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Abstract. Steinhaus [9] prove that if a set A has a positive Lebesgue measure in the line
then its distance set contains an interval. He obtained even stronger forms of this result in
[9], which are concerned with mutual distances between points in an infinite sequence of sets.
Similar theorems in the case we replace distance by mutual ratio were established by Bose-
Majumdar [1]. In the present paper, we endeavour to obtain some results related to sets
with Baire property in locally compact topological spaces, particular cases of which yield
the Baire category analogues of the above results of Steinhaus [9] and their corresponding
form for ratios by Bose-Majumdar [1].
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Introduction

Let A,B ⊆ � (the real line). The distance set of A and B written as D(A,B) is

the set of all distances |x− y| between points x and y, where x ∈ A, y ∈ B. If A,B
(⊆ � \ {0}), we define in an analogous way their ratio set R(A,B) as the set of all
possible ratios x

y or
y
x where x ∈ A, y ∈ B.

Steinhaus [9] showed that D(A,B) contains an interval if A and B are both

Lebesgue measurable with measures m(A), m(B) (> 0). Exactly analogous for-
mulations related to R(A,B) were produced by Bose-Majumdar [1].

In the same paper [9] (dealing only with subsets of the real line �), Steinhaus
proved even stronger theorems. They are:

Theorem X. If {An}∞n=1 is any infinite sequence of Lebesgue measurable sets
with positive measures, then there exists an infinite sequence {an}∞n=1 of distinct
The research is supported by the research grant of C.S.I.R.
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points such that an ∈ An (n = 1, 2, 3) and their mutual distances are all rational

numbers.

Theorem XI. E being any infinite Lebesgue measurable set, there exists an

enumerable set P composed of points whose mutual distances are rational numbers,

and a set Z of measure zero such that P ⊆ A ⊆ P ′ ∪ Z, where P ′ represents the
derived set of P .

The fact that Theorems X and XI in the form as stated above hold equally well
when sets are taken with non-zero abscissae and mutual distance between points
is replaced by mutual ratio was established by Bose Majumdar (Theorems X and

XI, [1]).

A set A ⊆ � is said to possess the Baire property [6] if it can be represented as

the symmetric difference G�P of an open set G and a set P of first category in �.
Equivalently, A has the Baire property if A = (G \ P ) ∪ Q, where G is open and
P,Q are first category sets in �. However, the above definition could be translated
unequivocally to any topological space.

Steinhaus theorem on the distance set has an exact analogue in the realm of Baire

category (that is, with sets having the Baire property) and is due to Piccard [7].
He showed that if A and B are second category subsets of � with Baire property,

then their distance set D(A,B) contains an interval. If A and B are taken with
non-zero abscissae, the corresponding form for ratio sets (with greater generality)

has also been obtained [3]. Piccard’s theorem has been generalized by K.P.S. and
M. Bhaskara Rao [2] for sets in a topological group, and in topological vector spaces

by Z. Kominek [4]. In [8], Sander extended Piccard’s result to sets in an arbitrary
topological space with reference to the classes of globally solvable mappings.

The above two theorems of Steinhaus (Theorems X and XI) have also been ob-

tained in more general forms in the categorical setting. Alongside with the measure-
theoretic results these were set forth by Miller, Xenikakis and Polychronis [5] for

sets with the Baire property in the real line in the light of certain specified classes of
mappings f : �×� → � each of which have continuous first order partial derivatives

fx and fy non-vanishing on an open set containing A × A where A is the union of
the sets in the sequence {An}∞n=1. Particular cases of these results were also proved
in the corresponding form of Theorems X and XI for ratios by Bose-Majumdar [1]
Even in spite of these facts, Miller’s theorem has some essential drawbacks. Al-

though it proves that whenever C is given to be a dense subset of �, there exist
points ai ∈ Ai such that f(ai, ai+1) ∈ C (i = 1, 2, 3, . . .), it fails to ensure that

f(ai, aj) ∈ C for all i, j. In this paper, we establish that if X is an arbitrary locally
compact Hausdorff topological space and f is chosen arbitrarily from the class of
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globally solvable mappings f : X ×X → X , then preferably better-organized exten-

sions of Steinhaus theorems (Theorem X and Theorem XI) for sets with the Baire
property can be found, particular cases of which also yield the category analogues of
their corresponding form (with ratios) by Bose-Majumdar [1].

Let X be any topological space. Let f : X ×X → X and define fx : X → X and
fy : X → X by fx(y) = f(x, y) and fy(x) = f(x, y) for all x, y ∈ X . The functions
fx and fy are respectively the x and y sections of the function f . Then f is said to
be globally solvable [8], if there exist two continuous functions ψ, ϕ : X × X → X

such that f(x, y) = z is equivalent to x = ψ(y, z) and y = ϕ(x, y) for all x, y, z
(∈ X). It follows that fx, fy, ψz , ϕz are homeomorphisms. Form now on, we will

consider our space X to be a locally compact Hausdorff topological space, and denote
by the symbols A \B, A�B and A the difference, symmetric difference of two sets
and the closure of any set in X . A set A with the Baire property will be defined
likewise as above if A = G�P , where G is open and P is of the first category in X .
Equivalently, A has the Baire property if it can be expressed as (G \ P ) ∪Q where
G is open and P , Q are first category sets in X .

Now, given D to be any dense subset of X , we have the following result.

Theorem 1. Let {An}∞n=1 be any sequence of second category sets with the
Baire property in X and let f : X ×X → X be a globally solvable mapping. Then

there exist infinite sequences {an}∞n=1 and {ηn}∞n=1 of distinct points in X such that
an ∈ An, ηn ∈ D (n = 1, 2, 3, . . .) and the relation f(a1, η1) = f(a2, η2) = . . . =

f(an, ηn) = . . . is satisfied.

Lemma. If A and B are non-empty open subsets of X , then there exists η ∈ D

such that An ∩ fη(B) �= ∅.
�����. Let x ∈ B and z ∈ A. Since f is globally solvable, there exists y ∈ X

such that f(x, y) = z (evidently y = ϕ(x, z)). Consequently, f(x, y) ∈ A. Now as
D is dense in X,A is open and f is globally solvable, there exists η ∈ D such that

f(x, η) ∈ A. Hence A ∩ fη(B) �= ∅. �
Note. The above lemma does not require X to be locally compact Hausdorff.

����� of the Theorem. We choose a compact subset C0 of X with non-empty

interior G0 (this choice is justified since X is locally compact) and let P0 be an
arbitrary set of the first category in X . We set A0 = G0 \ P0. Since An are second

category sets with the Baire property, we can write An = (Gn \ Pn) ∪Qn where for
each n, Gn is a non-empty open set and Pn, Qn are first category sets in X (n =

1, 2, 3, . . .). Again by the definition of first category sets, we may write Pn =
∞⋃

j=1
F
(n)
j

(n = 0, 1, 2, 3, . . .) where F (n)j are nowhere dense subsets of X .
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We consider the set G0 \ F (0)1 and choose and fix η0 ∈ D. Since the closure of

any nowhere dense set is again nowhere dense, the set G0 \ F (0)1 is non-empty open

and therefore as f is globally solvable, fη0(G0 \ F (0)1 ) is non-empty open. Also by
regularity of X (X being locally compact Hausdorff, it is regular) there exists a

non-empty open set H00 such that H00 ⊆ H00 ⊆ fη0(G0 \ F (0)1 ).

Now again, as F (0)2 is closed and nowhere dense and f is globally solvable, H00 ∩
fη0(G0 \F (0)2 ) is a non-empty open set. We set D1 = D\{η0}. Since X is Hausdorff,
D1 is again dense in X . Since F

(1)
1 is closed and nowhere dense, by the above lemma

there exists η1 ∈ D1 such that H00 ∩ fη0(G0 \ F (0)2 ) ∩ fη1(G1 \ F (1)1 ) is a non-empty
open set. Consequently, by regularity of X there exists a non-empty open set H11

such that H11 ⊆ H11 ⊆ H00 ∩ fη0(G0 \ F (0)2 ) ∩ fη1(G \ F (1)1 ).

Now again, as F (0)3 and F (1)2 are closed and nowhere dense sets and f is globally

solvable, H11 ∩ fη0(G0 \ F (0)3 ) ∩ fη1(G1 \ F (1)2 ) is a non-empty open set. We set
D2 = D1 \ {η1}. Since X is Hausdorff, D2 is again dense in X . Since F (2)1 is

closed and nowhere dense, by the above lemma there exists η2 ∈ D2 such that

H11 ∩ fη0(G0 \ F (0)3 ) ∩ fη1(G1 \ F (1)2 ) ∩ fη2(G2 \ F (2)1 ) is a non-empty open set.
Consequently, by regularity of X , there exists a non-empty open set H22 such that

H22 ⊆ H22 ⊆ H11 ∩ fη0(G0 \ F (0)3 ) ∩ fη1(G1 \ F (1)2 ) ∩ fη2(G2 \ F (2)1 ).

Proceeding likewise on the same arguments as stated above, at the n-th stage we
get a non-empty open set Hn−1,n−1 such that Hn−1,n−1 ⊆ Hn−1,n−1 ⊆ Hn−2,n−2 ∩
fη0(G0 \F (0)n )∩ fη1(G1 \F (1)n−1)∩ fη2(G2 \F (2)n−2)∩ . . .∩ fηn−1(Gn−1 \F (n−1)1 ) where

η0, η1, η2, . . . , ηn−1 are distinct elements in D. The following description may be
helpful for a better understanding of the above process. Thus if we continue indefi-

nitely, we get a decreasing sequence H00, H11, H22, . . . , Hn−1,n−1, Hnn, of non-empty
closed sets each of which is contained in the compact set C0 we started with, which

has the finite intersection property. Consequently,
∞⋂

n=1
Hnn �= ∅ and hence after a

rearrangement we have {fη0(G0 \ F (0)1 ) ∩ fη0(G0 \ F (0)2 ) ∩ fη0(G0 \ F (0)3 ) ∩ fη0(G0 \
F
(0)
n ) . . .}∩{fη1(G1 \F (1)1 )∩ fη1 (G1 \F (1)2 )∩ fη1 (G1 \F (1)3 )∩ fη1 (G1 \F (1)n )∩ . . .}∩
{fηn(Gn \ F (n)1 ) ∩ fηn(Gn \ F (n)2 ) ∩ . . . ∩ fηn(Gn \ F (n)n ) . . .} ∩ . . . �= ∅. Since f is
globally solvable, the above arrangement may be written in a more compact form,

viz. fη0(G0 \
∞⋃

j=1
F
(0)
j ) ∩ fη1(G1 \

∞⋃
j=1

F
(1)
j ) ∩ . . . ∩ fηn(Gn \

∞⋃
j=1

F
(n)
j ) ∩ . . . �= ∅.

Therefore fη0(G0 \ P0) ∩ fη1(G1 \ P1) ∩ . . . ∩ fηn(Gn \ Pn) ∩ . . . �= ∅. Hence
fη1(A1) ∩ fη2(A2) ∩ fηn(An) ∩ . . . �= ∅.
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Now f being globally solvable, there exists a sequence {an}∞n=1 of distinct points
in X such that an ∈ An (n = 1, 2, 3, . . .) and relation

f(a1, η1) = f(a2, η2) = f(a3, η3) = . . . ,

is satisfied where {ηn}∞n−1 is a sequence of distinct points in D. �

In particular, if we set (i) X = � (with its usual topology), D = Q (the set
of rational numbers) and f(x, y) = x + y(x, y ∈ �) and (ii) X = � \ {0} (with the
induced topology), D = Q\{0} and f(x, y) = xy (x, y ∈ �\{0}), we get as particular
cases of the above theorem the following corollaries.

Corollary 1.1. If {An}∞n−1 is any infinite sequence of second category sets in �
with the Baire property, then there exists an infinite sequence {an}∞n−1 of distinct
points such that an ∈ An (n = 1, 2, 3, . . .) and their mutual distances are all elements

in Q.

Corollary 1.2. If {An}∞n=1 is any infinite sequence of second category sets in �
with non-zero abscissae and the Baire property, then there exists an infinite sequence

{an}∞n=1 of distinct points such that an ∈ An (n = 1, 2, 3, ) and their mutual ratios

are all elements in Q.

The above two results are the Baire category analogues of Theorem X of Stein-
haus (stated above) and of its corresponding form (for ratios) by Bose-Majumdar

(Theorem X, [1]).
In our next theorem, in addition to the local compactness and Hausdorff property,

we assume that the underlying space X is also second countable without having any
isolated points. As before, here D is again any dense subset of X .

Theorem 2. Let A be any non-empty set with the Baire property and let
f : X × X → X be globally solvable. Then there exists an enumerable set P =

{a1, a2, a3, . . .} and a set H of the first category in X such that P ⊆ A ⊆ P ′ ∪H ,
where P ′ is the derived set of P and {ηn}∞n=1 is a sequence of points in D for which
the relation

f(a1, η1) = f(a2, η2) = . . . = f(an, ηn) = . . .

is satisfied.

����� of the Theorem. If A is of the first category, the choice of any enumerable
set for which the above relation is satisfied shall meet our purpose (the reader may

note that in this case we may choose {an}∞n=1 and {dn}∞n=1 as constant sequences).
Now let us suppose that A is of the second category. Let {Un}∞n=1 denote a countable
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base in X . From the sets Un∩A (n = 1, 2, 3, ), we suppress those terms that represent
sets of the first category, being left thereby with a subsequence {Unk

∩A}∞k=1 whose
terms represent sets of the second category. They having also the Baire property
we may choose by virtue of Theorem 1 sequences {ak}∞k=1 and {ηk}∞k=1 of distinct
points in X such that ak ∈ A ∩ Unk

, ηk ∈ D (k = 1, 2, 3, ), for which the relation

f(a1, η1) = f(a2, η2) = . . . = f(ak, ηk) = . . .

is satisfied.

Now let H be the union of those sets in the sequence {Un ∩A}∞n=1 that have been
suppressed and set P = {a1, a2, . . . , ak, . . .}. Clearly H is of the first category, P is
countable and P ⊆ A. To complete the proof we need only to show that A ⊆ P ′∪H .
Let ξ ∈ A \H . Since none of the sets from the sequence {A ∩ Un}∞n=1 that contains
ξ has been suppressed there exists a subsequence {Unkj

}∞j=1 of {Unk
}∞k=1 such that

ξ ∈ A ∩ Unkj
(j = 1, 2, 3, . . .). Hence ξ ∈ P ′ and therefore A ⊆ P ′ ∪H . Hence the

theorem. �

Note. One may note from the proof of the above theorem that if A is taken to be
a set of the second category, then the sequences {an}∞n=1 and {ηn}∞n=1 can be chosen
so as to consist of distinct points.

Corollary 2.1. If E is any non-empty set in � with the Baire property, then
there exists an enumerable set P composed of points whose mutual distances are all

elements in Q, and a set H of the first category such that P ⊆ A ⊆ P ′UH , where

P ′ is the derived set of P .

Corollary 2.2. If A is any non-empty set in � with non-zero abscissae and the
Baire property, then there exists an enumerable set P composed of points whose

mutual ratios are all elements in Q, and a set H of the first category such that

P ⊆ A ⊆ P ′UH , where P ′ is the derived set of P .

The above two results are the Baire category analogues of Theorem XI of Stein-

haus (stated above) and of its corresponding form (for ratios) by Bose-Majumdar
(Theorem XI, [1]).

64



References

[1] N.C. Bose-Majumdar: On some properties of sets with positive measures. Annali dell
Unversita di Ferrara X(1) (1962), 1–11.

[2] K.P.S. Bhaskara Rao and M. Bhaskara Rao: On the difference of two second category
Baire sets in a topological group. Proc. Amer. Math. Soc. 47(1) (1975), 257–258.

[3] D.K. Ganguly and S. Basu: On ratio sets of real numbers. Indian. Jour. Pure. Appl.
Math. 23(1) (1993), 15–20.

[4] Z. Kominek: On the sum and difference of two sets in topological vector spaces. Fund.
Math. 71(2) (1971), 163–169.

[5] H.I. Miller, Xenikakis and J. Polychronis: Some properties of Baire sets and sets of
positive measure. Rend. Circ. Mat. Palermo (2)31 (1982), 404–414.

[6] J.C. Oxtoby: Measure and Category. Springer-Verlag, 1980.
[7] S. Piccard: Sur les ensembles de distance. Memoires Neuchatel Universite, 1938–39.
[8] W. Sander: A generalization of a theorem of S. Piccard. Proc. Amer. Math. Soc. 74(2)
(1979), 281–282.

[9] H. Steinhaus: Sur les distances des points des ensembles de measure positive. Fund.
math. 1 (1920), 93–104.

Author’s address: Department of Pure Mathematics, University of Calcutta, 35 Bally-
gunge Circular road, Calcutta-700019, India.

65


		webmaster@dml.cz
	2020-07-03T12:26:27+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




