Czechoslovak Mathematical Journal

Tomasz Człapiński

On the mixed problem for hyperbolic partial differential-functional equations of the first order

Czechoslovak Mathematical Journal, Vol. 49 (1999), No. 4, 791-809

Persistent URL: http://dml.cz/dmlcz/127528

Terms of use:

© Institute of Mathematics AS CR, 1999

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON THE MIXED PROBLEM FOR HYPERBOLIC PARTIAL DIFFERENTIAL-FUNCTIONAL EQUATIONS OF THE FIRST ORDER

Tomasz CzŁapiński, Gdańsk

(Received October 15, 1996)

Abstract. We consider the mixed problem for the hyperbolic partial differential-functional equation of the first order

$$
D_{x} z(x, y)=f\left(x, y, z_{(x, y)}, D_{y} z(x, y)\right),
$$

where $z_{(x, y)}:[-\tau, 0] \times[0, h] \rightarrow \mathbb{R}$ is a function defined by $z_{(x, y)}(t, s)=z(x+t, y+s)$, $(t, s) \in[-\tau, 0] \times[0, h]$. Using the method of bicharacteristics and the method of successive approximations for a certain integral-functional system we prove, under suitable assumptions, a theorem of the local existence of generalized solutions of this problem.

Keywords: partial differential-functional equations, mixed problem, generalized solutions, local existence, bicharacteristics, successive approximations

MSC 2000: 35D05, 35L60, 35R10

1. Introduction

If X, Y are any metric spaces then we denote by $C(X ; Y)$ the class of all continuous functions from X to Y. Let $B=[-\tau, 0] \times[0, h]$, where $h=\left(h_{1}, \ldots, h_{n}\right) \in \mathbb{R}_{+}^{n}, \tau \in \mathbb{R}_{+}$, $\left(\mathbb{R}_{+}=[0,+\infty)\right)$. For a given function $z:[-\tau, \bar{a}] \times[-b, b+h] \rightarrow \mathbb{R}$, where $\bar{a}>0, b=$ $\left(b_{1}, \ldots, b_{n}\right), b_{i}>0, i=1, \ldots, n$, and a point $(x, y)=\left(x, y_{1}, \ldots, y_{n}\right) \in[0, a] \times[-b, b]$, we consider the function $z_{(x, y)}: B \rightarrow \mathbb{R}$ defined by

$$
z_{(x, y)}(t, s)=z(x+t, y+s), \quad(t, s) \in B
$$

For any $a \in(0, \bar{a}]$ we define sets

$$
\begin{aligned}
E_{0}^{*} & =[-\tau, 0] \times[-b, b+h], & \partial_{0} E_{a} & =[0, a] \times[-b, b+h] \backslash[0, a] \times[-b, b), \\
E_{a} & =[0, a] \times[-b, b], & E_{a}^{*} & =E_{0}^{*} \cup \partial_{0} E_{a} \cup E_{a} .
\end{aligned}
$$

For given functions $f: E_{\bar{a}} \times C(B ; \mathbb{R}) \times \mathbb{R}^{n} \rightarrow \mathbb{R}$, where $\bar{a}>0$, and $\varphi: E_{0}^{*} \cup \partial_{0} E_{\bar{a}} \rightarrow \mathbb{R}$, we consider the mixed problem

$$
\begin{align*}
D_{x} z(x, y) & =f\left(x, y, z_{(x, y)}, D_{y} z(x, y)\right) \tag{1}\\
z(x, y) & =\varphi(x, y), \quad(x, y) \in E_{0}^{*} \cup \partial_{0} E_{\bar{a}} \tag{2}
\end{align*}
$$

where $D_{y} z=\left(D_{y_{1}} z, \ldots, D_{y_{n}} z\right)$.
We call $z: E_{a}^{*} \rightarrow \mathbb{R}$, where $0<a \leqslant \bar{a}$, a solution of (1), (2) if
(i) $z \in C\left(E_{a}^{*} ; \mathbb{R}\right)$ and the derivative $D_{y} z(x, y)$ exists on E_{a},
(ii) $z(\cdot, y):[0, a] \rightarrow \mathbb{R}$ is absolutely continuous on $[0, a]$ for each $y \in[-b, b]$,
(iii) for any fixed $y \in[-b, b]$ equation (1) is satisfied for almost all $x \in[0, a]$, and condition (2) holds true for all $(x, y) \in E_{0}^{*} \cup \partial_{0} E_{a}$.

In other words we wish to investigate the local (with respect to x) existence of generalized solutions of the problem (1), (2).

In this paper we deal with the problem in which the hereditary structure of the equation is based on the operator $(x, y) \mapsto z_{(x, y)}$. Note that in this setting f becomes a functional operator with respect to the third variable. Other settings are based on the use of abstract operators of the Volterra type or on the dependence of f on z with the assumption that f is of the Volterra type. Differential equations with a deviated argument and differential-integral equations are particular cases of (1).

There are various concepts of a solution concerning mixed problems for hyperbolic partial differential and differential-functional equations. Continuous solutions (satisfying integral systems arising from differential equations by integrating along bicharacteristics) of quasilinear systems were considered by Abolina and Myshkis [1] or Myshkis and Filimonov [17], [18]. Generalized (in the "almost everywhere" sense) solutions were investigated by Bassanini [2], Turo [20] and Kamont and Topolski [16] (see also [15]). Classical solutions in the functional setting were considered in [14].

In this paper we consider the mixed problem for the nonlinear differentialfunctional problem. Analogously to [7] we use the method of bicharacteristics together with the method of successive approximations for a certain integralfunctional system. The method of bicharacteristics was introduced and developed in non-functional setting by Cinquini-Cibrario [11], [12] an Cinquini [10] for quasilinear as well as nonlinear problems. This method was adapted by Cesari [8], [9] and Bassanini [3], [4] for quasilinear systems in the second canonical form. Some
extensions of Cesari's results to differential-functional systems were given in [5], [13], [19]. The results obtained in papers mentioned above by means of the method of bicharacteristics concern generalized solutions. Existence of generalized solutions to nonlinear differential-functional equations with the operator $z_{(x, y)}$ was proved by Brandi, Kamont and Salvadori [7]. An existence result for this equation was also obtained by Brandi and Ceppitelli [6] by means of the method of successive approximations.

2. Notation and assumptions

Let \mathbb{R}^{n} denote the n-dimensional Euclidean space with the norm $|\cdot|$ defined by $|y|=\max _{1 \leqslant i \leqslant n}\left|y_{i}\right|$. Let $C^{0,1}(B ; \mathbb{R})$ be the set of all continuous functions $\omega: B \rightarrow \mathbb{R}$ of the variables $(t, s)=\left(t, s_{1}, \ldots, s_{n}\right)$ such that the derivative $D_{s} \omega=\left(D_{s_{1}} \omega, \ldots, D_{s_{n}} \omega\right)$ exists and is continuous on B. If $\|\cdot\|_{0}$ denotes the supremum norm in $C\left(B ; \mathbb{R}^{m}\right)$ then the norm in $C^{0,1}(B ; \mathbb{R})$ is defined by $\|\omega\|_{1}=\|\omega\|_{0}+\left\|D_{s} \omega\right\|_{0}$.

For any $\omega \in\left(B ; \mathbb{R}^{m}\right)$ let

$$
\|\omega\|_{L}=\sup \left\{|\omega(t, s)-\omega(\bar{t}, \bar{s})| \cdot(|t-\bar{t}|+|s-\bar{s}|)^{-1}:(t, s),(\bar{t}, \bar{s}) \in B\right\}
$$

If we put $\|\omega\|_{0, L}=\|\omega\|_{0}+\|\omega\|_{L},\|\omega\|_{1, L}=\|\omega\|_{1}+\left\|D_{s} \omega\right\|_{L}$, then we denote by $C^{0, i+L}(B ; \mathbb{R}), i=0,1$, the space of all functions $\omega \in C^{0, i}(B ; \mathbb{R})$ such that $\|\omega\|_{i, L}<$ $+\infty$ with the norm $\|\cdot\|_{i, L}$.

Let $\Omega^{(0)}=E_{\bar{a}} \times C(B ; \mathbb{R}) \times \mathbb{R}^{n}$. Besides $\Omega^{(0)}$ we will consider the spaces $\Omega^{(1)}=$ $E_{\bar{a}} \times C^{0,1}(B ; \mathbb{R}) \times \mathbb{R}^{n}$ and $\Omega^{(1, L)}=E_{\bar{a}} \times C^{0,1+L}(B ; \mathbb{R}) \times \mathbb{R}^{n}$.

Let $\|\cdot\|_{E_{a}},\|\cdot\|_{E_{a}^{*}}$ denote the supremum norms in the spaces $C\left(E_{a} ; \mathbb{R}^{n}\right), C\left(E_{a}^{*} ; \mathbb{R}^{n}\right)$, respectively.

Assumption H_{1}. Let $f: \Omega^{(0)} \rightarrow \mathbb{R}$ be a function of the variables (x, y, w, q) and let δ by any of these variables. Suppose that
1° the derivative $D_{\delta} f$ exists on $\Omega^{(1)}$, is measurable with respect to x and there is a nondecreasing function $\theta_{1}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that

$$
\left|D_{\delta} f(x, y, w, q)\right| \leqslant \theta_{1}\left(\|w\|_{1}\right) \quad \text { on } \quad \Omega^{(1)} ;
$$

2° there is a nondecreasing function $\theta_{2}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that for all $(x, y, w, q) \in$ $\Omega^{(1, L)}, \bar{y}, \bar{q} \in \mathbb{R}^{n}, h \in C^{0,1}(B ; \mathbb{R})$ we have

$$
\left|D_{\delta} f(x, y, w, q)-D_{\delta} f(x, \bar{y}, w+h, \bar{q})\right| \leqslant \theta_{2}\left(\|w\|_{1, L}\right)\left[|y-\bar{y}|+\|h\|_{1}+|q-\bar{q}|\right] .
$$

Remark 1. Note that if $\delta=w$ then for every $(x, y, w, q) \in \Omega^{(1)}$ the derivative $D_{\delta} f(x, y, w, q)$ is a continuous linear operator from $C^{0,1}(B ; \mathbb{R})$ to \mathbb{R}. This means
that in that case the norm of $D_{\delta} f(x, y, w, q)$ is a norm of a linear operator while if $\delta=y$ or $\delta=q$ it is a norm in the Euclidean space \mathbb{R}^{n}. These norms should be distinguished but for simplicity of notation we use the same symbol $|\cdot|$ in both cases.

Assumption H_{2}. Suppose that
$1^{\circ} \varphi \in C\left(E_{0}^{*} \cup \partial_{0} \cup \partial_{0} E_{\bar{a}} ; \mathbb{R}\right)$, the derivative $D_{y} \varphi$ exists on $E_{0}^{*} \cup \partial_{0} E_{\bar{a}}$;
2° there are constants $\Lambda_{0}, \Lambda_{1}, \Lambda_{2} \in \mathbb{R}_{+}$, such that

$$
\begin{aligned}
|\varphi(x, y)| \leqslant \Lambda_{0}, \quad\left|D_{y} \varphi(x, y)\right| \leqslant \Lambda_{1} & \text { on } \quad E_{0}^{*} \cup \partial_{0} E_{\bar{a}} \\
\left|D_{y} \varphi(x, y)-D_{y} \varphi(x, \bar{y})\right| \leqslant \Lambda_{2}|y-\bar{y}| \quad & \text { for }(x, y),(x, \bar{y}) \in E_{0}^{*} \cup \partial_{0} E_{\bar{a}}
\end{aligned}
$$

and furthermore
$|\varphi(x, y)-\varphi(\bar{x}, y)| \leqslant \Lambda_{1}|x-\bar{x}|, \quad\left|D_{y} \varphi(x, y)-D_{y} \varphi(\bar{x}, y)\right| \leqslant \Lambda_{2}|x-\bar{x}| \quad$ on $\partial_{0} E_{\bar{a}} \cap E_{\bar{a}} ;$
3° the derivative $D_{x} \varphi(x, y)$ exists on $\partial_{0} E_{\bar{a}} \cap E_{\bar{a}}$ and the consistency condition

$$
\begin{equation*}
D_{x} \varphi(x, y)=f\left(x, y, \varphi_{(x, y)}, D_{y} \varphi(x, y)\right) \tag{3}
\end{equation*}
$$

holds true on $\partial_{0} E_{\bar{a}} \cap E_{\bar{a}}$.
Now, analogously to [7] we define two functional spaces such that the solution z of (1) will belong to the first space, while $D_{y} z$ to the other.

Let $Q=\left(Q_{0}, Q_{1}, Q_{2}\right)$, where $Q_{i} \in \mathbb{R}_{+}, Q_{i} \geqslant \Lambda_{i}$ for $i=0,1,2$, and let $0<a \leqslant \bar{a}$. If φ fulfils Assumption H_{2} then we denote by $C_{\varphi, a}^{0,1+L}(Q)$ the set of all functions $z: E_{a}^{*} \rightarrow \mathbb{R}$ such that the derivative $D_{y} z$ exists on E_{a}^{*} and
(i) $z(x, y)=\varphi(x, y)$ on $E_{0}^{*} \cup \partial_{0} E_{a}$;
(ii) $|z(x, y)| \leqslant Q_{0},\left|D_{y} z(x, y)\right| \leqslant Q_{1}$ on E_{a};
(iii) for $x, \bar{x} \in[0, a], y, \bar{y} \in[-b, b]$, we have

$$
\begin{aligned}
|z(x, y)-z(\bar{x}, y)| & \leqslant Q_{1}|x-\bar{x}|, \\
\left|D_{y} z(x, y)-D_{y} z(\bar{x}, \bar{y})\right| & \leqslant Q_{2}[|x-\bar{x}|+|y-\bar{y}|] .
\end{aligned}
$$

Let $P=\left(P_{0}, P_{1}\right)$, where $P_{i} \in \mathbb{R}_{+}, P_{i} \geqslant \Lambda_{i+1}$ for $i=0,1$, and let $0<a \leqslant \bar{a}$. If φ fulfils Assumption H_{2} then we denote by $C_{D_{y} \varphi, a}^{0, L}(P)$ the set of all functions $u: E_{a} \rightarrow \mathbb{R}^{n}$ such that
(i) $u(x, y)=D_{y} \varphi(x, y)$ on $\partial_{0} E_{a} \cap E_{a}$;
(ii) $|u(x, y)| \leqslant P_{0}$ on E_{a};
(iii) for $x, \bar{x} \in[0, a], y, \bar{y} \in[-b, b]$, we have

$$
|u(x, y)|-u(\bar{x}, \bar{y}) \mid \leqslant P_{1}[|x-\bar{x}|+|y-\bar{y}|] .
$$

3. Bicharacteristics

For any $z \in C_{\varphi, a}^{0,1+L}(Q), u \in C_{D_{y} \varphi, a}^{0, L}(P)$ we consider the Cauchy problem

$$
\begin{equation*}
\frac{\mathrm{d} \eta}{\mathrm{~d} t}(t)=-D_{q} f\left(t, \eta(t), z_{(t, \eta(t))}, u(t, \eta(t))\right), \quad \eta(x)=y \tag{4}
\end{equation*}
$$

and we denote by $g[z, u](\cdot, x, y)=\left(g_{1}[z, u](\cdot, x, y), \ldots, g_{n}[z, u](\cdot, x, y)\right)$ its solution, which exists if Assumption H_{1} holds with $\delta=q$. Let $\lambda[z, u](x, y)$ be the left end of the maximal interval on which the solution $g[z, u](\cdot, x, y)$ is defined. If $D_{q_{i}} f(x, y, w, q) \geqslant$ $0, i=1, \ldots, n$, on $\Omega^{(1)}$ then

$$
(\lambda[z, u](x, y), g[z, u](\lambda[z, u](x, y), x, y)) \in\left(E_{0}^{*} \cup \partial_{0} E_{a}\right) \cap E_{a}
$$

and we may define the following two sets:

$$
\begin{aligned}
& E_{a 0}[z, u]=\left\{(x, y) \in E_{a}: \lambda[z, u](x, y)=0\right\} \\
& E_{a b}[z, u]=\left\{(x, y) \in E_{a}: g_{i}[z, u](\lambda[z, u](x, y), x, y)=b_{i}, \quad \text { for some } 1 \leqslant i \leqslant n\right\}
\end{aligned}
$$

Remark 2. In the sequel we will write $\theta_{i}^{*}, i=0,1,2$, instead of $\theta_{i}\left(\sum_{j=0}^{i} Q_{j}\right)$ for simplicity of notation.

Write

$$
R_{1}=1+Q_{1}+Q_{2}+P_{1}, \quad \Upsilon(t, x)=\exp \left\{R_{1} \theta_{2}^{*}|x-t|\right\} .
$$

Lemma 1. Suppose that $\varphi, \bar{\varphi}$ fulfil Assumption H_{2} and that Assumption H_{1} is satisfied for $\delta=q$. If $z \in C_{\varphi, a}^{0,1+L}(Q), \bar{z} \in C_{\bar{\varphi}, a}^{0,1+L}(Q), u \in C_{D_{y} \varphi, a}^{0, L}(P), \bar{u} \in$ $C_{D_{y \bar{\varphi}}, a}^{0, L}(P)$ are given functions and $(x, y),(\bar{x}, \bar{y})$ are such that the intervals $K_{1}=$ $[\max \{\lambda[z, u](x, y), \lambda[z, u](\bar{x}, \bar{y})\}, \min \{x, \bar{x}\}], K_{2}=[\max \{\lambda[z, u](x, y), \lambda[\bar{z}, \bar{u}](x, y)\}, x]$ are nonempty then we have the estimates
(5) $\quad|g[z, u](t, x, y)-g[z, u](t, \bar{x}, \bar{y})| \leqslant \Upsilon(t, x)\left\{\theta_{1}^{*}|x-\bar{x}|+|y-\bar{y}|\right\} \quad$ for $t \in K_{1}$,

$$
\begin{align*}
\mid g[z, u](t, x, y) & -g[\bar{z}, \bar{u}](t, x, y)|\leqslant \Upsilon(t, x)| \int_{x}^{t} \theta_{2}^{*}\left\{\|z-\bar{z}\|_{E_{\tau}^{*}}\right. \tag{6}\\
& \left.+\left\|D_{y} z-D_{y} \bar{z}\right\|_{E_{\tau}^{*}}+\|u-\bar{u}\|_{E_{\tau}}\right\} \mathrm{d} \tau \mid \quad \text { for } t \in K_{2}
\end{align*}
$$

Proof. Let $g=g[z, u]$ and $\bar{g}=g[\bar{z}, \bar{u}]$. If we transform (4) into an integral equation then by virtue of Assumption H_{1} we have
for $t \in K_{1}$, where

$$
\begin{equation*}
P[z, u](t, x, y)=\left(t, g[z, u](t, x, y), z_{(t, g[z, u](t, x, y))}, u(t, g[z, u](t, x, y))\right) . \tag{7}
\end{equation*}
$$

Thus (5) follows from the Gronwall lemma.
In the same way we get by Assumption H_{1} the estimate

$$
\begin{aligned}
\mid g[z, u] & (t, x, y)-g[\bar{z}, \bar{u}](t, x, y) \mid \\
\leqslant & \left|\int_{x}^{t} \theta_{2}^{*}\left\{\|z-\bar{z}\|_{E_{\tau}^{*}}+\left\|D_{y} z-D_{y} \bar{z}\right\|_{E_{\tau}^{*}}+\|u-\bar{u}\|_{E_{\tau}}\right\} \mathrm{d} \tau\right| \\
& +\left|\int_{x}^{t} \theta_{2}^{*} R_{1}\right| g[z, u](\tau, x, y)-g[\bar{z}, \bar{u}](\tau, x, y)|\mathrm{d} \tau|
\end{aligned}
$$

for $t \in K_{2}$. Now, again using the Gronwall lemma we get (6), which completes the proof of Lemma 1.

Lemma 2. Suppose that $\varphi, \bar{\varphi}$ fulfil Assumption H_{2} and that Assumption H_{1} is satisfied for $\delta=q$. Furthermore, suppose that for every $p \in \mathbb{R}_{+}$there is $\delta(p)>0$ such that we have $D_{q_{i}} f(x, y, w, q) \geqslant \delta(p), i=1, \ldots, n$, for $(x, y, w, q) \in \Omega^{(1)},\|w\|_{1} \leqslant p$. If $z \in C_{\varphi, a}^{0,1+L}(Q), \bar{z} \in C_{\bar{\varphi}, a}^{0,1+L}(Q), u \in C_{D_{y} \varphi, a}^{0, L}(P), \bar{u} \in C_{D_{y}, a}^{0, L}(P)$ are given functions then for all $(x, y),(\bar{x}, \bar{y}) \in E_{a}$ we have
(8) $|\lambda[z, u](x, y)-\lambda[z, u](\bar{x}, \bar{y})| \leqslant \frac{1}{\delta_{0}} \Upsilon(0, x)\left\{\theta_{1}^{*}|x-\bar{x}|+|y-\bar{y}|\right\}$,
(9) $|\lambda[z, u](x, y)-\lambda[\bar{z}, \bar{u}](x, y)| \leqslant \frac{1}{\delta_{0}} \Upsilon(0, x) \int_{0}^{x} \theta_{2}^{*}\left\{\|z-\bar{z}\|_{E_{\tau}^{*}}+\left\|D_{y} z-D_{y} \bar{z}\right\|_{E_{\tau}^{*}}\right.$

$$
\left.+\|u-\bar{u}\|_{E_{\tau}^{*}}\right\} \mathrm{d} \tau
$$

where $\delta_{0}=\delta\left(Q_{0}+Q_{1}\right)$.

Proof. Let $g=g[z, u], \lambda=\lambda[z, u], \bar{g}=g[\bar{z}, \bar{u}], \bar{\lambda}=\lambda[\bar{z}, \bar{u}]$. Since (8) is obviously satisfied if $(x, y),(\bar{x}, \bar{y}) \in E_{a 0}[z, u]$, without loss of generality we may assume that $\lambda(\bar{x}, \bar{y}) \leqslant \lambda(x, y)$ and $(x, y) \in E_{a b}[z, u]$. Let $1 \leqslant i \leqslant n$ be such that $g_{i}(\lambda(x, y), x, y)=b_{i}$. Then we have

$$
\begin{aligned}
g_{i}(\lambda(x, y), x, & y)-g_{i}(\lambda(x, y), \bar{x}, \bar{y}) \\
& \geqslant g_{i}(\lambda(\bar{x}, \bar{y}), \bar{x}, \bar{y})-g_{i}(\lambda(x, y), \bar{x}, \bar{y}) \\
& =\int_{\lambda(\bar{x}, \bar{y})}^{\lambda(x, y)} D_{q_{i}} f\left(\tau, g(\tau, \bar{x}, \bar{y}), z_{(\tau, g(\tau, \bar{x}, \bar{y}))}, u(\tau, g(\tau, \bar{x}, \bar{y}))\right) \mathrm{d} \tau \\
& \geqslant \delta_{0}[\lambda(x, y)-\lambda(\bar{x}, \bar{y})] .
\end{aligned}
$$

The above estimate together with (5) gives (8).
Analogously, since (9) is obviously satisfied if $(x, y) \in E_{a 0}[z, u] \cap E_{a 0}[\bar{z}, \bar{u}]$ we may assume that $\bar{\lambda}(x, y) \leqslant \lambda(x, y)$ and $(x, y) \in E_{a b}[z, u]$. Then for $1 \leqslant i \leqslant n$ such that $g_{i}(\lambda(x, y), x, y)=b_{i}$ we have

$$
\begin{aligned}
g_{i}(\lambda(x, y), x & x)-\bar{g}_{i}(\lambda(x, y), x, y) \\
& \geqslant \bar{g}_{i}(\bar{\lambda}(x, y), x, y)-\bar{g}_{i}(\lambda(x, y), x, y) \\
& =\int_{\bar{\lambda}(x, y)}^{\lambda(x, y)} D_{q_{i}} f\left(\tau, \bar{g}(\tau, x, y), \bar{z}_{(\tau, \bar{g}(\tau, x, y))}, \bar{u}(\tau, \bar{g}(\tau, x, y))\right) \mathrm{d} \tau \\
& \geqslant \delta_{0}[\lambda(x, y)-\bar{\lambda}(x, y)]
\end{aligned}
$$

which together with (6) gives (9).

4. A certain system of integral-Functional equations

Assumption H_{3}. Suppose that
1° Assumption H_{1} is satisfied with $\delta=y, w, q$ and there is a nondecreasing function $\theta_{0}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that

$$
|f(x, y, w, q)| \leqslant \theta_{0}\left(\|w\|_{0}\right) \quad \text { on } \Omega^{(0)}
$$

2° for every $p \in \mathbb{R}_{+}$there is $\delta(p)>0$ such that we have $D_{q_{i}} f(x, y, w, q) \geqslant \delta(p)$, $i=1, \ldots, n$, for $(x, y, w, q) \in \Omega^{(1)},\|w\|_{1} \leqslant p$.

If φ, f satisfy assumptions $\mathrm{H}_{2}, \mathrm{H}_{3}$ then for given $z \in C_{\varphi, a}^{0,1+L}(Q), u \in C_{D_{y} \varphi, a}^{0, L}(P)$ we define the operators $T[z, u], V_{i}[z, u], i=1, \ldots, n$, by

$$
\begin{aligned}
T[z, u](x, y)= & \varphi(\lambda[z, u](x, y), g[z, u](\lambda[z, u](x, y), x, y)) \\
& +\int_{\lambda[z, u](x, y)}^{x}[f(P[z, u](\tau, x, y)) \\
& \left.-\sum_{j=1}^{n} D_{q_{j}} f(P[z, u](\tau, x, y)) u_{j}(\tau, g[z, u](\tau, x, y))\right] \mathrm{d} \tau \\
V_{i}[z, u](x, y)= & D_{y_{i}} \varphi(\lambda[z, u](x, y), g[z, u](\lambda[z, u](x, y), x, y)) \\
& +\int_{\lambda[z, u](x, y)}^{x}\left[D_{y_{i}} f(P[z, u](\tau, x, y))\right. \\
& \left.+D_{w} f(P[z, u](\tau, x, y)) \circ\left(u_{i}\right)_{(\tau, g[z, u](\tau, x, y))}\right] \mathrm{d} \tau
\end{aligned}
$$

for $(x, y) \in E_{a}$, and

$$
T[z, u](x, y)=\varphi(x, y), V_{i}[z, u](x, y)=D_{y_{i}} \varphi(x, y) \quad \text { for }(x, y) \in E_{0}^{*} \cup \partial_{0} E_{a}
$$

where $g[z, u]$ is a solution of (4), $\lambda[z, u]$ is the left end of the maximal interval on which this solution is defied and $P[z, u]$ is given by (7). We will consider the system of integral-functional equations

$$
\begin{equation*}
z=T[z, u], \quad u=V[z, u], \tag{10}
\end{equation*}
$$

where $V[z, u]=\left(V_{1}[z, u], \ldots, V_{n}[z, u]\right)$.
Remark 3. Integral-functional system (10) arises in the following way. We introduce an additional unknown function $u=D_{y} z$ in (1). Then we consider the linearization of (1) with respect to u which yields

$$
\begin{equation*}
D_{x} z(x, y)=f(P)+\sum_{j=1}^{n} D_{q_{j}} f(P)\left(D_{y_{j}} z(x, y)-u_{j}(x, y)\right) \tag{11}
\end{equation*}
$$

where $P=\left(x, y, z_{(x, y)}, u(x, y)\right)$. Differentiating (1) with respect to y_{i} and substituting $u=D_{y} z$ we get

$$
\begin{align*}
D_{x} u_{i}(x, y)= & D_{y_{i}} f(P)+D_{w} f(P) \circ\left(u_{i}\right)_{(x, y)} \tag{12}\\
& +\sum_{j=1}^{n} D_{q_{j}} f(P) D_{y_{i}} u_{j}(x, y), \quad i=1, \ldots, n .
\end{align*}
$$

Making use of (4) we have

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} \tau} z(\tau, g[z, u](\tau, x, y))= & D_{x} z(\tau, g[z, u](\tau, x, y)) \\
& -\sum_{j=1}^{n} D_{q_{j}} f(P[z, u](\tau, x, y)) D_{y_{j}} z(\tau, g[z, u](\tau, x, y)) .
\end{aligned}
$$

Substituting (11) in the above relation and integrating the resulting equation with respect to t on $[\lambda[z, u](x, y), x]$ we get the first of the equations in (10) on E_{a}^{*}. Repeating these considerations for (12) and taking into account that $z=\varphi, u=D_{y} \varphi$, on $E_{0}^{*} \cup \partial_{0} E_{a}$ we get the second equation in (10).

Suppose that φ, f satisfy Assumptions $\mathrm{H}_{2}, \mathrm{H}_{3}$, respectively. Under these assumptions we prove by means of the method of successive approximations that the solution of (12) exists. We define a sequence $\left\{z^{(m)}, u^{(m)}\right\}$ in the following way:
1° Let $\widehat{\varphi}$ be any extension of φ onto the set E_{a}^{*} such that $\widehat{\varphi}$ satisfies conditions 1°, 2° of Assumption H_{2} on E_{a}^{*}. We put

$$
\begin{equation*}
z^{(0)}(x, y)=\widehat{\varphi}(x, y), \quad u^{(0)}(x, y)=D_{y} \widehat{\varphi}(x, y) \tag{13}
\end{equation*}
$$

and then $z^{(0)} \in C_{\varphi, a}^{0,1+L}(Q), u^{(0)} \in C_{D_{y} \varphi, a}^{0, L}(P)$.
2° If $z^{(m)} \in C_{\varphi, a}^{0,1+L}(Q), u^{(m)} \in C_{D_{y} \varphi, a}^{0, L}(P)$ are already defined functions then $u^{(m+1)}$ is a solution of the equation

$$
\begin{equation*}
u=V^{(m)}\left[z^{(m)}, u\right], \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
z^{(m+1)}=T\left[z^{(m)}, u^{(m+1)}\right], \tag{15}
\end{equation*}
$$

where $V^{(m)}\left[z^{(m)}, u\right]=\left(V_{1}^{(m)}\left[z^{(m)}, u\right], \ldots, V_{n}^{(m)}\left[z^{(m)}, u\right]\right)$ is defined by
(16) $V_{i}^{(m)}\left[z^{(m)}, u\right](x, y)=D_{y_{i}} \varphi\left(\lambda\left[z^{(m)}, u\right](x, y), g\left[z^{(m)}, u\right]\left(\lambda\left[z^{(m)}, u\right](x, y), x, y\right)\right)$

$$
\begin{aligned}
& +\int_{\lambda\left[z^{(m)}, u\right](x, y)}^{x}\left[D_{y_{i}} f\left(P\left[z^{(m)}, u\right](\tau, x, y)\right)\right. \\
& \left.+D_{w} f\left(P\left[z^{(m)}, u\right](\tau, x, y)\right) \circ\left(u_{i}^{(m)}\right)_{\left(\tau, g\left[z^{(m)}, u\right](\tau, x, y)\right)}\right] \mathrm{d} \tau
\end{aligned}
$$

for $(x, y) \in E_{a}$, and

$$
V_{i}^{(m)}\left[z^{(m)}, u\right](x, y)=D_{y_{i}} \varphi(x, y) \quad \text { for }(x, y) \in E_{0}^{*} \cup \partial_{0} E_{a}
$$

Remark 4. Since the operators $V\left[z^{(m)}, \cdot\right]$ and $V^{(m)}\left[z^{(m)}, \cdot\right]$ are not identical we explain the way in which system (14) is obtained. If $z^{(m)} \in C_{\varphi, a}^{0,1+L}(Q), u^{(m)} \in$ $C_{D_{y} \varphi, a}^{0, L}(P)$ are known functions then replacing z with $z^{(m)}$ in system (12) we get

$$
\begin{aligned}
D_{x} u_{i}(x, y)=D_{y_{i}} f\left(P^{(m)}\right) & +D_{w} f\left(P^{(m)}\right) \circ\left(D_{y_{i}} z^{(m)}\right)_{(x, y)} \\
& +\sum_{j=1}^{n} D_{q_{j}} f\left(P^{(m)}\right) D_{y_{i}} u_{j}(x, y), \quad i=1, \ldots, n
\end{aligned}
$$

where $P^{(m)}=\left(x, y, z_{(x, y)}^{(m)}, u(x, y)\right)$. If we assume that $D_{y} z^{(m)}=u^{(m)}$ (see Theorem 1), then by integrating the above system along the bicharacteristic $g\left[z^{(m)}, u\right](\cdot, x, y)$ on the interval $\left[\lambda\left[z^{(m)}, u\right](x, y), x\right]$ we get (14).

Write

$$
\begin{aligned}
\Gamma_{0}(x)= & \Lambda_{1}+\theta_{1}^{*} S_{1} x \\
\widetilde{\Gamma}_{0}(x)= & \Lambda_{1} \Upsilon(0, x)\left[\frac{1}{\delta_{0}}\left(1+\theta_{1}^{*}\right)+1\right] \theta_{1}^{*}+\left[1+\frac{1}{\delta_{0}} \Upsilon(0, x) \theta_{1}^{*}\right]\left(\theta_{0}^{*}+\theta_{1}^{*} P_{0}\right) \\
& +\left\{\theta_{1}^{*}+\theta_{2}^{*} P_{0}\right\} R_{1} \Upsilon(0, x) x \\
\Gamma_{1}(x)= & \Lambda_{2} \Upsilon(0, x)\left[\frac{1}{\delta_{0}}\left(1+\theta_{1}^{*}\right)+1\right]+S_{1}+S_{1} \theta_{1}^{*} \frac{1}{\delta_{0}} \\
& +\left\{\theta_{2}^{*} R_{1} S_{1}+\theta_{1}^{*} P_{1}\right\} \Upsilon(0, x) x \\
G(x)= & \Lambda_{2} \Upsilon(0, x) \theta_{2}^{*}\left[\frac{1}{\delta_{0}}\left(1+\theta_{1}^{*}\right)+1\right]+\theta_{1}^{*} S_{1} \frac{1}{\delta_{0}} \Upsilon(0, x) \theta_{2}^{*} \\
& +\left[\theta_{2}^{*} R_{1} S_{1}+\theta_{1}^{*} P_{1}\right] \Upsilon(0, x) \theta_{2}^{*} x+\theta_{2}^{*} S_{1}
\end{aligned}
$$

where

$$
S_{1}=1+P_{0}
$$

Assumption H_{4}. Suppose that we may choose constants $Q_{i} \in \mathbb{R}_{+}, Q_{i}>\Lambda_{i}$ for $i=0,1,2$ such that $P_{i}=Q_{i+1}$ for $i=0,1$, and that for sufficiently small $a \in(0, \bar{a}]$ we have the inequalities

$$
\begin{aligned}
& \Lambda_{0}+\left[\theta_{0}^{*}+\theta_{1}^{*} P_{0}\right] a \leqslant Q_{0}, \quad \max \left\{\Gamma_{0}(a), \widetilde{\Gamma}(a)\right\} \leqslant Q_{1} \\
& \max \left\{\Gamma_{1}(a), \theta_{1}^{*} \Gamma_{1}(a)\right\} \leqslant Q_{2}, \quad a G(a)<1
\end{aligned}
$$

5. The existence of the sequence of successive approximations

The problem of existence of the sequence $\left\{z^{(m)}, u^{(m)}\right\}$ is the main difficulty in our method. We prove that this sequence exists provided $a, 0<a \leqslant \bar{a}$, is sufficiently small.

Theorem 1. If Assumptions $\mathrm{H}_{2}-\mathrm{H}_{4}$ are satisfied then for any $m \in \mathbb{N}$ we have
$\left(\mathrm{I}_{m}\right) z^{(m)}, u^{(m)}$ are defined on E_{a}^{*}, E_{a}, respectively and we have $z^{(m)} \in C_{\varphi, a}^{0,1+L}(Q)$, $u^{(m)} \in C_{D_{y} \varphi, a}^{0, L}(P) ;$
$\left(\mathrm{II}_{m}\right) D_{y} z^{(m)}(x, y)=u^{(m)}(x, y)$ on E_{a}.
Proof. We will prove (I_{m}) and (II_{m}) by induction. It follows from (15) that $\left(\mathrm{I}_{0}\right),\left(\mathrm{II}_{0}\right)$ are satisfied. Suppose that conditions $\left(\mathrm{I}_{m}\right)$ and $\left(\mathrm{II}_{m}\right)$ hold true for a given $n \in \mathbb{N}$. We first prove that $u^{(m+1)}: E_{a} \rightarrow \mathbb{R}^{n}$ exists and $u^{(m+1)} \in C_{D_{y} \varphi, a}^{0, L}(P)$.

We claim that given $z^{(m)} \in C_{\varphi, a}^{0,1+L}(Q)$ the operator $V\left[z^{(m)}, \cdot\right]$ maps $C_{D_{y} \varphi, a}^{0, L}(P)$ into itself. For simplicity of notation we ignore the dependence of g, λ and P on $z^{(m)}$ and u. It follows from Assumptions $\mathrm{H}_{2}, \mathrm{H}_{3}$ and (5) that given $u \in C_{D_{y} \varphi, a}^{0, L}(P)$ then for all $(x, y),(\bar{x}, \bar{y}) \in E_{a}$ we have the estimates

$$
\begin{aligned}
\left|V^{(m)}\left[z^{(m)}, u\right](x, y)\right| \leqslant & \Lambda_{1}+\int_{\lambda(x, y)}^{x} \theta_{1}^{*} S_{1} \mathrm{~d} \tau \\
\mid V^{(m)}\left[z^{(m)}, u\right](x, y)- & V^{(m)}\left[z^{(m)}, u\right](\bar{x}, \bar{y}) \mid \\
\leqslant & \Lambda_{2} \Upsilon(0, x)\left\{\left[1+\theta_{1}^{*}\right] \frac{1}{\delta_{0}}+1\right\}\left\{\theta_{1}^{*}|x-\bar{x}|+|y-\bar{y}|\right\} \\
& +\left|\int_{x}^{\bar{x}} \theta_{1}^{*} S_{1} \mathrm{~d} \tau\right|+\left|\int_{\lambda(x, y)}^{\lambda(\bar{x}, \bar{y})} \theta_{1}^{*} S_{1} d \tau\right| \\
& +\left\{\theta_{1}^{*}|x-\bar{x}|+|y-\bar{y}|\right\} \cdot \int_{\lambda(x, y)}^{x}\left\{\theta_{2}^{*} R_{1} S_{1}+\theta_{1}^{*} P_{1}\right\} \Upsilon(\tau, x) \mathrm{d} \tau .
\end{aligned}
$$

Hence by Assumption H_{4} we get

$$
\begin{align*}
& \left|V^{(m)}\left[z^{(m)}, u\right](x, y)\right| \leqslant P_{0}, \tag{17}\\
& \left|V^{(m)}\left[z^{(m)}, u\right](x, y)-V^{(m)}\left[z^{(m)}, u\right](\bar{x}, \bar{y})\right| \leqslant P_{1}[|x-\bar{x}|+|y-\bar{y}|]
\end{align*}
$$

for $(x, y),(\bar{x}, \bar{y}) \in E_{a}$. Since $V^{(m)}\left[z^{(m)}, u\right]=D_{y} \varphi$ on $E_{0}^{*} \cup \partial_{0} E_{a}$ it follows from (17) that $V^{(m)}\left[z^{(m)}, \cdot\right] \operatorname{maps} C_{D_{y} \varphi, a}^{0, L}(P)$ into itself.

If $u, \bar{u} \in C_{D_{y} \varphi, a}^{0, L}(P)$, then analogously, by Assumptions $\mathrm{H}_{2}, \mathrm{H}_{3},(6),(9)$ and the relation $V^{(m)}\left[z^{(m)}, u\right]=V^{(m)}\left[z^{(m)}, \bar{u}\right]=D_{y} \varphi$ on $E_{0}^{*} \cup \partial_{0} E_{a}$, we get

$$
\left\|V^{(m)}\left[z^{(m)}, u\right]-V^{(m)}\left[z^{(m)}, \bar{u}\right]\right\|_{E_{a}} \leqslant \int_{0}^{a} G(\tau)\|u-\bar{u}\|_{E_{\tau}} \mathrm{d} \tau .
$$

Thus Assumption H_{4} yields that $V^{(m)}\left[z^{(m)}, \cdot\right]$ is a contraction with the norm $\|\cdot\|_{E_{a}}$. By the Banach fixed point theorem there exists a unique solution $u \in C_{D_{y} \varphi, a}^{0, L}$ of (14) which is $u^{(m+1)}$.

Our next goal is to prove that $z^{(m+1)}$ given by (15) satisfies ($\left.\mathrm{II}_{m+1}\right)$. For $x \in[0, a]$, $y, \bar{y} \in \mathbb{R}^{n}$ put

$$
\Delta(x, y, \bar{y})=z^{(m+1)}(x, y)-z^{(m+1)}(x, \bar{y})-u^{(m+1)}(x, y)(y-\bar{y})
$$

By the Hadamard mean value theorem we have

$$
\begin{aligned}
\Delta(x, y, \bar{y}) & =\varphi(\lambda(x, y), g(\lambda(x, y), x, y))-\varphi(\lambda(x, \bar{y}), g(\lambda(x, \bar{y}), x, \bar{y})) \\
- & D_{y} \varphi(\lambda(x, y), g(\lambda(x, y), x, y))(y-\bar{y}) \\
+ & \int_{\lambda(x, y)}^{x} \int_{0}^{1} D_{y} f(Q(s, \tau))[g(\tau, x, y)-g(\tau, x, \bar{y})] \mathrm{d} s \mathrm{~d} \tau \\
+ & \int_{\lambda(x, y)}^{x} \int_{0}^{1} D_{w} f(Q(s, \tau)) \circ\left[z_{(\tau, g(\tau, x, y))}^{(m)}-z_{(\tau, g(\tau, x, \bar{y}))}^{(m)}\right] \mathrm{d} s \mathrm{~d} \tau \\
+ & \int_{\lambda(x, y)}^{x} \int_{0}^{1} D_{q} f(Q(s, \tau))\left[u^{(m+1)}(\tau, g(\tau, x, y))-u^{(m+1)}(\tau, g(\tau, x, \bar{y}))\right] \mathrm{d} s \mathrm{~d} \tau \\
- & \int_{\lambda(x, y)}^{x}\left\{D_{q} f(\tau, x, y)\right) u^{(m+1)}(\tau, g(\tau, x, y)) \\
- & \left.D_{q} f(P(\tau, x, \bar{y})) u^{(m+1)}(\tau, g(\tau, x, \bar{y}))\right\} \mathrm{d} \tau \\
+ & \int_{\lambda(x, y)}^{\lambda(x, \bar{y})}\left\{f(P(\tau, x, \bar{y}))-D_{q} f(P(\tau, x, \bar{y})) u^{(m+1)}(\tau, g(\tau, x, \bar{y})\} \mathrm{d} \tau\right. \\
- & \int_{\lambda(x, y)}^{x}\left\{D_{y} f(P(\tau, x, y))+D_{w} f(P(\tau, x, y)) \circ u_{(\tau, g(\tau, x, y))}^{(m)}\right\} \mathrm{d} \tau(y-\bar{y}),
\end{aligned}
$$

where $Q(s, \tau)=s P(\tau, x, y)+(1-s) P(\tau, x, \bar{y})$. Let us define

$$
\begin{aligned}
\Delta_{0}(x, y, \bar{y})= & \varphi(\lambda(x, y), g(\lambda(x, y), x, y))-\varphi(\lambda(x, \bar{y}), g(\lambda(x, \bar{y}), x, \bar{y})) \\
& -D_{x} \varphi(\lambda(x, y), g(\lambda(x, y), x, y))[\lambda(x, y)-\lambda(x, \bar{y})] \\
& -D_{y} \varphi(\lambda(x, y), g(\lambda(x, y), x, y))[g(\lambda(x, y), x, y)-g(\lambda(x, \bar{y}), x, \bar{y})], \\
\Delta_{1}(x, y, \bar{y})= & \int_{\lambda(x, y)}^{x} \int_{0}^{1}\left[D_{y} f(Q(s, \tau))-D_{y} f(P(\tau, x, y))\right] \\
& \times[g(\tau, x, y)-g(\tau, x, \bar{y})] \mathrm{d} s \mathrm{~d} \tau \\
\Delta_{2}(x, y, \bar{y})= & \int_{\lambda(x, y)}^{x} \int_{0}^{1}\left[D_{w} f(Q(s, \tau))-D_{w} f(P(\tau, x, y))\right] \\
& \circ\left[z_{(\tau, g(\tau, x, y))}^{(m)}-z_{(\tau, g(\tau, x, \bar{y}))}^{(m)}\right] \mathrm{d} s \mathrm{~d} \tau
\end{aligned}
$$

$$
\begin{aligned}
\Delta_{3}(x, y, \bar{y})= & \int_{\lambda(x, y)}^{x} \int_{0}^{1}\left[D_{q} f(Q(s, \tau))-D_{q} f(P(\tau, x, \bar{y}))\right] \\
& \times\left[u^{(m+1)}(\tau, g(\tau, x, y))-u^{(m+1)}(\tau, g(\tau, x, \bar{y}))\right] \mathrm{d} s \mathrm{~d} \tau \\
\Delta_{4}(x, y, \bar{y})= & \int_{\lambda(x, y)}^{x} D_{w} f(P(\tau, x, y)) \circ\left[z_{(\tau, g(\tau, x, y))}^{(m)}-z_{(\tau, g(\tau, x, \bar{y}))}^{(m)}\right. \\
& \left.-u_{(\tau, g(\tau, x, y))}^{(m)}[g(\tau, x, y)-g(\tau, x, \bar{y})]\right] \mathrm{d} \tau \\
\Delta_{5}(x, y, \bar{y})= & {[\lambda(x, y)-\lambda(x, \bar{y})] \cdot D_{x} \varphi(\lambda(x, y), g(\lambda(x, y), x, y)) } \\
& -\int_{\lambda(x, \bar{y})}^{\lambda(x, y)} f(P(\tau, x, \bar{y})) \mathrm{d} \tau \\
\Delta_{6}(x, y, \bar{y})= & {[g(\lambda(x, y), x, \bar{y})-g(\lambda(x, \bar{y}), x, \bar{y})] \cdot D_{y} \varphi(\lambda(x, y), g(\lambda(x, y), x, y)) } \\
& +\int_{\lambda(x, \bar{y})}^{\lambda(x, y)} D_{q} f(P(\tau, x, \bar{y})) u^{(m+1)}(\tau, g(\tau, x, \bar{y})) \mathrm{d} \tau
\end{aligned}
$$

and

$$
\begin{aligned}
\widetilde{\Delta}_{0}(x, y, \bar{y})= & D_{y} \varphi(\lambda(x, y), g(\lambda(x, y), x, y))[g(\lambda(x, y), x, y) \\
& -g(\lambda(x, y), x, \bar{y})-(y-\bar{y})] \\
\widetilde{\Delta}_{1}(x, y, \bar{y})= & \int_{\lambda(x, y)}^{x} D_{y} f(P(\tau, x, y))[g(\tau, x, y)-g(\tau, x, \bar{y})-(y-\bar{y})] \mathrm{d} \tau \\
& +\int_{\lambda(x, y)}^{x} D_{w} f(P(\tau, x, y)) \\
& \circ u_{(\tau, g(\tau, x, y))}^{(m)}[g(\tau, x, y)-g(\tau, x, \bar{y})-(y-\bar{y})] \mathrm{d} \tau \\
\widetilde{\Delta}_{2}(x, y, \bar{y})= & -\int_{\lambda(x, y)}^{x}\left[D_{q} f(P(\tau, x, y))-D_{q} f(P(\tau, x, \bar{y}))\right] u^{(m+1)}(\tau, g(\tau, x, y)) \mathrm{d} \tau
\end{aligned}
$$

With the above definitions we have

$$
\begin{equation*}
\Delta(x, y, \bar{y})=\sum_{i=0}^{6} \Delta_{i}(x, y, \bar{y})+\sum_{i=0}^{2} \widetilde{\Delta}_{i}(x, y, \bar{y}) \tag{18}
\end{equation*}
$$

Since $g(\cdot, x, y)$ is a solution of (4) we see that

$$
g(\tau, x, y)-g(\tau, x, \bar{y})-(y-\bar{y})=\int_{\tau}^{x}\left[D_{q} f(P(\xi, x, y))-D_{q} f(P(\xi, x, \bar{y}))\right] \mathrm{d} \xi .
$$

Substituting the above relation in $\widetilde{\Delta}_{1}$ and in $\widetilde{\Delta}_{0}$ with $\tau=0$ and changing the order of integrals where necessary we get

$$
\begin{aligned}
\sum_{i=0}^{2} \widetilde{\Delta}(x, y, \bar{y})= & \int_{\lambda(x, y)}^{x}\left[D_{q} f(P(\tau, x, y))-D_{q} f(P(\tau, x, \bar{y}))\right]\left[D_{y} \varphi(0, g(0, x, y))\right. \\
& +\int_{\lambda(x, y)}^{\tau} D_{y} f(P(\xi, x, y)) \mathrm{d} \xi \\
& \left.+\int_{\lambda(x, y)}^{\tau} D_{w} f(P(\xi, x, y)) \circ u_{(\xi, g(\xi, x, y))}^{(m)} \mathrm{d} \xi-u^{(m+1)}(\tau, g(\tau, x, y))\right] \mathrm{d} \tau \\
= & \int_{\lambda(x, y)}^{x}\left[D_{q} f(P(\tau, x, y))-D_{q} f(P(\tau, x, \bar{y}))\right] \\
& \times\left[V^{(m)}\left[z^{(m)}, u^{(m+1)}\right](\tau, g(\tau, x, y))-u^{(m+1)}(\tau, g(\tau, x, y))\right] \mathrm{d} \tau=0
\end{aligned}
$$

from which and from (18) we get $\Delta(x, y, \bar{y})=\sum_{i=0}^{6} \Delta_{i}(x, y, \bar{y})$. In the above transformations we have used the group property

$$
g(\xi, \tau, g(\tau, x, y))=g(\xi, x, y) \quad \text { for } \quad(x, y) \in E_{a}, \tau, \xi \in[0, a] .
$$

Assumptions $\mathrm{H}_{2}, \mathrm{H}_{3},(5)$ and the existence of derivatives $D_{y} \varphi, D_{y} z^{(m)}=u^{(m)}$ yield that for $x \in[0, a], i=0,4$, we have

$$
\begin{equation*}
\frac{1}{|y-\bar{y}|} \Delta_{i}(x, y, \bar{y}) \rightarrow 0 \quad \text { if }|y-\bar{y}| \rightarrow 0 \tag{19}
\end{equation*}
$$

From Assumption H_{3} and (5) we get the existence of some constants $C_{i}, i=1,2,3$, such that

$$
\left|\Delta_{i}(x, y, \bar{y})\right| \leqslant C_{i}|y-\bar{y}|^{2}, \quad x \in[0, a], y, \bar{y} \in[-b, b], i=1,2,3 .
$$

Writing Δ_{5}, Δ_{6} in the form

$$
\begin{aligned}
\Delta_{5}(x, y, \bar{y})= & \int_{\lambda(x, \bar{y})}^{\lambda(x, y)}\left[D_{x} \varphi(\lambda(x, y), g(\lambda(x, y), x, y))-f(P(\tau, x, \bar{y}))\right] \mathrm{d} \tau \\
\Delta_{6}(x, y, \bar{y})= & \int_{\lambda(x, \bar{y})}^{\lambda(x, y)} D_{q} f(P(\tau, x, \bar{y}))\left[u^{(m+1)}(\tau, g(\tau, x, \bar{y}))\right. \\
& \left.-D_{y} \varphi(\lambda(x, y), g(\lambda(x, y), x, y))\right] \mathrm{d} \tau
\end{aligned}
$$

and making use of the consistency condition (3) and the relation $u^{(m+1)}=D_{y} \varphi$ on $\partial_{0} E_{a} \cap E_{a}$ we get estimates of the same type for $i=5,6$. This means that (19) holds true also for $i=1,2,3,5,6$, which completes the proof of $\left(\mathrm{II}_{m+1}\right)$.

Finally, we prove that $z^{(m+1)}$ defined by (15) belongs to the class $C_{\varphi, a}^{0,1+L}(Q)$. Since $D_{y} z^{(m+1)}=u^{(m+1)}$ it follows from (17) and from Assumption H_{4} that

$$
\begin{aligned}
& \left|D_{y} z^{(m+1)}(x, y)\right| \leqslant Q_{1} \\
& \left|D_{y} z^{(m+1)}(x, y)-D_{y} z^{(m+1)}(\bar{x}, \bar{y})\right| \leqslant Q_{2}[|x-\bar{x}|+|y-\bar{y}|]
\end{aligned}
$$

for $(x, y),(\bar{x}, \bar{y}) \in E_{a}$. By Assumptions $\mathrm{H}_{2}-\mathrm{H}_{4}$ we easily get

$$
\left|z^{(m+1)}(x, y)\right| \leqslant Q_{0}, \quad\left|z^{(m+1)}(x, y)-z^{(m+1)}(\bar{x}, y)\right| \leqslant Q_{1}|x-\bar{x}|
$$

for $(x, y),(\bar{x}, y) \in E_{a}$. This together with the relation $z^{(m+1)}=\varphi$ on $E_{0}^{*} \cup \partial_{0} E_{a}$ gives $z^{(m+1)} \in C_{\varphi, a}^{0,1+L}(Q)$, which completes the proof of $\left(\mathrm{I}_{m+1}\right)$. Thus Theorem 1 follows by induction.

6. The main result

Write

$$
H^{*}(t)=H(t)+H(t) \exp \left\{\int_{0}^{t} G(\xi) \mathrm{d} \xi\right\} \int_{0}^{t} G(\xi) \mathrm{d} \xi
$$

where

$$
\begin{aligned}
H(t)= & \Lambda_{1} \Upsilon(0, t) \theta_{2}^{*}\left[\frac{1}{\delta_{0}}\left(1+\theta_{1}^{*}\right)+1\right]+\theta_{1}^{*} S_{1} \frac{1}{\delta_{0}} \Upsilon(0, t) \theta_{2}^{*} \\
& +\left[\theta_{2}^{*} R_{1} P_{0}+\theta_{1}^{*} R_{1}\right] \Upsilon(0, t) \theta_{2}^{*} t+\theta_{1}^{*}+\theta_{2}^{*} P_{0}
\end{aligned}
$$

Theorem 2. If Assumptions $\mathrm{H}_{2}-\mathrm{H}_{4}$ are satisfied then the sequences $\left\{z^{(m)}\right\}$, $\left\{u^{(m)}\right\}$ are uniformly convergent on E_{a}.

Proof. For any $t \in[0, a]$ and $m \in \mathbb{N}$ we put

$$
\begin{aligned}
& Z^{(m)}(t)=\sup \left\{\left|z^{(m)}(x, y)-z^{(m-1)}(x, y)\right|:(x, y) \in E_{t}\right\}, \\
& U^{(m)}(t)=\sup \left\{\left|u^{(m)}(x, y)-u^{(m-1)}(x, y)\right|:(x, y) \in E_{t}\right\} .
\end{aligned}
$$

Using the same technique as in the proof of Theorem 1 we get by Assumptions H_{2}, H_{3} and (6) for any $x \in[0, a]$ and $m \in \mathbb{N}$ the estimate

$$
U^{(m+1)}(x) \leqslant \int_{0}^{x} G(\tau) U^{(m+1)}(\tau) \mathrm{d} \tau+\int_{0}^{x} G(\tau)\left[Z^{(m)}(\tau)+U^{(m)}(\tau)\right] \mathrm{d} \tau
$$

Making use of the Gronwall lemma we have

$$
\begin{equation*}
U^{(m+1)}(x) \leqslant \exp \left\{\int_{0}^{x} G(\tau) \mathrm{d} \tau\right\} \int_{0}^{x} G(\tau)\left[Z^{(m)}(\tau)+U^{(m)}(\tau)\right] \mathrm{d} \tau \tag{20}
\end{equation*}
$$

By Assumptions $\mathrm{H}_{2}, \mathrm{H}_{3},(10)$ and (20) we get the estimate

$$
\begin{equation*}
Z^{(m+1)}(x) \leqslant \int_{0}^{x} H^{*}(\tau)\left[Z^{(m)}(\tau)+U^{(m)}(\tau)\right] \mathrm{d} \tau, \quad x \in[0, a] \tag{21}
\end{equation*}
$$

Thus if we take

$$
M_{a}=\exp \left\{\int_{0}^{a} G(\xi) \mathrm{d} \xi\right\} G(a)+H^{*}(a)
$$

then using (20), (21) for any $x \in[0, a]$ we have

$$
Z^{(m+1)}(x)+U^{(m+1)}(x) \leqslant M_{a} \int_{0}^{x}\left[Z^{(m)}(\tau)+U^{(m)}(\tau)\right] \mathrm{d} \tau
$$

Now, by induction it is easy to get

$$
Z^{(m)}(x)+U^{(m)}(x) \leqslant \frac{M_{a}^{m-1} x^{m-1}}{(m-1)!}\left[Z^{(1)}(a)+U^{(1)}(a)\right], \quad x \in[0, a]
$$

and consequently

$$
\begin{equation*}
\sum_{i=k}^{m}\left[Z^{(i)}(a)+U^{(i)}(a)\right] \leqslant\left[Z^{(1)}(a)+U^{(1)}(a)\right] \sum_{i=k-1}^{m-1} \frac{M_{a}^{i} a^{i}}{i!} \tag{22}
\end{equation*}
$$

Since the series $\sum_{i=1}^{\infty} \frac{M_{a}^{i} a^{i}}{i!}$ is convergent it follows from (22) that the sequences $\left\{z^{(m)}\right\}$, $\left\{u^{(m)}\right\}$ satisfy the uniform Cauchy condition on E_{a}, which means that they are uniformly convergent on E_{a}. This completes the proof of Theorem 2.

Theorem 3. If Assumptions $\mathrm{H}_{2}-\mathrm{H}_{4}$ are satisfied then there is a solution of the problem (1), (2).

Proof. It follows from Theorem 2 that there exist functions \bar{z}, \bar{u} such that $\left\{z^{(m)}\right\},\left\{u^{(m)}\right\}$ are uniformly convergent on E_{a} to \bar{z}, \bar{u}, respectively. Furthermore, $D_{y} \bar{z}$ exists on E_{a} and $D_{y} \bar{z}=\bar{u}$. We prove that \bar{z} is a solution of (1).

From (12) it follows that for any $(x, y) \in E_{a 0}\left[\bar{z}, D_{y} \bar{z}\right]$ we have

$$
\begin{align*}
\bar{z}(x, y)= & \varphi(0, \bar{g}(0, x, y))+\int_{0}^{x}\left[f\left(P\left[\bar{z}, D_{y} \bar{z}\right](\tau, x, y)\right)\right. \tag{23}\\
& \left.-\sum_{j=1}^{n} D_{q_{j}} f\left(P\left[\bar{z}, D_{y} \bar{z}\right](\tau, x, y)\right) D_{y_{j}} \bar{z}(\tau, x, y)\right] \mathrm{d} \tau
\end{align*}
$$

where $\bar{g}=g\left[\bar{z}, D_{y} \bar{z}\right]$.

For a fixed x we define the transformation $y \mapsto \bar{g}(0, x, y)=\xi$. Then by the group property $\bar{g}(t, x, y)=\bar{g}(t, 0, \xi)$ and by (23) we get

$$
\begin{aligned}
& \bar{z}(x, \bar{g}(x, 0, \xi))=\varphi(0, \xi)+\int_{0}^{x}\left[f\left(\tau, \bar{g}(\tau, 0, \xi), \bar{z}_{(\tau, \bar{g}(\tau, 0, \xi))}, D_{y} \bar{z}(\tau, \bar{g}(\tau, 0, \xi))\right)\right. \\
& \left.\quad-\sum_{j=1}^{n} D_{q_{j}} f\left(\tau, \bar{g}(\tau, 0, \xi), \bar{z}_{(\tau, \bar{g}(\tau, 0, \xi))}, D_{y} \bar{z}(\tau, \bar{g}(\tau, 0, \xi))\right) D_{y_{j}} \bar{z}(\tau, \bar{g}(\tau, 0, \xi))\right] \mathrm{d} \tau .
\end{aligned}
$$

Differentiating the above relation with respect of x and making use of the reverse transformation $\xi \mapsto \bar{g}(x, 0, \xi)=y$, we see that \bar{z} satisfies (1) for almost all x with fixed y on $E_{a 0}\left[\bar{z}, D_{y} \bar{z}\right]$.

Analogously for any $(x, y) \in E_{a b}\left[\bar{z}, D_{y} \bar{z}\right]$ we have

$$
\begin{align*}
\bar{z}(x, y)= & \varphi(0, \bar{g}(0, x, y))+\int_{\bar{\lambda}(x, y)}^{x}\left[f\left(P\left[\bar{z}, D_{y} \bar{z}\right](\tau, x, y)\right)\right. \tag{24}\\
& \left.-\sum_{j=1}^{n} D_{q_{j}} f\left(P\left[\bar{z}, D_{y} \bar{z}\right](\tau, x, y)\right) D_{y_{j}} \bar{z}(\tau, x, y)\right] \mathrm{d} \tau
\end{align*}
$$

where $\bar{\lambda}=\lambda\left[\bar{z}, D_{y} \bar{z}\right]$. For simplicity of notation suppose that $\bar{g}_{i}(\bar{\lambda}(x, y), x, y)=b_{i}$ for $i=n$ and write $\xi^{\prime}=\left(\xi_{1}, \ldots, \xi_{n-1}\right), \bar{g}_{i}^{\prime}\left(\bar{g}_{1}, \ldots, \bar{g}_{n-1}\right)$. For a fixed x we define the transformation $y \mapsto\left(\bar{g}^{\prime}(\bar{\lambda}(x, y), x, y), \bar{\lambda}(x, y)\right)=\left(\xi^{\prime}, \eta\right)$. Then by (24) and the group property we get

$$
\begin{aligned}
& \bar{z}\left(x, \bar{g}\left(x, \eta, \xi^{\prime}, b_{n}\right)\right)=\varphi\left(\eta, \xi^{\prime}, b_{n}\right) \\
& \quad+\int_{\eta}^{x}\left[f\left(\tau, \bar{g}\left(\tau, \eta, \xi^{\prime}, b_{n}\right), \bar{z}_{\left(\tau, \bar{g}\left(\tau, \eta, \xi^{\prime}, b_{n}\right)\right)}, D_{y} \bar{z}\left(\tau, \bar{g}\left(\tau, \eta, \xi^{\prime}, b_{n}\right)\right)\right)\right. \\
& \quad-\sum_{j=1}^{n} D_{q_{j}} f\left(\tau, \bar{g}\left(\tau, \eta, \xi^{\prime}, b_{n}\right), \bar{z}_{\left(\tau, \bar{g}\left(\tau, \eta, \xi^{\prime}, b_{n}\right)\right)}, D_{y} \bar{z}\left(\tau, \bar{z}\left(\tau, \bar{g}\left(\tau, \eta, \xi^{\prime}, b_{n}\right)\right)\right)\right. \\
& \left.\quad \times D_{y_{j}} \bar{z}\left(\tau, \bar{g}\left(\tau, \eta, \xi^{\prime}, b_{n}\right)\right)\right] \mathrm{d} \tau .
\end{aligned}
$$

Differentiating the above relation with respect to x and making use of the reverse transformation $\left(\xi^{\prime}, \eta\right) \mapsto \bar{g}\left(x, \eta, \xi^{\prime}, b_{n}\right)=y$, we see that \bar{z} satisfies (1) for almost all x with fixed y also on $E_{a b}\left[\bar{z}, D_{y} \bar{z}\right]$. Since obviously \bar{z} fulfils condition (2), the proof of Theorem 3 is complete.

Remark 5. If in Theorem 3 we assume that f is continuous then we get existence of classical solutions of problem (1), (2).

Remark 6. The existence results of our paper can be extended to weak coupled differential-functional systems

$$
\begin{aligned}
D_{x} z_{i}(x, y) & =f_{i}\left(x, y, z_{(x, y)}, D_{y} z_{i}(x, y)\right), \quad i=1, \ldots, k \\
z_{i}(x, y) & =\varphi_{i}(x, y), \quad(x, y) \in E_{0}^{*} \cup \partial_{0} E_{\bar{a}}, i=1, \ldots, k
\end{aligned}
$$

where $z=\left(z_{1}, \ldots, z_{k}\right)$, with given functions $f_{i}: E_{\bar{a}} \times C\left(B ; \mathbb{R}^{n}\right) \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $\varphi_{i}: E_{0}^{*} \cup \partial_{0} E_{\bar{a}} \rightarrow \mathbb{R}$.

Now, we show some examples of differential-functional equations which are particular cases of (1).

Example 1. Given $\widehat{f}: E_{\bar{a}} \times \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ let us consider the differential equation with a deviated argument

$$
\begin{equation*}
D_{x} z(x, y)=\widehat{f}\left(x, y, z(\alpha(x), \beta(x, y)), D_{y} z(x, y)\right), \tag{25}
\end{equation*}
$$

where $\alpha:[0, \bar{a}] \rightarrow \mathbb{R}, \beta: E_{\bar{a}} \rightarrow[-b, b]$, and $\alpha(x) \leqslant x$ for $x \in[0, \bar{a}]$. We define a function f by

$$
f(x, y, w, q)=\widehat{f}(x, y, w(\alpha(x)-x, \beta(x, y)-y), q)
$$

for $(x, y, w, q) \in E_{\bar{a}} \times C(B ; \mathbb{R}) \times \mathbb{R}^{n}$. If $(\alpha(x)-x, \beta(x, y)-y) \in B$ for $(x, y) \in E_{\bar{a}}$ then (25) is a particular case of (1) under natural assumptions on $\alpha, \beta, \widehat{f}$.

Example 2. With \widehat{f} as in the previous example consider the differential-integral equation

$$
\begin{equation*}
D_{x} z(x, y)=\widehat{f}\left(x, y, \int_{B} z(x+t, y+s) \mathrm{d} t \mathrm{~d} s, D_{y} z(x, y)\right) \tag{26}
\end{equation*}
$$

If we define a function f by

$$
f(x, y, w, q)=\widehat{f}\left(x, y, \int_{B} w(t, s) \mathrm{d} t \mathrm{~d} s, q\right)
$$

for $(x, y, w, q) \in E_{\bar{a}} \times C(B ; \mathbb{R}) \times \mathbb{R}^{n}$, then it is easy to formulate assumptions on \widehat{f} in order to get the existence theorem for (26) as a particular case of (1).

References

[1] V. E. Abolina, A. D. Myshkis: Mixed problem for a semilinear hyperbolic system on a plane. Mat. Sb. 50 (1960), 423-442 (Russian).
[2] P. Bassanini: On a boundary value problem for a class of quasilinear hyperbolic systems in two independent variables. Atti Sem. Mat. Fis. Univ. Modena 24 (1975), 343-372.
[3] P. Bassanini: On a recent proof concerning a boundary value problem for quasilinear hyperbolic systems in the Schauder canonic form. Boll. Un. Mat. Ital. (5) 14-A (1977), 325-332.
[4] P. Bassanini: Iterative methods for quasilinear hyperbolic systems. Boll. Un. Mat. Ital. (6) 1-B (1982), 225-250.
[5] P. Bassanini, J. Turo: Generalized solutions of free boundary problems for hyperbolic systems of functional partial differential equations. Ann. Mat. Pura Appl. 156 (1990), 211-230.
[6] P. Brandi, R. Ceppitelli: Generalized solutions for nonlinear hyperbolic systems in hereditary setting, preprint.
[7] P. Brandi, Z. Kamont, A. Salvadori: Existence of weak solutions for partial differen-tial-functional equations. To appear.
[8] L. Cesari: A boundary value problem for quasilinear hyperbolic systems in the Schauder canonic form. Ann. Sc. Norm. Sup. Pisa (4) 1 (1974), 311-358.
[9] L. Cesari: A boundary value problem for quasilinear hyperbolic systems. Riv. Mat. Univ. Parma 3 (1974), 107-131.
[10] S. Cinquini: Nuove ricerche sui sistemi di equazioni non lineari a derivate parziali in più variabili indipendenti. Rend. Sem. Mat. Fis. Univ. Milano 52 (1982).
[11] M. Cinquini-Cibrario: Teoremi di esistenza per sistemi di equazioni non lineari a derivate parziali in più variabili indipendenti. Rend. Ist. Lombardo 104 (1970), 759-829.
[12] M. Cinquini-Cibrario: Sopra una classe di sistemi di equazioni non lineari a derivate parziali in più variabili indipendenti. Ann. Mat. Pura. Appl. 140 (1985), 223-253.
[13] T. Cztapiński: On the Cauchy problem for quasilinear hyperbolic systems of partial dif-ferential-functional equations of the first order. Zeit. Anal. Anwend. 10 (1991), 169-182.
[14] T. Dztapiński: On the mixed problem for quasilinear partial differential-functional equations of the first order. Zeit. Anal. Anwend. 16 (1997), 463-478.
[15] T. Cztapiński: Existence of generalized solutions for hyperbolic partial differentialfunctional equations with delay at derivatives. To appear.
[16] Z. Kamont, K. Topolski: Mixed problems for quasilinear hyperbolic differential-functional systems. Math. Balk. 6 (1992), 313-324.
[17] A. D. Myshkis; A. M. Filimonov: Continuous solutions of quasilinear hyperbolic systems in two independent variables. Diff. Urav. 17 (1981), 488-500. (In Russian.)
[18] A. D. Myshkis, A. M. Filimonov: Continuous solutions of quasilinear hyperbolic systems in two independent variables. Proc. of Sec. Conf. Diff. Equat. and Appl., Rousse (1982), 524-529. (In Russian.)
[19] J. Turo: On some class of quasilinear hyperbolic systems of partial differential-functional equations of the first order. Czechoslovak Math. J. 36 (1986), 185-197.
[20] J. Turo: Local generalized solutions of mixed problems for quasilinear hyperbolic systems of functional partial differential equations in two independent variables. Ann. Polon. Math. 49 (1989), 259-278.

Author's address: Institute of Mathematics, University of Gdańsk, Wit Stwosz Str. 57, 80-952 Gdańsk, Poland.

