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Abstract. A graph G is stratified if its vertex set is partitioned into classes, called strata.
If there are k strata, then G is k-stratified. These graphs were introduced to study problems
in VLSI design. The strata in a stratified graph are also referred to as color classes. For a
color X in a stratified graph G, the X-eccentricity eX(v) of a vertex v of G is the distance
between v and an X-colored vertex furthest from v. The minimum X-eccentricity among
the vertices of G is the X-radius radX G of G and the maximum X-eccentricity is the
X-diameter diamX G. It is shown that for every three positive integers a, b and k with
a � b, there exist a k-stratified graph G with radX G = a and diamX G = b. The number
sX denotes the minimum X-eccetricity among the X-colored vertices of G. It is shown
that for every integer t with radX G � t � diamX G, there exist at least one vertex v
with eX(v) = t; while if radX G � t � sX , then there are at least two such vertices. The
X-center CX(G) is the subgraph induced by those vertices v with eX(v) = radX G and the
X-periphery PX(G) is the subgraph induced by those vertices v with eX(G) = diamX G.
It is shown that for k-stratified graphs H1, H2, . . . , Hk with colors X1, X2, . . . , Xk and a
positive integer n, there exists a k-stratified graph G such that CXi

(G) ∼= Hi (1 � i � k)
and d(CXi

(G), CXj
(G)) � n for i �= j. Those k-stratified graphs that are peripheries of

k-stratified graphs are characterized. Other distance-related topics in stratified graphs are
also discussed.

1. Introduction

Graphs are often useful mathematical models for structures and relationships that
occur in real-life phenomena. Design of a Very Large Scale Integrated Circuit (VLSI)

chip involves many complex processes. Currently, a typical VLSI chip consists of
millions of transistors assembled through layering of various materials in a silicon

base. At some point during this process the designer of an integrated circuit (IC)
transforms a circuit description into a geometric description, which is known as a

1Research supported in part by Office of Naval Research Contract N00014-91-J-1060.
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layout. The process of converting the specifications of an electrical circuit into a

layout is called the physical design. Due to the large number of components and the
exacting details required, the physical design is not practical without automation.
VLSI design automation is the study of algorithms and data structures employed in

the physical design process [11].

Many of the problems encounterd in the physical design process are modeled by

graphs. Various problems [9, 10] and via minimization problems [3,8] are among
such problems. In recent years, advances in VLSI fabrication technology have made it

possible to use more than two routing layers for interconnection. In fact, the two most
popular processors on the market today, the PowerPC chip designed by Motorolla,

IBM, and Apple, as well as the Pentium processor designed and manufactured by
the Intel Corporation, use three or more layers. Figure 1 depicts a 3-layer vertical-
horizontal-vertical (VHV) routing problem in a standard cell architecture. In the

design of algorithms to solve the multilayer routing problems encountered in this
process, it is desirable to use graphs in which the vertices are partitioned into classes.

1 3 4 0 4

0 3 0 1 3

via

Standard Cell

Standard Cell

M1

M2

M3VDD

GND�
Figure 1. VHV

Dividing the vertex set of a graph into classes according to some prescribed rule is

a fundamental process in graph theory. The vertices of a graph can be divided into
cut-vertices and non-cut-vertices. Equivalently, the vertices of a tree are divided into

its leaves and non-leaves. The vertex set of a graph is partitioned according to the
degrees of its vertices. When studying distance, the vertices of a connected graph

are partitioned according to their eccentricities. Probably the best known example
of this process is graph coloring, where the vertex set of a graph is partitioned into

classes each of which is independent in the graph.

In VLSI design, the design of computer chips often yields a division of the nodes
into several layers each of which must induce a planar subgraph. So here too the
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vertex set of a graph is divided into classes. Motivated by these observations, Rashidi

[7] defined a graph to be a stratified graph if its vertex set is partitioned into classes.
Formally, then, a graph G is a stratified graph if its vertex set V (G) is partitioned

into classes, called strata. Each class then is a stratum. If there are k strata, then

G is called a k-stratified graph. A 1-stratified graph is the simply a graph. Indeed,
an n-stratified graph of order n is essentially a graph as well. Normally, we denote

the strata of a k-stratified graph by S1, S2, . . . , Sk. The strata are also referred to as
color classes, where the vertices of Si are colored Xi(1 � i � k). When specific colors

are employed, we use red for X1, blue of X2, and yellow for X3. So the vertices of
S1 are colored red.

In this paper our emphasis is on distance in stratified graphs, either presenting
analogues of theorems on graphs or presenting theorems that illustrate differences

between graphs and stratified graphs.

2. Distance in stratified graphs

Let G be a connected k-stratified graph. The distance d(u, v) between two vertices
u and v of G is the length of a shortest u−v path. For a vertex v of G, the eccentricity

e(v) is the distance between v and a vertex farthest from v. For a color X (one of
the k colors), the X-eccentricity eX(v) of a vertex v of G is the distance between v

and an X-colored vertex farthest from v. The minimum X-eccentricity among the
vertices of G is called the X-radius radX G, while the maximum X-eccentricity is

the X-diameter diamX G.
Figure 2 shows a 2-stratified graph G (actually a path) whose vertices are there-

fore colored red (R) and blue (B). The vertices of G are labeled with their red
eccentricities. Consequently, radR G = 2 and diamR G = 5. Hence, note that while

rad G � diamG � 2rad G for ordinary radius and diameter in a graph, such is not
the case for radR G and diamR G in 2-stratified graphs or indeed for radX G and

diamX G for a color X in a k-stratified graph G, as we now show.

R

4
B

3
R

2
B

3
R

4
B

5
G :�

Figure 2.

Theorem 1. For every three positive integers, a, b, and k with a � b and k � 2,
there exists a k-stratified graph G and a color X such that radX G = a and diamX

G = b.

�����. Suppose first that a and b are positive integers such that a � b < 2a.
We begin by identifying an end-vertex of the path Pb−a+1 with a vertex of C2a and to
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the end-vertex of G as well. The remaining vertices of G are then colored arbitrarily

with the remaining k− 1 colors so that each color has been used. If k is too large to
do this, then pendant edges are added to G at its vertex of degree 3 and these new
vertices are colored with the remaining colors. The resulting graph G′ has X-radius

a and X-diameter b. This construction is illustrated in Figure 3 for a = 4, b = 7,
and k = 5.

G′ :�
Figure 3.

Next, suppose that a and b are positive integers with b � 2a. Define G to be the

path Pb+1 of order b+ 1, say v0, v1, . . . , vb. The vertices v0 and v2a are assigned the
color X and the remaining k − 1 colors are distributed among the remaining b − 1
vertices. If k is too large to do this, then pendant edges are added to G at v2a−1 and
the new vertices are colored with the remaining colors. The resulting graph G′ has

X-radius a and X-diameter b. This construction is illustrated in Figure 4 for a = 3,
b = 8, and k = 9. �

v0 v2a−1 v2a vb
G′ :�

Figure 4.

We now establish some basic results concerning X-eccentricities of vertices in a
k-stratified graph.

Theorem 2. Let X be a color in a connected k-stratified graph G. If uv ∈ E(G),
then |eX(u)− eX(v)| � 1.

�����. Suppose that eX(v) � eX(u) = t. We show that eX(v) � t − 1, which
will then complete the proof. Let w be an X-colored vertex such that eX(u) =

d(u, w). Thus
t = d(u, w) � d(u, v) + d(v, w) � 1 + eX(v).

�

We now state some immediate consequences of Theorems 1 and 2.

Corollary 3. Let G be a connected k-stratified graph and let t be an integer such

that radX G � t � diamX G. Then there exists a vertex v of G such that eX(v) = t.
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Let G be a connected k-stratified graph with X as one of its colors. The X-

eccentricity set is the set of X-eccentricities of the vertices of G.

Corollary 4. Let G be a connected k-stratified graph with X as one of its colors

such that radX G = r and diamX G = d. Then the X-eccentricity set of G is

{r, r + 1, . . . , d}.

Corollary 5. Let S = {r, r + 1, . . . , d} be a set of positive integers with r � d.

Then S is the X-eccentricity set of some k-stratified graph.

If G is a connected graph and t is an integer with radG < t � diamG, then Lesniak

[5] showed that there are in fact at least two vertices of G having eccentricity t. The
corresponding statement for stratified graphs is not true, however; that is, if G is

a k-stratified graph and t is an integer such that radX G < t � diamX G, then G

need not contain two vertices having X-eccentricity t (although by Corollary 3 there

must be at least one such vertex). This is illustrated in the 2-stratified graph G of
Figure 5, where radX G = 3 and diamX G = 9 but there is only one vertex having

X-eccentricity 7,8, or 9.
Let G be a k-stratified graph (with X as one of its colors) and define

sX = min{eX(v)}

over all X-colored vertices v of G. Certainly, sX = 0 if and only if G contains exactly
one X-colored vertex. In the stratified graph of Figure 5, sX = 6. We now show

that there is an analogous theorem to Lesniak’s if diamX G is replaced by sX .

6 5 4 3 4 5 6 7 8 9
G :�

Figure 5.

Theorem 6. Let G be a connected k-stratified graph with X as one of its colors.

If t is an integer such that radX G < t � sX , then there exist at least two vertices

with X-eccentricity t.

�����. Let u be a vertex with eX(u) = t. Then there is an X-colored vertex

v with d(u, v) = t. Let w be a vertex such that eX(w) = radX G, and let P be a
w–v path in G of length d(w, v). Since v is an X-colored vertex, eX(v) � sX . Thus

radX G < t � sX � eX(v). By Corollary 4, there is a vertex z (�= w) on P such that
eX(z) = t. Hence d(w, v) > d(z, v). Consequently,

d(u, v) = t > radX G � d(w, v) > d(z, v);

so d(u, v) > d(z, v). This implies that u and z are distinct vertices with X-
eccentricity t. �
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3. Centers in stratified graphs

One of the most studied subgraphs of a connected graph is its center. In this
section, we introduce the center, indeed a total of k centers, in a connected k-stratified

graph and describe some of their properties.

For a color X in a k-stratified graph G, the X-center CX(G) of G is the subgraph
induced by those vertices v with eX(v) = radX G. Figure 6 shows three 2-stratified

graphs G1, G2, and G3 whose vertices are colored red (R) and blue (B), together
with their red centers CR(G1), CR(G2), and CR(G3).
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2
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G3 : 	

R B
GR(G3) : 


Figure 6.

A well-known property of the center of a connected graph G, due to Harary and

Norman [4], is that it always lies in a single block of G. The same is true for k-
stratified graphs.

Theorem 7. Let G be a connected k-stratified graph, k � 1. For each color X

of G, the X-center CX(G) lies in a single block of G.

�����. Suppose, to the contrary, that for some color X , the X-center CX(G)
does not lie in a single block of G. Then G contains at least two X-colored vertices

and there is a cut-vertex v of G such that distinct components of G − v contain
vertices of CX(G). Let u be an X-colored vertex of G such that eX(v) = d(u, v).

Let w be a vertex of CX(G) belonging to a component of G − v distinct from that
containing u. Then

eX(w) � d(w, u) = d(w, v) + d(v, u) > eX(v).

Thus eX(v) < radX G, producing a contradiction. �

We have now an analogue of a well-known result on trees.

Corollary 8. Let T be a k-stratified tree, k � 1. For each color X , either

CX(T ) ∼= K1 or CX(T ) ∼= K2.
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Hedetniemi (see [2]) showed that every graph is the center of some connected

graph. Using this proof technique we establish the corresponding result for stratified
graphs.

Theorem 9. For every k-stratified graph H and each color X of H , there exists

a k-stratified graph G such that CX(G) = H .

�����. Since the result is true for k = 1, we assume that k � 2. To construct G,
we add four X-colored vertices u1, v1, u2, v2 to H and join vi(i = 1, 2) to all vertices

of H as well as add the edges uivi(i = 1, 2). Then eX(ui) = 4 and eX(vi) = 3 for
i = 1, 2; while eX(w) = 2 for all vertices w of H . Thus CX(G) = 〈V (H)〉 = H . (See

Figure 7 of an illustration of this construction.) �

X

u1

X

v1

X

v2

X

u2
HG :�

Figure 7.

We now show that it is possible to prescribe all k centers of a k-stratified graph
simultaneously. Indeed, we show that every two of these centers can be arbitrarily

far apart (if desired).
The distance between two subgraphs G1 and G2 of a graph G is defined by

d(G1, G2) = min{d(v1, v2)|v1 ∈ V (G1), v2 ∈ V (G2)}.

Theorem 10. Let H1, H2, . . . , Hk be k-stratified graphs with colors X1, X2, . . . ,

Xk. For each integer n � 2, there exists a k-stratified graphG such that CXi(G) ∼= Hi

for i = 1, 2, . . . , k and d(CXi(G), CXj (G)) = n for 1 � i < j � k.

�����. We begin with a copy of each of the k-stratified graphs H1, H2, . . . , Hk.
For each integer i (1 � i � k), add a vertex zi and all edges of the form ziv for all

v ∈ V (Hi). Further, for distinct integers i and j with 1 � i, j � k, the vertices zi and
zj are connected by a path of length n − 2, each internal vertex of which belongs to
no other path. The colors of the vertices zi (1 � i � k) and all other added vertices
are chosen arbitrarily. Next for each i (1 � i � k) we add a vertex ui and all edges

uiv for all v ∈ V (Hi). For 1 � i � k − 1, the vertex ui is colored Xi+1, and uk is
colored X1. Finally, for each i (1 � i � k), we add a path of length n at ui, where

each vertex along the path is colored Xi. (See Figure 8 for an example having k = 3
and n = 4.) This completes the construction of the k-stratified graph G, which then

has the desired properties. �
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Figure 8.

4. The periphery of a stratified graph

The concept opposite to the center of a connected graph is the periphery. The
periphery P (G) of a connected graph G is the subgraph of G induced by those

vertices v with e(v) = diamG. Bielak and Syslo [1] showed that a graph G is the
periphery of a connected graph if and only if every vertex of G has eccentricity 1 or

no vertex of G has eccentricity 1.
For a color X of a k-stratified graph G, the X-periphery PX(G) is the subgraph of

G induced by those vertices v with eX(v) = diamX G. For the 2-stratified graph G

of Figure 9, the red eccentricity of each vertex is shown along with the red periphery.

We now present a characterization of those k-stratified graphs that are the periph-
ery of some connected k-stratified graph.

Theorem 11. A k-stratified graph G is the X-periphery of a k-stratified graph

if and only if every vertex of G has X-eccentricity 1 or no X-colored vertex of G has

X-eccentricity 1.
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Figure 9.

�����. If every vertex of G has X-eccentricity 1, then G is the X-periphery of

itself. Suppose, next, that G is a k-stratified graph in which no X-colored vertex of
G has X-eccentricity 1. In this case, define H to be that k-stratified graph obtained

by adding an X-colored vertex v to G and joining v to all vertices of G that do
not have X-eccentricity 1. Then v has X-eccentricity 1 and every vertex of G has

X-eccentricity 2; so G is the X-periphery of H .

For the converse, suppose, to the contrary, that there is a k-stratified graph G for
which some X-colored vertex u has X-eccentricity 1 but not all vertices of G have X-

eccentricity 1 and such that G is the X-periphery of some k-stratified graphH . Since
not all vertices of G have the same X-eccentricity, G is a proper induced subgraph

of H . Suppose that diamX H = d, where, then, d � 2. In H , eX(u) = d. Hence
there exists an X-colored vertex w such that d(u, w) = d. Since in G, eX(u) = 1, it

follows that u is adjacent to all other X-colored vertices of G. This implies that w

does not belong to G. However, since d(w, u) = d and u is X-colored, it follows that
eX(w) = d and so w belongs to the X-periphery ofH , but this is a contradiction. �

5. Proximity and seclusion in stratified graphs

In this section we introduce concepts that have no natural analogue in graphs

but which have applications to other areas. Suppose that a city councilperson in
a large city is looking for a location for his or her office. This public servant, of

course, wishes to serve and be available to all of the various ethnic groups within
the city. Typically, ethnic groups live in clusters of neighborhoods in various parts

of the city. A particular ethnic group would like to feel that their concerns are of
sufficient importance that the councilperson’s office will be located in close proximity

to some neighborhood in which the given ethnic group lives. If we think of the
street intersections of the city as vertices, street segments as edges, and a vertex

colored according to the ethnic group most notably represented by the particular
neighborhood involved, we are led to a new concept in our study of stratified graphs.
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For a vertex v in a k-stratified graph G, it may be of interest to know the minimum

distance from v to a vertex in some prescribed stratum. It is this fact that leads us
to define the concepts in this section.

For a vertex v of a k-stratified graph G and a color X of G, the X-proximity δX(v)
of v is the distance between v and an X-colored vertex closest to v. If v itself is an

X-colored vertex, then, of course, δX(v) = 0. This concept is, in a sense, opposite
to that of the X-eccentricity.

If the vertices of a graph are not partitioned, such as in a 1-stratified or ordinary

graph, then the proximity of every vertex is 0. Hence, in the domain of ordinary
graphs, proximity is not an interesting concept for study. A basic result regarding

the X-proximity of adjacent vertices in a k-stratified graph G is given below. It
parallels Theorem 2.

Theorem 12. Let X be a color in a connected k-stratified graph. If uv ∈ E(G),
then |δX(u)− δX(v)| � 1.

�����. Suppose that δX(u) � δX(v) = t. We show that δX(u) � t + 1,
which will then complete the proof. Let w be the closest X-colored vertex to v; so

d(v, w) = t. Thus

δX(u) � d(u, w) � d(u, v) + d(v, w) � 1 + t.

�

For a color X in a k-stratified graph G, the maximum X-proximity ∆X(G) is

the greatest X-proximity among all vertices of G. This concept is analogous to
that of diameter in graphs. The minimum X-proximity among all vertices of G is

always 0, and this value is attained by all X-colored vertices in G. We define the
X-seclusion SX(G) of G to be the subgraph induced by those vertices v of G with

δX(v) = ∆X(G). For the 2-stratified graph of Figure 10 the red proximity of each
vertex is shown along with the red seclusion SR(G).
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1

2

1

0 0 0
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0
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G :

Blue�
2

2

2

SR(G) :�
Figure 10.
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Theorem 13. For positive integers a and b, there exists a 2-stratified graph G

with ∆R(G) = a and ∆B(G) = b.

�����. Consider a path of order a+b such that the first a vertices are colored red

and the remaining b vertices are colored blue. In this path one end-vertex is colored
red and the other is colored blue. The distance from one end-vertex to the closest

vertex of the other color is a or b, depending on the end-vertex selected. Figure 11
illustrates a 2-stratified path with ∆B(G) = δB(u) = 5 and ∆R(G) = δR(v) = 7. �

R R R R R B B B B B B B
u vδB(u) = 5 δR(v) = 7
�

Figure 11.

The preceding result naturally gives rise to a question: Given an integer k � 3,
for which positive integers ai (1 � i � k) does there exist a k-stratified graph such
that ∆Xi = ai?

We now present a result concerning X-seclusions.

Theorem 14. For every �-stratified graph H and every integer k where k > �,

there exists a k-stratified graph G and a color X of G that is not a color of H such

that SX(G) = H .

�����. If X is a color of a k-stratified graph G (k � 2), then, necessarily, no
vertex of SX(G) isX-colored, that is, SX(G) is �-stratified for some � < k. Now, letH

be an �-stratified graph, let k be an integer with k > �, and let X1, X2, . . . , Xk−� = X

be k− � colors not used in H . Further, let P : v1, v2, . . . vk−� be a path of order k− �,

where vi is colored Xi. We construct G from H and P by joining v1 to every vertex
of H . Then in G, δX(v) = k − � for every vertex v in H ; while δX(vi) = k − � − i

for 1 � i � k − �. Thus ∆X(G) = k − � and SX(G) = H . (See Figure 12 for an
illustration of this construction.) �

X1 X2 Xk−l = X

v1 v2 vk−l
HG :�

Figure 12.

Corollary 15. Every k-stratified graph G is the X-seclusion of some (k + 1)-

stratified graph H , where X is a color in H that is not in G.

�����. To construct H , we add a vertex u to G, assign color X to u, and join u

to every vertex of G. It remains only to observe that the X-seclusion of H is G. �
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