Czechoslovak Mathematical Journal

Bohdan Zelinka

On a problem concerning stratified graphs

Czechoslovak Mathematical Journal, Vol. 50 (2000), No. 1, 47-49
Persistent URL: http://dml.cz/dmlcz/127546

Terms of use:

© Institute of Mathematics AS CR, 2000

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON A PROBLEM CONCERNING STRATIFIED GRAPHS

Bohdan Zelinka, Liberec
(Received August 26, 1996)

The concept of a stratified graph was introduced by G. Chartrand, L. Holley, R. Rashidi and N. Sherwani in [1]. A stratified graph may be considered as an ordered pair (G, \mathcal{S}), where G is a connected undirected graph without loops and multiple edges and \mathcal{S} is a partition of its vertex set $V(G)$. The classes of \mathcal{S} are called strata. If their number is k, we denote them usually by X_{1}, \ldots, X_{k} and speak about a k-stratified graph.

By the symbol $d(x, y)$ we denote the distance in a graph between two its vertices x, y; this is the minimum length of a path connecting the vertices x and y in G. By $\delta(i, j)$ for two numbers i, j we denote the Kronecker delta defined so that $\delta(i, j)=1$ for $i=j$ and $\delta(i, j)=0$ for $i \neq j$.

If $u \in V(G), X \in \mathcal{S}$, then the X-proximity of u, denoted by $\delta_{X}(u)$, is the minimum of $d(u, x)$ for $x \in X$. The maximum X-proximity of G, denoted by $\Delta_{X}(G)$, is the maximum of $\delta_{X}(u)$ for $u \in V(G)$.

In [1] the following problem has been suggested:
Determine for which integers $k \geqslant 3$ and positive integers $a_{1}, a_{2}, \ldots, a_{k}$ there exists a k-stratified graph (G, \mathcal{S}) with strata $X_{1}, X_{2}, \ldots, X_{k}$ such that $\Delta_{X_{i}}(G)=a_{i}$ for $i=1, \ldots, k$.

The solution of this problem is given by the following theorem.
Theorem 1. Let $k \geqslant 2$ be an integer, let $a_{1}, a_{2}, \ldots, a_{k}$ be positive integers. Then there exists a k-stratified graph (G, \mathcal{S}) with strata $X_{1}, X_{2}, \ldots, X_{k}$ such that $\Delta_{X_{i}}(G)=a_{i}$ for $i=1, \ldots, k$.

Proof. We construct pairwise vertex-disjoint graphs $H_{0}, H_{1}, \ldots, H_{k}$. The graph H_{0} is the complete graph with k vertices u_{1}, \ldots, u_{k}. For $i=1, \ldots, k$ the graph H_{i} is the Cartesian product of a path having a_{i} vertices and a complete graph with $k-1$ vertices. Its vertices are $v_{i}(p, q)$ for all $p \in\left\{1, \ldots, a_{i}\right\}$ and all $q \in\{1, \ldots, k\}-\{i\}$. Two vertices $v_{i}\left(p_{1}, q_{1}\right), v_{i}\left(p_{2}, q_{2}\right)$ are adjacent if and only if either $p_{1}=p_{2}$ and
$q_{1} \neq q_{2}$, or $\left|p_{1}-p_{2}\right|=1$ and $q_{1}=q_{2}$. Now for $i=1, \ldots, k$ we join the vertex u_{i} of H_{0} by edges with all vertices $v_{i}(1, q)$ of H_{i}. The resulting graph will be denoted by G. Now we construct the partition \mathcal{S} of $V(G)$. We have $\mathcal{S}=\left\{X_{1}, \ldots, X_{k}\right\}$, where the strata X_{1}, \ldots, X_{k} are defined so that $u_{i} \in X_{i}$ and $v_{i}(p, q) \in X_{q}$ for any i, p, q.

Consider the stratum X_{i} for some $i \in\{1, \ldots, k\}$. For a vertex $v_{i}(p, q)$ of H_{i} we have $\delta_{X_{i}}\left(v_{i}(p, q)\right)=d\left(v_{i}(p, q), u_{i}\right)=p \leqslant a_{i}$ and in particular, $\delta_{X_{i}}\left(v_{i}\left(a_{i}, q\right)\right)=a_{i}$. For a vertex u_{j} of H_{0} we have $\delta_{X_{i}}\left(u_{j}\right)=d\left(u_{j}, u_{i}\right)=1-\delta(i, j) \leqslant 1 \leqslant a_{i}$. If $j \neq i$, then for a vertex $v_{j}(p, q)$ of H_{j} we have $\delta_{X_{i}}\left(v_{j}(p, q)\right)=d\left(v_{j}(p, q), v_{j}(p, i)\right)=1-\delta(i, q) \leqslant 1 \leqslant a_{i}$. Hence $\Delta_{X_{i}}(G)=a_{i}$.

Fig. 1 shows the graph G for $k=3, a_{1}=4, a_{2}=5, a_{3}=6$.

We will add a result concerning stratified trees. If $u \in V(G), X \in \mathcal{S}$, then the X-eccentricity $e_{X}(u)$ of u is the maximum of $d(u, x)$ for $x \in X$. The minimum of $e_{X}(u)$ for all vertices $u \in V(G)$ is the X-radius of G, denoted by $\operatorname{rad}_{X} G$, and the maximum is the X-diameter of G, denoted by $\operatorname{diam}_{X} G$. By $\operatorname{rad} G$ and $\operatorname{diam} G$ we denote the usual radius and diameter of G, respectively.

We will consider a stratified tree (T, \mathcal{S}). If $X \in \mathcal{S}$, then by $T(X)$ we denote the least subtree of T which contains the set X. The tree $T(X)$ is the union of all paths connecting pairs of vertices of X in T.

Theorem 2. Let (T, \mathcal{S}) be a stratified tree, let $X \in \mathcal{S}$. Then

$$
\begin{aligned}
\operatorname{rad}_{X} T & =\operatorname{rad} T(X) \\
\operatorname{diam}_{X} T & \leqslant 2 \operatorname{rad}_{X} T-1
\end{aligned}
$$

Proof. Suppose that there exists a vertex $u \in V(T)-V(T(X))$ such that $e_{X}(u)=\operatorname{rad}_{X} T$. As T is a tree, there exists a unique vertex v of $T(X)$ whose distance from u is minimum. Now let $x \in X$. The path connecting v and x is in $T(X)$, while the path connecting u and v has only the vertex v in common with $T(X)$. Therefore the path connecting u and x is the union of these two paths, which implies $d(u, x)=d(u, v)+d(v, x)$ and thus $d(u, x)>d(v, x)$. As x was chosen arbitrarily, also $e_{X}(u)>e_{X}(v)$, which is a contradiction. Therefore all vertices v for which $e_{X}(v)=\operatorname{rad}_{X} T$ are in $T(X)$. Now consider a vertex $w \in V(T(X))$. The paths connecting w with vertices of X are in $T(X)$; therefore $e(w) \geqslant e_{X}(w)$ where $e(w)$ denotes the (usual) eccentricity of w in $T(X)$. The eccentricity $e(w)$ is in fact the maximum of $d(w, z)$ taken over all terminal vertices of $T(X)$. Evidently all terminal vertices of $T(X)$ are in X and thus $e(w) \leqslant e_{X}(w)$ and consequently $e(w)=e_{X}(w)$. This implies $\operatorname{rad}_{x} T=\operatorname{rad} T(X)$. As $T(X)$ is a tree, we have

$$
\operatorname{diam} T(X) \geqslant 2 \operatorname{rad} T(X)-1=2 \operatorname{rad}_{X} T-1
$$

The X-diameter $\operatorname{diam}_{X} T$ is the maximum of $d(u, x)$ for $u \in V(T)$ and $x \in X$. The diameter $\operatorname{diam} T(X)$ is in fact the maximum of $d(x, y)$, where x, y are terminal vertices of $T(X)$; evidently all terminal vertices of $T(X)$ belong to X. Hence

$$
\operatorname{diam}_{X} T \geqslant \operatorname{diam} T(X) \geqslant 2 \operatorname{rad} T(X)-1=2 \operatorname{rad}_{X} T-1 .
$$

References

[1] G. Chartrand, L. Hansen, R. Rashidi, N. Sherwani: Distance in stratified graphs. Czechoslovak Math. J. 50(125) (2000), 35-46.

Author's address: katedra aplikované matematiky Technické university, Voroněžská 13, 46117 Liberec 1, Czech Republic.

