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Abstract. A workable nonstandard definition of the Kurzweil-Henstock integral is given
via a Daniell integral approach. This allows us to study the HL class of functions from [9].
The theory is recovered together with a few new results.
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1. Introduction

The usefulness of nonstandard analysis lies mainly in the simplification of some

limit arguments in classical analysis. This fact is nicely shown in the treatment
of stochastic calculus (see [1]). We attempt here to treat the Henstock-Kurzweil
integral using this framework, obtaining some simplifications of the proofs of the

classical results and finding new ones. Let us start giving an informal summary
of nonstandard analysis. For a more specific treatment, see [1], [7], [3]. For other

approaches to Henstock-Kurzweil integral, see [2], [5] and [4].

1.1. A sketch of nonstandard analysis. We assume that we can construct an
extension ∗� of �, containing infinitesimal and infinitely big elements with respect
to the standard reals �. See [7] for an explicit construction using the technique

of ultrafilters and ultraproducts. This construction endows ∗� with the same field
structure as �. In ∗

� we have the (equivalence) relation x ≈ y (which reads x is

infinitely close to y), if they differ by an infinitesimal element.

We take the opportunity to stress that there does not exist the set of the hyper-
reals (as opposed to the set of reals which is the unique complete ordered field up
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to isomorphisms); instead, depending upon the choice of the ultrafilter, we may get

different objects, and they may even have different cardinalities. The point of non-
standard analysis is not the uniqueness of the nonstandard objects (or “entities” in
the jargon of the area) but rather the invariance of the set of sentences that are

“simultaneously” true in both worlds (standard and nonstandard). We put quotes
around word “simultaneously” because since we are talking about different worlds,

the names and predicates that appear in the sentences cannot be the same; nonethe-
less the nonstandard world is aiming at being an extension of the original one, hence

it contains sorts of “replicas” of the standard entities.

So we will work with two universes, a standard one and a nonstandard one. These

will consist of two collections of sets Vst and Vns, containing the standard reals �
and its nonstandard counterpart ∗�, respectively. Each of these collections (which

will be both denoted by V ) must satisfy some requirements: if A,B ∈ V then the
cartesian product A × B is also in V ; if A ∈ V and B ⊂ A, then B ∈ V , and also

the powerset of A, P (A) ∈ V ; if A,B ∈ V , the set of all functions from A to B,
Fun(A,B), is in V .

These universes are related by a map ∗ : Vst → Vns which sends sets A to sets ∗A,
functions f : A → B to functions ∗f : ∗A → ∗B and also satisfies ∗(f(a)) = ∗f(∗a),

for all a ∈ A; ∗idA = id∗A (i.e. ∗ sends the identity function of A to the identity
function of ∗A) and ∗ respects composition, i.e. ∗(g ◦ f) = ∗g ◦ ∗f (that is, ∗ is a
functor); ∗(A1 × A2) = ∗A1 × ∗A2, and if pi : A1 × A2 −→ Ai is the projection

on the ith coordinate then ∗pi :
∗A1 × ∗A2 −→ ∗Ai is also the projection on the

ith coordinate. It must also satisfy the Transfer Principle which we explain now.

A mathematical assertion about elements of one of these worlds will be obtained
by using only two kinds of quantification: “there exists” and “for all”. These will

range over the elements of some set in V . A sentence can then be construed using
boolean combinations of assertions, quantification over assertions, the simplest kind

of assertion being equations or relations on the elements of some set in the universe.

When a nonstandard sentence contains only those replicas of standard entities we

call it the *-transform of the corresponding standard sentence, that is, the sentence
which has the same structure as the nonstandard one and has standard names and

predicates substituted for the replicas they came from. The invariance of the set of
sentences simultaneously true in both worlds is the essence of the transfer principle

which we now informally state:

The Transfer Principle: If a standard assertion is true then its *-transform is also

true in the nonstandard world; and conversely, if a true nonstandard sentence is the
*-transform of a standard assertion then the latter is true as well.
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We caution the reader that not all nonstandard sentences are *-transforms of

standard ones. In fact, nonstandard methods owe their richness to this fact.

There is another important property of nonstandard superstructures we will em-

ploy many times in the sequel. Basically it allows us to embed any standard entity
in a nonstandard one that is hyper-finite, that is, is in a one-to-one onto “good”

correspondence with a set like {1, . . . , ω} ⊆ ∗
� for some ω ∈ ∗

� , where ∗� is the
replica of the usual natural numbers. We point out the possibility of the standard

entity being infinite. The quotes for “good” mean that the correspondence must
itself be an element of a replica of a standard entity; these kinds of “good” objects

are usually called internal entities. These are entities A ∈ Vns for which there is a
set B ∈ Vst such that A ∈ ∗B. A theorem (due to H. J. Keisler; see [7]) gives a useful

characterization of these sets. It says that a subset of an internal set defined by a
statement involving only internal entities is also an internal set. Naturally there are

many nonstandard objects that are not internal. They are called external entities.
For example, the set � of the usual natural numbers when viewed from inside the

nonstandard world is an external entity. The property we have been talking about is
called enlargement and all of our nonstandard superstructures will be enlargements

of the standard ones. Also this property is closely connected with the ultrafilter
employed in the construction of the nonstandard superstructure. Let us state the

enlargement property:

The Enlargement Property: Given any superstructure it is always possible to build

up its nonstandard analog in such a way that any object of the standard world can be
embedded in a hyper-finite nonstandard internal entity. This is equivalent to saying

that if P is a standard binary relation on A × B such that for all a1, . . ., an ∈ A

there is some b ∈ B such that (aj , b) ∈ P for all j = 1, . . ., n.

1.2. A sketch of the Henstock-Kurzweil integral. This integral is a gener-
alized form of the usual Riemann integral as a limit of Riemann sums, the difference

being in the net of partitions used to take this limit. Let us make this more precise.
(See [9].)

A gauge in [a, b] is a (strictly) positive function δ : [a, b] −→ �. A tagged interval

is a pair T = (τ, J) where J = [c, d] and τ ∈ J . A partition of [a, b] is a set
P = {Ti : 1 � i � n} of tagged intervals Ti = (τi, Ji) with Ji = [xi−1, xi], x0 = a

and xn = b. Let P denote the set of partitions of [a, b]. Given a gauge δ, a partition
D is called δ-fine if for all T = (τ, J) ∈ D, J ⊂ [τ − δ(τ), τ + δ(τ)]. A function

f : [a, b] −→ � is said to be integrable (in the sense of Henstock and Kurzweil)
if there is a real number A (which we denote by

∫ b

a
f) such that for all ε > 0
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there is a gauge δ such that for all δ-fine partitions P , |S(f, P ) − A| < ε, where

S(f, P ) =
n∑

i=1
f(τi)(xi − xi−1).

Now we are going to transfer these concepts to the nonstandard setting. We
assume that we are working with an enlargement Vns. The set of gauges G can be
partially ordered by the relation δ � η if for all x ∈ [a, b], δ(x) � η(x). This relation
is clearly concurrent on G. So, by the enlargement property, there is some δ ∈ ∗G
such that δ � ∗η, for all η ∈ G. We call such δ a special ∗-gauge. An element of ∗P
will be called an internal partition and the notion of a δ-fine partition or division is
the transfered of the standard one. The sums S(f, P ) can be viewed as functions

S : Fun([a, b],�) × P −→ �, so we have the starred version ∗S : ∗Fun([a, b],�) ×
∗P −→ ∗

�.

Theorem 1.1. (See [4].) The following statements are equivalent:

1. the function f : [a, b] −→ � is integrable, with integral
∫ b

a f = A;

2. there is a ∗-gauge δ ∈ ∗G such that for all δ-fine internal partition P , ∗S(∗f, P ) ≈
A;

3. there is a special ∗-gauge δ such that for all δ-fine internal partition P ,
∗S(∗f, P ) ≈ A;

4. for all special ∗-gauges δ, for all δ-fine internal partitions P , ∗S(∗f, P ) ≈ A.

There is a curious property shared by all the δ-fine internal partitions for a special

∗-gauge δ.

Proposition 1.1. (See [4].) If δ is special and P is an internal δ-fine partition,
then for each standard c ∈ [a, b] there is (τ, J) ∈ P such that c = τ .

2. The integration structures

In this section we imitate the Daniell integral approach to nonstandard integration,
due to P.A. Loeb (see [7]). But we include a small modification in order to allow

nonabsolutely integrable functions.

We start with an internal δ-fine partition ∆ for a special ∗-gauge δ and we let P
to be the set of all τ such that for some J , (τ, J) ∈ ∆. Let L be the set of all internal
functions f : P −→ ∗

� and I : L −→ ∗
� the (internal) function I(f) = ∗S(f, P ).

Let L0 be the set of all functions g : P −→ � such that for all standard ε > 0, there
is some ψ ∈ L such that |g(t)| < ψ(t) for all t ∈ P , and I(ψ) < ε. Let L̂ be the set

of all functions f : P −→ � (notice that f assumes only standard values) such that
there are ϕ ∈ L and g ∈ L0, f = ϕ + g, and I(ϕ) is a bounded nonstandard real
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(i.e. there is some r ∈ �, r ≈ I(ϕ)). Notice that in [7] it is required that I(|ϕ|) is
bounded. For f ∈ L̂ define Î(f) = ◦I(ϕ), if f = ϕ + g, ϕ ∈ L and g ∈ L0. This is
well defined:

Proposition 2.1. If f ∈ L̂ is decomposed as f = ϕ1 + g1 = ϕ2 + g2, g1, g2 ∈ L0
and ϕ1, ϕ2 ∈ L, then ◦I(ϕ1) = ◦I(ϕ2).

�����. It is immediate from the fact that ϕ1 − ϕ2 ∈ L0. But this follows from
the fact that g2 − g1 ∈ L0. �

Let us work towards proving a monotone convergence theorem.

Proposition 2.2. Assume that α � β are elements of L̂, then it is possible to

choose decompositions α = ϕα + hα, β = ϕβ + hβ where ϕα, ϕβ ∈ L, hα, hβ ∈ L0
with ϕα � ϕβ .

�����. Let α = ϕa + ha, β = ϕb + hb be decompositions of α and β. Then
α ∧ β − ϕa ∧ ϕb ∈ L0,1, hence there is a decomposition of α of the form α = ψ + h

with ψ � ϕb. �

Proposition 2.3. Let α, β, f, g ∈ L̂ with α � f , g � β, then f ∧ g, f ∨ g ∈ L̂.

�����. If f = ϕf+hf , g = ϕg+hg are decompositions then f∧g−ϕf ∧ϕg ∈ L0.
Hence it suffices to show that oI(ϕf ∧ ϕg) ∈ �. But we may assume that ϕα � ϕf ,
ϕg � ϕβ where α = ϕα + hα and β = ϕβ + hβ are decompositions. The result then

follows. �

Proposition 2.4. If α � f � β with α, β ∈ L̂ and f = ϕ + h with ϕ ∈ L and

h ∈ L0, then f ∈ L̂.

�����. It suffices to observe that we may assume that ϕα � ϕ � ϕβ where
α = ϕα + hα and β = ϕβ + hβ are decompositions. �

Now, an easy modification of the proof of Theorem 1.15 in Chapter IV of [7] gives
the following theorem.

Theorem 2.1. (Monotone Convergence) Suppose that (fn ∈ L̂ : n ∈ �) is a

monotone increasing sequence converging pointwise to some f and such that Î(fn)
converge to some real number A. Then f ∈ L̂ and Î(f) = A. �

1 For a proof of this, see [7] Chapter IV, Lemma 1.8, page 169.

821



And from this, the usual standard argument (as for instance in [9], Theorem 4.3)

yields the following form of the Dominated Convergence Theorem.

Theorem 2.2. (Dominated Convergence) Suppose that (fn ∈ L̂ : n ∈ �) is

a sequence converging pointwise to some f and such that g � fn � h for all n ∈ �

and for some g, h ∈ L̂. Then f ∈ L̂ and Î(f) = limn→∞Î(fn). �

Now let us work towards a characterization of a subclass of the Henstock-Kurzweil

integrable functions for which their integrals coincide with the limit of certain trun-
cations of these functions. This class is called HL in [9], Section 18.

Definition 2.1. Let L̂ ∆
= {A ⊆ ∗[0, 1] : 1A ∈ L̂}. This is the class of measurable

sets with respect to L̂.

In the following we let L̂+ denote the set of all nonnegative f ∈ L̂.

Proposition 2.5. If f ∈ L̂+ and A = {f > α} where α > 0, then A ∈ L̂.

�����. It suffices to consider the case α = 1 (think of f/α). Since 0 � 1∧f � f

and 1 ∧ f − ϕ1 ∧ ϕf ∈ L0, where 1 = ϕ1 + h1 and f = ϕf + hf are decompositions,
we see that 1 ∧ f ∈ L̂+. Hence if g = f − f ∧ 1 and B = {g > 0} we have
g ∈ L̂+ and A = B. In other words it suffices to show that for any f ∈ L̂+ the set

{f > 0} is in L̂. So consider 1 ∧ nf , n ∈ �, then these functions are in L̂+ and
Î(1 ∧ nf) � Î(1 ∧ f) � Î(f). Since 1 ∧ nf ↑ 1B we get 1B ∈ L̂ by completeness. �

Since for non-negative functions the definitions of integral agree we have the same

classes L̂+ and L̂ for both integration structures.

Definition 2.2. M̂+ ∆= {h ∈ �
∗[0,1]
+ : ∀n ∈ � ∀A ∈ L̂ h ∧ n1A ∈ L̂+}.

As commented above the class M̂+ is the same for both schemes, so the same

holds for the class M̂ formed by differences between members of M̂+.

Definition 2.3. Given f ∈ M̂ and n ∈ � we set fn
+ = f+1{f+�n}, fn

− =

f−1{f−�n}, fn = fn
+ − fn

− and define Ĵ(f)
∆
= lim

n−→∞
Î(fn
+ − fn

−) = lim
n−→∞

Î(fn) when-

ever this last limit exists and is finite. Among the members of L̂ we select those f
for which it is true that Î(f) = lim

n−→∞
Î(fn), collecting them in the class L̂ac (for

accessible). The class of all functions of M̂ for which Ĵ is defined will be denoted by

L̂1.

We recall from [7] the definition of L̂, which we will denote here by L̂old. This is

the set of all real valued functions f such that f = ϕ + g, where ϕ ∈ L and I|ϕ| is
bounded by a standard real number. Note that L̂old ⊆ L̂ac ⊆ L̂1.
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Definition 2.4. We say that ϕ ∈ L is SHKL-integrable if oϕ ∈ L̂1 and Ĵ(oϕ) =
oI(ϕ).

Theorem 2.3. A function f is HKL-integrable iff o∗f is SHKL-integrable.

�����. Suppose that f is HKL-integrable. Then
∫
f = lim

n→∞

∫
fn, that is

oI(∗f) = lim
n→∞

oI∗fn. Hence o∗f ∈ L̂1 and Ĵ(∗f) = oI(∗f).
The converse is obvious. �

Theorem 2.4. A function ϕ ∈ L is SHKL-integrable iff there exists an η ∈ ∗
�∞

such that for all ω ∈ ∗
�∞ with ω � η we have I(ϕ− ϕω) ≈ 0.

�����. Suppose that ϕ ∈ L is SHKL-integrable. Then oI(ϕ) = lim
n→∞,n∈�

oI(ϕn),

hence it is true that the set {n ∈ ∗
� : |I(ϕ − ϕn)| < 1/k} where k ∈ � contains

an interval of the form [Nk, ηk] where Nk ∈ � and ηk ∈ ∗
�∞. By saturation the

intersection of all these intervals is non-empty containing an element, say η. It is
easy to see that this element works.

Conversely, given an arbitrary standard positive ε we must have |I(ϕ − ϕn)| < ε

for all sufficiently large standard natural n (the set {n ∈ ∗
� : |I(ϕ−ϕn)| < ε∨n > η}

contains all non-standard natural numbers), consequently, since I(ϕn) is finite, I(ϕ)
is finite and lim

n→∞,n∈�
oI(ϕ−ϕn) = 0. It follows then that ϕ is SHKL-integrable. �
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