×�n → �, where a > 0, and ϕ : E∗
0∪∂0Ea → �,

we consider the mixed problem

Dxz(x, y) = f(x, y, z(x,y), Dyz(x, y)),(1)

z(x, y) = ϕ(x, y), (x, y) ∈ E∗
0 ∪ ∂0Ea,(2)

where Dyz = (Dy1z, . . . , Dynz).

We call z : E∗
a → �, where 0 < a � a, a solution of (1), (2) if

(i) z ∈ C(E∗
a ;�) and the derivative Dyz(x, y) exists on Ea,

(ii) z(·, y) : [0, a]→ � is absolutely continuous on [0, a] for each y ∈ [−b, b],
(iii) for any fixed y ∈ [−b, b] equation (1) is satisfied for almost all x ∈ [0, a], and

condition (2) holds true for all (x, y) ∈ E∗
0 ∪ ∂0Ea.

In other words we wish to investigate the local (with respect to x) existence of

generalized solutions of the problem (1), (2).
In this paper we deal with the problem in which the hereditary structure of the

equation is based on the operator (x, y) �→ z(x,y). Note that in this setting f becomes
a functional operator with respect to the third variable. Other settings are based
on the use of abstract operators of the Volterra type or on the dependence of f on

z with the assumption that f is of the Volterra type. Differential equations with a
deviated argument and differential-integral equations are particular cases of (1).

There are various concepts of a solution concerning mixed problems for hyper-
bolic partial differential and differential-functional equations. Continuous solutions

(satisfying integral systems arising from differential equations by integrating along
bicharacteristics) of quasilinear systems were considered by Abolina and Myshkis [1]

or Myshkis and Filimonov [17], [18]. Generalized (in the “almost everywhere” sense)
solutions were investigated by Bassanini [2], Turo [20] and Kamont and Topolski [16]

(see also [15]). Classical solutions in the functional setting were considered in [14].
In this paper we consider the mixed problem for the nonlinear differential-

functional problem. Analogously to [7] we use the method of bicharacteristics
together with the method of successive approximations for a certain integral-

functional system. The method of bicharacteristics was introduced and developed
in non-functional setting by Cinquini-Cibrario [11], [12] an Cinquini [10] for quasi-

linear as well as nonlinear problems. This method was adapted by Cesari [8], [9]
and Bassanini [3], [4] for quasilinear systems in the second canonical form. Some
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extensions of Cesari’s results to differential-functional systems were given in [5], [13],

[19]. The results obtained in papers mentioned above by means of the method of
bicharacteristics concern generalized solutions. Existence of generalized solutions
to nonlinear differential-functional equations with the operator z(x,y) was proved

by Brandi, Kamont and Salvadori [7]. An existence result for this equation was
also obtained by Brandi and Ceppitelli [6] by means of the method of successive

approximations.

2. Notation and assumptions

Let �n denote the n-dimensional Euclidean space with the norm | · | defined by
|y| = max

1�i�n
|yi|. Let C0,1(B;�) be the set of all continuous functions ω : B → � of

the variables (t, s) = (t, s1, . . . , sn) such that the derivative Dsω = (Ds1ω, . . . , Dsnω)

exists and is continuous on B. If ‖ · ‖0 denotes the supremum norm in C(B;�m )
then the norm in C0,1(B;�) is defined by ‖ω‖1 = ‖ω‖0 + ‖Dsω‖0.
For any ω ∈ (B;�m ) let

‖ω‖L = sup{|ω(t, s)− ω(t̄, s̄)| · (|t− t̄|+ |s− s̄|)−1 : (t, s), (t̄, s̄) ∈ B}.

If we put ‖ω‖0,L = ‖ω‖0 + ‖ω‖L, ‖ω‖1,L = ‖ω‖1 + ‖Dsω‖L, then we denote by

C0,i+L(B;�), i = 0, 1, the space of all functions ω ∈ C0,i(B;�) such that ‖ω‖i,L <

+∞ with the norm ‖ · ‖i,L.

Let Ω(0) = Ea × C(B;�) × �
n . Besides Ω(0) we will consider the spaces Ω(1) =

Ea × C0,1(B;�) × �
n and Ω(1,L) = Ea × C0,1+L(B;�) × �

n .

Let ‖·‖Ea, ‖·‖E∗
a
denote the supremum norms in the spaces C(Ea;�n ), C(E∗

a ;�
n ),

respectively.

Assumption H1. Let f : Ω(0) → � be a function of the variables (x, y, w, q) and
let δ by any of these variables. Suppose that

1◦ the derivative Dδf exists on Ω(1), is measurable with respect to x and there is
a nondecreasing function θ1 : �+ → �+ such that

|Dδf(x, y, w, q)| � θ1(‖w‖1) on Ω(1);

2◦ there is a nondecreasing function θ2 : �+ → �+ such that for all (x, y, w, q) ∈
Ω(1,L), y, q̄ ∈ �

n , h ∈ C0,1(B;�) we have

|Dδf(x, y, w, q)−Dδf(x, y, w + h, q̄)| � θ2(‖w‖1,L)[|y − y|+ ‖h‖1 + |q − q̄|].

Remark 1. Note that if δ = w then for every (x, y, w, q) ∈ Ω(1) the derivative
Dδf(x, y, w, q) is a continuous linear operator from C0,1(B;�) to �. This means
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that in that case the norm of Dδf(x, y, w, q) is a norm of a linear operator while

if δ = y or δ = q it is a norm in the Euclidean space �n . These norms should be
distinguished but for simplicity of notation we use the same symbol | · | in both cases.
Assumption H2. Suppose that
1◦ ϕ ∈ C(E∗

0 ∪ ∂0 ∪ ∂0Ea;�), the derivative Dyϕ exists on E∗
0 ∪ ∂0Ea;

2◦ there are constants Λ0,Λ1,Λ2 ∈ �+ , such that

|ϕ(x, y)| � Λ0, |Dyϕ(x, y)| � Λ1 on E∗
0 ∪ ∂0Ea,

|Dyϕ(x, y) −Dyϕ(x, y)| � Λ2|y − y| for (x, y), (x, y) ∈ E∗
0 ∪ ∂0Ea,

and furthermore

|ϕ(x, y)−ϕ(x, y)| � Λ1|x−x|, |Dyϕ(x, y)−Dyϕ(x, y)| � Λ2|x−x| on ∂0Ea∩Ea;

3◦ the derivative Dxϕ(x, y) exists on ∂0Ea ∩ Ea and the consistency condition

(3) Dxϕ(x, y) = f(x, y, ϕ(x,y), Dyϕ(x, y))

holds true on ∂0Ea ∩ Ea.

Now, analogously to [7] we define two functional spaces such that the solution z

of (1) will belong to the first space, while Dyz to the other.

Let Q = (Q0, Q1, Q2), where Qi ∈ �+ , Qi � Λi for i = 0, 1, 2, and let 0 < a � a.
If ϕ fulfils Assumption H2 then we denote by C0,1+L

ϕ,a (Q) the set of all functions

z : E∗
a → � such that the derivative Dyz exists on E∗

a and
(i) z(x, y) = ϕ(x, y) on E∗

0 ∪ ∂0Ea;

(ii) |z(x, y)| � Q0, |Dyz(x, y)| � Q1 on Ea;
(iii) for x, x ∈ [0, a], y, y ∈ [−b, b], we have

|z(x, y)− z(x, y)| � Q1|x− x|,
|Dyz(x, y)−Dyz(x, y)| � Q2[|x− x|+ |y − y|].

Let P = (P0, P1), where Pi ∈ �+ , Pi � Λi+1 for i = 0, 1, and let 0 < a � a.
If ϕ fulfils Assumption H2 then we denote by C0,LDyϕ,a(P ) the set of all functions

u : Ea → �
n such that

(i) u(x, y) = Dyϕ(x, y) on ∂0Ea ∩ Ea;

(ii) |u(x, y)| � P0 on Ea;
(iii) for x, x ∈ [0, a], y, y ∈ [−b, b], we have

|u(x, y)| − u(x, y)| � P1[|x− x|+ |y − y|].
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3. Bicharacteristics

For any z ∈ C0,1+L
ϕ,a (Q), u ∈ C0,LDyϕ,a(P ) we consider the Cauchy problem

(4)
dη
dt
(t) = −Dqf(t, η(t), z(t,η(t)), u(t, η(t))), η(x) = y,

and we denote by g[z, u](·, x, y) = (g1[z, u](·, x, y), . . . , gn[z, u](·, x, y)) its solution,
which exists if Assumption H1 holds with δ = q. Let λ[z, u](x, y) be the left end of the

maximal interval on which the solution g[z, u](·, x, y) is defined. If Dqif(x, y, w, q) �
0, i = 1, . . . , n, on Ω(1) then

(λ[z, u](x, y), g[z, u](λ[z, u](x, y), x, y)) ∈ (E∗
0 ∪ ∂0Ea) ∩ Ea

and we may define the following two sets:

Ea0[z, u] = {(x, y) ∈ Ea : λ[z, u](x, y) = 0},
Eab[z, u] = {(x, y) ∈ Ea : gi[z, u](λ[z, u](x, y), x, y) = bi, for some 1 � i � n}.

Remark 2. In the sequel we will write θ∗i , i = 0, 1, 2, instead of θi

( i∑
j=0

Qj

)
for

simplicity of notation.

Write

R1 = 1 +Q1 +Q2 + P1, Υ(t, x) = exp{R1θ∗2 |x− t|}.

Lemma 1. Suppose that ϕ, ϕ fulfil Assumption H2 and that Assumption H1
is satisfied for δ = q. If z ∈ C0,1+L

ϕ,a (Q), z ∈ C0,1+L
ϕ,a (Q), u ∈ C0,LDyϕ,a(P ), u ∈

C0,LDyϕ,a(P ) are given functions and (x, y), (x, y) are such that the intervals K1 =

[max{λ[z, u](x, y), λ[z, u](x, y)},min{x, x}], K2 = [max{λ[z, u](x, y), λ[z, u](x, y)}, x]
are nonempty then we have the estimates

|g[z, u](t, x, y)− g[z, u](t, x, y)| � Υ(t, x){θ∗1 |x− x|+ |y − y|} for t ∈ K1,(5)

|g[z, u](t, x, y)− g[z, u](t, x, y)| � Υ(t, x)
∣∣∣∣
∫ t

x

θ∗2{‖z − z‖E∗
τ

(6)

+ ‖Dyz −Dyz‖E∗
τ
+ ‖u− u‖Eτ } dτ

∣∣∣∣ for t ∈ K2.
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�����. Let g = g[z, u] and g = g[z, u]. If we transform (4) into an integral

equation then by virtue of Assumption H1 we have

|g[z, u](t, x, y)− g[z, u](t, x, y)| � |y − y|+
∣∣∣∣
∫ x

x

|Dqf(P [z, u](τ, x, y))|dτ

∣∣∣∣

+

∣∣∣∣
∫ t

x

|Dqf(P [z, u](τ, x, y))−Dqf(P [z, u](τ, x, y))| dτ
∣∣∣∣

� |y − y|+ θ∗1 |x− x|+
∣∣∣∣
∫ t

x

θ∗2{|g[z, u](τ, x, y)− g[z, u](τ, x, y)|

+ ‖z(τ,g[z,u](τ,x,y)) − z(τ,g[z,u](τ,x,y))‖1

+ |u(τ, g[z, u](τ, x, y))− u(τ, g[z, u](τ, x, y))|} dτ
∣∣∣∣

� |y − y|+ θ∗1 |x− x|+
∣∣∣∣
∫ t

x

θ∗2R1|g[z, u](τ, x, y)− g[z, u](τ, x, y)| dτ
∣∣∣∣

for t ∈ K1, where

(7) P [z, u](t, x, y) = (t, g[z, u](t, x, y), z(t,g[z,u](t,x,y)), u(t, g[z, u](t, x, y))).

Thus (5) follows from the Gronwall lemma.
In the same way we get by Assumption H1 the estimate

|g[z, u](t, x, y)− g[z, u](t, x, y)|

�
∣∣∣∣
∫ t

x

θ∗2
{
‖z − z‖E∗

τ
+ ‖Dyz −Dyz‖E∗

τ
+ ‖u− u‖Eτ

}
dτ

∣∣∣∣

+

∣∣∣∣
∫ t

x

θ∗2R1|g[z, u](τ, x, y)− g[z, u](τ, x, y)| dτ
∣∣∣∣

for t ∈ K2. Now, again using the Gronwall lemma we get (6), which completes the
proof of Lemma 1. �

Lemma 2. Suppose that ϕ, ϕ fulfil Assumption H2 and that Assumption H1 is

satisfied for δ = q. Furthermore, suppose that for every p ∈ �+ there is δ(p) > 0 such
that we have Dqif(x, y, w, q) � δ(p), i = 1, . . . , n, for (x, y, w, q) ∈ Ω(1), ‖w‖1 � p. If

z ∈ C0,1+L
ϕ,a (Q), z ∈ C0,1+L

ϕ,a (Q), u ∈ C0,LDyϕ,a(P ), u ∈ C0,LDyϕ,a(P ) are given functions
then for all (x, y), (x, y) ∈ Ea we have

|λ[z, u](x, y)− λ[z, u](x, y)| � 1
δ0
Υ(0, x){θ∗1 |x− x|+ |y − y|},(8)

|λ[z, u](x, y)− λ[z, u](x, y)| � 1
δ0
Υ(0, x)

∫ x

0
θ∗2

{
‖z − z‖E∗

τ
+ ‖Dyz −Dyz‖E∗

τ
(9)

+ ‖u− u‖E∗
τ

}
dτ,

where δ0 = δ(Q0 +Q1).
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�����. Let g = g[z, u], λ = λ[z, u], g = g[z, u], λ = λ[z, u]. Since (8) is

obviously satisfied if (x, y), (x, y) ∈ Ea0[z, u], without loss of generality we may
assume that λ(x, y) � λ(x, y) and (x, y) ∈ Eab[z, u]. Let 1 � i � n be such that
gi(λ(x, y), x, y) = bi. Then we have

gi(λ(x, y), x, y) − gi(λ(x, y), x, y)

� gi(λ(x, y), x, y)− gi(λ(x, y), x, y)

=
∫ λ(x,y)

λ(x,y)
Dqif(τ, g(τ, x, y), z(τ,g(τ,x,y)), u(τ, g(τ, x, y))) dτ

� δ0[λ(x, y) − λ(x, y)].

The above estimate together with (5) gives (8).

Analogously, since (9) is obviously satisfied if (x, y) ∈ Ea0[z, u]∩Ea0[z, u] we may

assume that λ(x, y) � λ(x, y) and (x, y) ∈ Eab[z, u]. Then for 1 � i � n such that
gi(λ(x, y), x, y) = bi we have

gi(λ(x, y), x, y) − gi(λ(x, y), x, y)

� gi(λ(x, y), x, y)− gi(λ(x, y), x, y)

=
∫ λ(x,y)

λ(x,y)
Dqif(τ, g(τ, x, y), z(τ,g(τ,x,y)), u(τ, g(τ, x, y))) dτ

� δ0[λ(x, y) − λ(x, y)],

which together with (6) gives (9). �

4. A certain system of integral-functional equations

Assumption H3. Suppose that

1◦ Assumption H1 is satisfied with δ = y, w, q and there is a nondecreasing function

θ0 : �+ → �+ such that

|f(x, y, w, q)| � θ0(‖w‖0) on Ω(0),

2◦ for every p ∈ �+ there is δ(p) > 0 such that we have Dqif(x, y, w, q) � δ(p),
i = 1, . . . , n, for (x, y, w, q) ∈ Ω(1), ‖w‖1 � p.
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If ϕ, f satisfy assumptions H2, H3 then for given z ∈ C0,1+L
ϕ,a (Q), u ∈ C0,LDyϕ,a(P )

we define the operators T [z, u], Vi[z, u], i = 1, . . . , n, by

T [z, u](x, y) = ϕ(λ[z, u](x, y), g[z, u](λ[z, u](x, y), x, y))

+
∫ x

λ[z,u](x,y)

[
f(P [z, u](τ, x, y))

−
n∑

j=1

Dqj f(P [z, u](τ, x, y))uj(τ, g[z, u](τ, x, y))

]
dτ,

Vi[z, u](x, y) = Dyiϕ(λ[z, u](x, y), g[z, u](λ[z, u](x, y), x, y))

+
∫ x

λ[z,u](x,y)

[
Dyif(P [z, u](τ, x, y))

+Dwf(P [z, u](τ, x, y)) ◦ (ui)(τ,g[z,u](τ,x,y))

]
dτ

for (x, y) ∈ Ea, and

T [z, u](x, y) = ϕ(x, y), Vi[z, u](x, y) = Dyiϕ(x, y) for (x, y) ∈ E∗
0 ∪ ∂0Ea,

where g[z, u] is a solution of (4), λ[z, u] is the left end of the maximal interval on

which this solution is defied and P [z, u] is given by (7). We will consider the system
of integral-functional equations

(10) z = T [z, u], u = V [z, u],

where V [z, u] = (V1[z, u], . . . , Vn[z, u]).

Remark 3. Integral-functional system (10) arises in the following way. We in-
troduce an additional unknown function u = Dyz in (1). Then we consider the

linearization of (1) with respect to u which yields

(11) Dxz(x, y) = f(P ) +
n∑

j=1

Dqj f(P )(Dyjz(x, y)− uj(x, y)),

where P = (x, y, z(x,y), u(x, y)). Differentiating (1) with respect to yi and substitut-
ing u = Dyz we get

Dxui(x, y) = Dyif(P ) +Dwf(P ) ◦ (ui)(x,y)(12)

+
n∑

j=1

Dqj f(P )Dyiuj(x, y), i = 1, . . . , n.
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Making use of (4) we have

d
dτ

z(τ, g[z, u](τ, x, y)) = Dxz(τ, g[z, u](τ, x, y))

−
n∑

j=1

Dqj f(P [z, u](τ, x, y))Dyjz(τ, g[z, u](τ, x, y)).

Substituting (11) in the above relation and integrating the resulting equation with

respect to t on [λ[z, u](x, y), x] we get the first of the equations in (10) on E∗
a . Re-

peating these considerations for (12) and taking into account that z = ϕ, u = Dyϕ,

on E∗
0 ∪ ∂0Ea we get the second equation in (10).

Suppose that ϕ, f satisfy Assumptions H2, H3, respectively. Under these assump-
tions we prove by means of the method of successive approximations that the solution

of (12) exists. We define a sequence {z(m), u(m)} in the following way:
1◦ Let ϕ̂ be any extension of ϕ onto the set E∗

a such that ϕ̂ satisfies conditions 1◦,
2◦ of Assumption H2 on E∗

a . We put

(13) z(0)(x, y) = ϕ̂(x, y), u(0)(x, y) = Dyϕ̂(x, y),

and then z(0) ∈ C0,1+L
ϕ,a (Q), u(0) ∈ C0,LDyϕ,a(P ).

2◦ If z(m) ∈ C0,1+L
ϕ,a (Q), u(m) ∈ C0,LDyϕ,a(P ) are already defined functions then

u(m+1) is a solution of the equation

(14) u = V (m)[z(m), u],

and

(15) z(m+1) = T [z(m), u(m+1)],

where V (m)[z(m), u] = (V (m)1 [z(m), u], . . . , V (m)n [z(m), u]) is defined by

V
(m)
i [z(m), u](x, y) = Dyiϕ(λ[z

(m), u](x, y), g[z(m), u](λ[z(m), u](x, y), x, y))(16)

+
∫ x

λ[z(m),u](x,y)

[
Dyif(P [z

(m), u](τ, x, y))

+Dwf(P [z(m), u](τ, x, y)) ◦ (u(m)i )(τ,g[z(m),u](τ,x,y))

]
dτ

for (x, y) ∈ Ea, and

V
(m)
i [z(m), u](x, y) = Dyiϕ(x, y) for (x, y) ∈ E∗

0 ∪ ∂0Ea.
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Remark 4. Since the operators V [z(m), ·] and V (m)[z(m), ·] are not identical we
explain the way in which system (14) is obtained. If z(m) ∈ C0,1+L

ϕ,a (Q), u(m) ∈
C0,LDyϕ,a(P ) are known functions then replacing z with z(m) in system (12) we get

Dxui(x, y) = Dyif(P
(m)) +Dwf(P (m)) ◦ (Dyiz

(m))(x,y)

+
n∑

j=1

Dqj f(P
(m))Dyiuj(x, y), i = 1, . . . , n,

where P (m) = (x, y, z
(m)
(x,y), u(x, y)). If we assume that Dyz

(m) = u(m) (see Theorem

1), then by integrating the above system along the bicharacteristic g[z(m), u](·, x, y)

on the interval [λ[z(m), u](x, y), x] we get (14).

Write

Γ0(x) = Λ1 + θ∗1S1x,

Γ̃0(x) = Λ1Υ(0, x)
[ 1
δ0
(1 + θ∗1) + 1

]
θ∗1 +

[
1 +

1
δ0
Υ(0, x)θ∗1

]
(θ∗0 + θ∗1P0)

+ {θ∗1 + θ∗2P0}R1Υ(0, x)x,

Γ1(x) = Λ2Υ(0, x)
[ 1
δ0
(1 + θ∗1) + 1

]
+ S1 + S1θ

∗
1
1
δ0

+ {θ∗2R1S1 + θ∗1P1}Υ(0, x)x,

G(x) = Λ2Υ(0, x)θ∗2
[ 1
δ0
(1 + θ∗1) + 1

]
+ θ∗1S1

1
δ0
Υ(0, x)θ∗2

+ [θ∗2R1S1 + θ∗1P1]Υ(0, x)θ
∗
2x+ θ∗2S1,

where

S1 = 1 + P0.

Assumption H4. Suppose that we may choose constants Qi ∈ �+ , Qi > Λi for

i = 0, 1, 2 such that Pi = Qi+1 for i = 0, 1, and that for sufficiently small a ∈ (0, a]
we have the inequalities

Λ0 + [θ∗0 + θ∗1P0]a � Q0, max{Γ0(a), Γ̃(a)} � Q1,

max{Γ1(a), θ∗1Γ1(a)} � Q2, aG(a) < 1.

800



5. The existence of the sequence of successive approximations

The problem of existence of the sequence {z(m), u(m)} is the main difficulty in our
method. We prove that this sequence exists provided a, 0 < a � a, is sufficiently

small.

Theorem 1. If Assumptions H2–H4 are satisfied then for any m ∈ � we have

(Im) z(m), u(m) are defined on E∗
a , Ea, respectively and we have z(m) ∈ C0,1+L

ϕ,a (Q),
u(m) ∈ C0,LDyϕ,a(P );

(IIm) Dyz(m)(x, y) = u(m)(x, y) on Ea.

�����. We will prove (Im) and (IIm) by induction. It follows from (15) that

(I0), (II0) are satisfied. Suppose that conditions (Im) and (IIm) hold true for a given
n ∈ �. We first prove that u(m+1) : Ea → �

n exists and u(m+1) ∈ C0,LDyϕ,a(P ).

We claim that given z(m) ∈ C0,1+L
ϕ,a (Q) the operator V [z(m), ·] maps C0,LDyϕ,a(P )

into itself. For simplicity of notation we ignore the dependence of g, λ and P on z(m)

and u. It follows from Assumptions H2, H3 and (5) that given u ∈ C0,LDyϕ,a(P ) then
for all (x, y), (x, y) ∈ Ea we have the estimates

|V (m)[z(m), u](x, y)| � Λ1 +
∫ x

λ(x,y)
θ∗1S1 dτ,

|V (m)[z(m), u](x, y)− V (m)[z(m), u](x, y)|

� Λ2Υ(0, x)
{
[1 + θ∗1 ]

1
δ0
+ 1

}
{θ∗1|x− x|+ |y − y|}

+

∣∣∣∣
∫ x

x

θ∗1S1 dτ

∣∣∣∣+
∣∣∣∣
∫ λ(x,y)

λ(x,y)
θ∗1S1dτ

∣∣∣∣

+ {θ∗1 |x− x|+ |y − y|} ·
∫ x

λ(x,y)
{θ∗2R1S1 + θ∗1P1}Υ(τ, x) dτ.

Hence by Assumption H4 we get

|V (m)[z(m), u](x, y)| � P0,(17)

|V (m)[z(m), u](x, y)− V (m)[z(m), u](x, y)| � P1
[
|x− x|+ |y − y|

]

for (x, y), (x, y) ∈ Ea. Since V (m)[z(m), u] = Dyϕ on E∗
0 ∪ ∂0Ea it follows from (17)

that V (m)[z(m), ·] maps C0,LDyϕ,a(P ) into itself.

If u, u ∈ C0,LDyϕ,a(P ), then analogously, by Assumptions H2, H3, (6), (9) and the
relation V (m)[z(m), u] = V (m)[z(m), u] = Dyϕ on E∗

0 ∪ ∂0Ea, we get

‖V (m)[z(m), u]− V (m)[z(m), u]‖Ea �
∫ a

0
G(τ)‖u − u‖Eτ dτ.
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Thus Assumption H4 yields that V (m)[z(m), ·] is a contraction with the norm ‖ · ‖Ea.

By the Banach fixed point theorem there exists a unique solution u ∈ C0,LDyϕ,a of (14)
which is u(m+1).

Our next goal is to prove that z(m+1) given by (15) satisfies (IIm+1). For x ∈ [0, a],
y, y ∈ �

n put

∆(x, y, y) = z(m+1)(x, y)− z(m+1)(x, y)− u(m+1)(x, y)(y − y).

By the Hadamard mean value theorem we have

∆(x, y, y) = ϕ(λ(x, y), g(λ(x, y), x, y)) − ϕ(λ(x, y), g(λ(x, y), x, y))

−Dyϕ(λ(x, y), g(λ(x, y), x, y))(y − y)

+
∫ x

λ(x,y)

∫ 1

0
Dyf(Q(s, τ))[g(τ, x, y) − g(τ, x, y)] ds dτ

+
∫ x

λ(x,y)

∫ 1

0
Dwf(Q(s, τ)) ◦

[
z
(m)
(τ,g(τ,x,y)) − z

(m)
(τ,g(τ,x,y))

]
ds dτ

+
∫ x

λ(x,y)

∫ 1

0
Dqf(Q(s, τ))

[
u(m+1)(τ, g(τ, x, y))− u(m+1)(τ, g(τ, x, y))

]
ds dτ

−
∫ x

λ(x,y)

{
Dqf(τ, x, y))u(m+1)(τ, g(τ, x, y))

−Dqf(P (τ, x, y))u(m+1)(τ, g(τ, x, y))
}
dτ

+
∫ λ(x,y)

λ(x,y)

{
f(P (τ, x, y))−Dqf(P (τ, x, y))u(m+1)(τ, g(τ, x, y)

}
dτ

−
∫ x

λ(x,y)

{
Dyf(P (τ, x, y)) +Dwf(P (τ, x, y)) ◦ u

(m)
(τ,g(τ,x,y))

}
dτ(y − y),

where Q(s, τ) = sP (τ, x, y) + (1 − s)P (τ, x, y). Let us define

∆0(x, y, y) = ϕ(λ(x, y), g(λ(x, y), x, y)) − ϕ(λ(x, y), g(λ(x, y), x, y))

−Dxϕ(λ(x, y), g(λ(x, y), x, y))[λ(x, y) − λ(x, y)]

−Dyϕ(λ(x, y), g(λ(x, y), x, y))[g(λ(x, y), x, y) − g(λ(x, y), x, y)],

∆1(x, y, y) =
∫ x

λ(x,y)

∫ 1

0

[
Dyf(Q(s, τ)) −Dyf(P (τ, x, y))

]

× [g(τ, x, y)− g(τ, x, y)] ds dτ,

∆2(x, y, y) =
∫ x

λ(x,y)

∫ 1

0

[
Dwf(Q(s, τ)) −Dwf(P (τ, x, y))

]

◦
[
z
(m)
(τ,g(τ,x,y)) − z

(m)
(τ,g(τ,x,y))

]
ds dτ,
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∆3(x, y, y) =
∫ x

λ(x,y)

∫ 1

0

[
Dqf(Q(s, τ)) −Dqf(P (τ, x, y))

]

×
[
u(m+1)(τ, g(τ, x, y)) − u(m+1)(τ, g(τ, x, y))

]
ds dτ,

∆4(x, y, y) =
∫ x

λ(x,y)
Dwf(P (τ, x, y)) ◦

[
z
(m)
(τ,g(τ,x,y)) − z

(m)
(τ,g(τ,x,y))

− u
(m)
(τ,g(τ,x,y))[g(τ, x, y)− g(τ, x, y)]

]
dτ,

∆5(x, y, y) = [λ(x, y)− λ(x, y)] ·Dxϕ(λ(x, y), g(λ(x, y), x, y))

−
∫ λ(x,y)

λ(x,y)
f(P (τ, x, y)) dτ,

∆6(x, y, y) = [g(λ(x, y), x, y)− g(λ(x, y), x, y)] ·Dyϕ(λ(x, y), g(λ(x, y), x, y))

+
∫ λ(x,y)

λ(x,y)
Dqf(P (τ, x, y))u(m+1)(τ, g(τ, x, y)) dτ,

and

∆̃0(x, y, y) = Dyϕ(λ(x, y), g(λ(x, y), x, y))[g(λ(x, y), x, y)

− g(λ(x, y), x, y)− (y − y)],

∆̃1(x, y, y) =
∫ x

λ(x,y)
Dyf(P (τ, x, y))[g(τ, x, y)− g(τ, x, y)− (y − y)] dτ

+
∫ x

λ(x,y)
Dwf(P (τ, x, y))

◦ u
(m)
(τ,g(τ,x,y))[g(τ, x, y)− g(τ, x, y)− (y − y)] dτ,

∆̃2(x, y, y) = −
∫ x

λ(x,y)
[Dqf(P (τ, x, y))−Dqf(P (τ, x, y))]u(m+1)(τ, g(τ, x, y)) dτ.

With the above definitions we have

(18) ∆(x, y, y) =
6∑

i=0

∆i(x, y, y) +
2∑

i=0

∆̃i(x, y, y).

Since g(·, x, y) is a solution of (4) we see that

g(τ, x, y)− g(τ, x, y)− (y − y) =
∫ x

τ

[Dqf(P (ξ, x, y))−Dqf(P (ξ, x, y))] dξ.

803



Substituting the above relation in ∆̃1 and in ∆̃0 with τ = 0 and changing the order

of integrals where necessary we get

2∑

i=0

∆̃(x, y, y) =
∫ x

λ(x,y)

[
Dqf(P (τ, x, y))−Dqf(P (τ, x, y))

][
Dyϕ(0, g(0, x, y))

+
∫ τ

λ(x,y)
Dyf(P (ξ, x, y)) dξ

+
∫ τ

λ(x,y)
Dwf(P (ξ, x, y)) ◦ u

(m)
(ξ,g(ξ,x,y)) dξ − u(m+1)(τ, g(τ, x, y))

]
dτ

=
∫ x

λ(x,y)

[
Dqf(P (τ, x, y))−Dqf(P (τ, x, y))

]

×
[
V (m)[z(m), u(m+1)](τ, g(τ, x, y))− u(m+1)(τ, g(τ, x, y))

]
dτ = 0,

from which and from (18) we get ∆(x, y, y) =
6∑

i=0
∆i(x, y, y). In the above transfor-

mations we have used the group property

g(ξ, τ, g(τ, x, y)) = g(ξ, x, y) for (x, y) ∈ Ea, τ, ξ ∈ [0, a].

Assumptions H2, H3, (5) and the existence of derivatives Dyϕ, Dyz(m) = u(m) yield
that for x ∈ [0, a], i = 0, 4, we have

(19)
1

|y − y|∆i(x, y, y)→ 0 if |y − y| → 0.

From Assumption H3 and (5) we get the existence of some constants Ci, i = 1, 2, 3,

such that

|∆i(x, y, y)| � Ci|y − y|2, x ∈ [0, a], y, y ∈ [−b, b], i = 1, 2, 3.

Writing ∆5, ∆6 in the form

∆5(x, y, y) =
∫ λ(x,y)

λ(x,y)

[
Dxϕ(λ(x, y), g(λ(x, y), x, y)) − f(P (τ, x, y))

]
dτ,

∆6(x, y, y) =
∫ λ(x,y)

λ(x,y)
Dqf(P (τ, x, y))

[
u(m+1)(τ, g(τ, x, y))

−Dyϕ(λ(x, y), g(λ(x, y), x, y))
]
dτ

and making use of the consistency condition (3) and the relation u(m+1) = Dyϕ on

∂0Ea∩Ea we get estimates of the same type for i = 5, 6. This means that (19) holds
true also for i = 1, 2, 3, 5, 6, which completes the proof of (IIm+1).
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Finally, we prove that z(m+1) defined by (15) belongs to the class C0,1+L
ϕ,a (Q). Since

Dyz(m+1) = u(m+1) it follows from (17) and from Assumption H4 that

|Dyz(m+1)(x, y)| � Q1,

|Dyz(m+1)(x, y)−Dyz(m+1)(x, y)| � Q2[|x− x|+ |y − y|]

for (x, y), (x, y) ∈ Ea. By Assumptions H2–H4 we easily get

|z(m+1)(x, y)| � Q0, |z(m+1)(x, y)− z(m+1)(x, y)| � Q1|x− x|

for (x, y), (x, y) ∈ Ea. This together with the relation z(m+1) = ϕ on E∗
0 ∪∂0Ea gives

z(m+1) ∈ C0,1+L
ϕ,a (Q), which completes the proof of (Im+1). Thus Theorem 1 follows

by induction. �

6. The main result

Write

H∗(t) = H(t) +H(t) exp

{∫ t

0
G(ξ) dξ

} ∫ t

0
G(ξ) dξ,

where

H(t) = Λ1Υ(0, t)θ
∗
2

[ 1
δ0
(1 + θ∗1) + 1

]
+ θ∗1S1

1
δ0
Υ(0, t)θ∗2

+ [θ∗2R1P0 + θ∗1R1]Υ(0, t)θ
∗
2t+ θ∗1 + θ∗2P0.

Theorem 2. If Assumptions H2–H4 are satisfied then the sequences {z(m)},
{u(m)} are uniformly convergent on Ea.

�����. For any t ∈ [0, a] and m ∈ � we put

Z(m)(t) = sup
{
|z(m)(x, y)− z(m−1)(x, y)| : (x, y) ∈ Et

}
,

U (m)(t) = sup
{
|u(m)(x, y)− u(m−1)(x, y)| : (x, y) ∈ Et

}
.

Using the same technique as in the proof of Theorem 1 we get by Assumptions H2,
H3 and (6) for any x ∈ [0, a] and m ∈ � the estimate

U (m+1)(x) �
∫ x

0
G(τ)U (m+1)(τ) dτ +

∫ x

0
G(τ)

[
Z(m)(τ) + U (m)(τ)

]
dτ.

Making use of the Gronwall lemma we have

(20) U (m+1)(x) � exp
{∫ x

0
G(τ) dτ

}∫ x

0
G(τ)

[
Z(m)(τ) + U (m)(τ)

]
dτ.
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By Assumptions H2, H3, (10) and (20) we get the estimate

(21) Z(m+1)(x) �
∫ x

0
H∗(τ)

[
Z(m)(τ) + U (m)(τ)

]
dτ, x ∈ [0, a].

Thus if we take

Ma = exp

{∫ a

0
G(ξ) dξ

}
G(a) +H∗(a),

then using (20), (21) for any x ∈ [0, a] we have

Z(m+1)(x) + U (m+1)(x) � Ma

∫ x

0

[
Z(m)(τ) + U (m)(τ)

]
dτ.

Now, by induction it is easy to get

Z(m)(x) + U (m)(x) � Mm−1
a xm−1

(m− 1)!
[
Z(1)(a) + U (1)(a)

]
, x ∈ [0, a],

and consequently

(22)
m∑

i=k

[Z(i)(a) + U (i)(a)] � [Z(1)(a) + U (1)(a)]
m−1∑

i=k−1

M i
aai

i!
.

Since the series
∞∑

i=1

Mi
aai

i! is convergent it follows from (22) that the sequences {z(m)},

{u(m)} satisfy the uniform Cauchy condition on Ea, which means that they are

uniformly convergent on Ea. This completes the proof of Theorem 2. �

Theorem 3. If Assumptions H2–H4 are satisfied then there is a solution of the
problem (1), (2).

�����. It follows from Theorem 2 that there exist functions z, u such that

{z(m)}, {u(m)} are uniformly convergent on Ea to z, u, respectively. Furthermore,
Dyz exists on Ea and Dyz = u. We prove that z is a solution of (1).

From (12) it follows that for any (x, y) ∈ Ea0[z, Dyz] we have

z(x, y) = ϕ(0, g(0, x, y)) +
∫ x

0

[
f(P [z, Dyz](τ, x, y))(23)

−
n∑

j=1

Dqj f(P [z, Dyz](τ, x, y))Dyj z(τ, x, y)
]
dτ,

where g = g[z, Dyz].
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For a fixed x we define the transformation y �→ g(0, x, y) = ξ. Then by the group

property g(t, x, y) = g(t, 0, ξ) and by (23) we get

z(x, g(x, 0, ξ)) = ϕ(0, ξ) +
∫ x

0

[
f(τ, g(τ, 0, ξ), z(τ,g(τ,0,ξ)), Dyz(τ, g(τ, 0, ξ)))

−
n∑

j=1

Dqj f(τ, g(τ, 0, ξ), z(τ,g(τ,0,ξ)), Dyz(τ, g(τ, 0, ξ)))Dyj z(τ, g(τ, 0, ξ))

]
dτ.

Differentiating the above relation with respect of x and making use of the reverse

transformation ξ �→ g(x, 0, ξ) = y, we see that z satisfies (1) for almost all x with
fixed y on Ea0[z, Dyz].

Analogously for any (x, y) ∈ Eab[z, Dyz] we have

z(x, y) = ϕ(0, g(0, x, y)) +
∫ x

λ(x,y)

[
f(P [z, Dyz](τ, x, y))(24)

−
n∑

j=1

Dqj f(P [z, Dyz](τ, x, y))Dyj z(τ, x, y)

]
dτ,

where λ = λ[z, Dyz]. For simplicity of notation suppose that gi(λ(x, y), x, y) = bi

for i = n and write ξ′ = (ξ1, . . . , ξn−1), g′i(g1, . . . , gn−1). For a fixed x we define the
transformation y �→ (g′(λ(x, y), x, y), λ(x, y)) = (ξ′, η). Then by (24) and the group

property we get

z(x, g(x, η, ξ′, bn)) = ϕ(η, ξ′, bn)

+
∫ x

η

[
f(τ, g(τ, η, ξ′, bn), z(τ,g(τ,η,ξ′,bn)), Dyz(τ, g(τ, η, ξ′, bn)))

−
n∑

j=1

Dqj f(τ, g(τ, η, ξ′, bn), z(τ,g(τ,η,ξ′,bn)), Dyz(τ, z(τ, g(τ, η, ξ′, bn)))

×Dyjz(τ, g(τ, η, ξ′, bn))

]
dτ.

Differentiating the above relation with respect to x and making use of the reverse
transformation (ξ′, η) �→ g(x, η, ξ′, bn) = y, we see that z satisfies (1) for almost all

x with fixed y also on Eab[z, Dyz]. Since obviously z fulfils condition (2), the proof
of Theorem 3 is complete. �

Remark 5. If in Theorem 3 we assume that f is continuous then we get existence
of classical solutions of problem (1), (2).
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Remark 6. The existence results of our paper can be extended to weak coupled
differential-functional systems

Dxzi(x, y) = fi(x, y, z(x,y), Dyzi(x, y)), i = 1, . . . , k,

zi(x, y) = ϕi(x, y), (x, y) ∈ E∗
0 ∪ ∂0Ea, i = 1, . . . , k,

where z = (z1, . . . , zk), with given functions fi : Ea × C(B;�n ) × �
n → � and

ϕi : E∗
0 ∪ ∂0Ea → �.

Now, we show some examples of differential-functional equations which are par-
ticular cases of (1).

Example 1. Given f̂ : Ea ×� ×�
n → � let us consider the differential equation

with a deviated argument

(25) Dxz(x, y) = f̂(x, y, z(α(x), β(x, y)), Dyz(x, y)),

where α : [0, a] → �, β : Ea → [−b, b], and α(x) � x for x ∈ [0, a]. We define a
function f by

f(x, y, w, q) = f̂(x, y, w(α(x) − x, β(x, y)− y), q)

for (x, y, w, q) ∈ Ea × C(B;�) × �
n . If (α(x) − x, β(x, y) − y) ∈ B for (x, y) ∈ Ea

then (25) is a particular case of (1) under natural assumptions on α, β, f̂ .

Example 2. With f̂ as in the previous example consider the differential-integral

equation

(26) Dxz(x, y) = f̂

(
x, y,

∫

B

z(x+ t, y + s) dt ds, Dyz(x, y)

)
.

If we define a function f by

f(x, y, w, q) = f̂

(
x, y,

∫

B

w(t, s) dt ds, q

)

for (x, y, w, q) ∈ Ea × C(B;�) × �
n , then it is easy to formulate assumptions on f̂

in order to get the existence theorem for (26) as a particular case of (1).
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[13] T. Cz�lapiński: On the Cauchy problem for quasilinear hyperbolic systems of partial dif-
ferential-functional equations of the first order. Zeit. Anal. Anwend. 10 (1991), 169–182.
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