Czechoslovak Mathematical Journal

Judita Lihová
 Characterization of lattices of convex subsets of poses

Czechoslovak Mathematical Journal, Vol. 50 (2000), No. 1, 113-119
Persistent URL: http://dml.cz/dmlcz/127555

Terms of use:

© Institute of Mathematics AS CR, 2000

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

CHARACTERIZATION OF LATTICES OF CONVEX SUBSETS OF POSETS

Judita Lihová, Košice

(Received May 20, 1997)

Dedicated to Professor Ján Jakubik on the occasion of his seventy-fifth birthday

Systems of convex subsets of partially ordered sets, particularly those of convex sublattices of lattices, have been considered by many authors (see e.g. [1]-[6]). In this note we give necessary and sufficient conditions for a lattice to be isomorphic to the lattice of all convex subsets of a nonempty partially ordered set (Theorem 1.6). Such a lattice will be called a c-lattice. Further, we describe directly irreducible c-lattices and prove that each c-lattice is a direct product of directly irreducible c-lattices (Theorem 2.3).

Let $\mathbb{A}=(A, \leqslant)$ be a partially ordered set. A subset X of A is called convex if $x_{1} \leqslant a \leqslant x_{2}, x_{1}, x_{2} \in X, a \in A$ imply $a \in X$. Let Conv \mathbb{A} denote the system of all convex subsets of \mathbb{A}. The system Conv \mathbb{A}, ordered by set-inclusion, is a complete lattice. Moreover, it is atomic in the sense that each element of Conv \mathbb{A} different from the empty set is the join of some atoms. If $X \subseteq A$, the symbol $[X]$ will be used for the least convex subset of \mathbb{A} containing X. The set of all minimal and maximal elements of \mathbb{A} is denoted by $\operatorname{Min} \mathbb{A}$ and $\operatorname{Max} \mathbb{A}$, respectively.

1. Characterization of Conv \mathbb{A}

In this section we give necessary and sufficient conditions for a lattice to be isomorphic to Conv \mathbb{A} for a nonempty partially ordered set.

We start with some definitions.
Let $\mathbb{L}=(L, \leqslant)$ be a complete atomic lattice. An element $p \in L$ will be called totally irreducible if $p \leqslant \sup M, M \subseteq L$ imply $p \leqslant m$ for some $m \in M$.

The author was supported by the Slovak VEGA Grant No. 1/4379/97.

A complete lattice \mathbb{L} will be said to be a z-lattice if each $a \in L$ is a join of totally irreducible elements of L.

By a complete sublattice of a complete lattice, a sublattice closed under arbitrary joins and meets will be meant.

Let $\mathbb{C}=(C, \leqslant)$ be a complete lattice and let 0 and 1 denote the least and greatest element, respectively. Suppose that \mathbb{C} has a complete sublattice Z which is a z-lattice and contains 0 and 1 . Denote by P the set of all totally irreducible elements of Z different from 0 . Since $1 \in Z$, it is obvious that for any $c \in C$ the set $\{z \in Z: z \geqslant c\}$ has a least element. We denote it by $\downarrow c$.

Consider the following conditions:
(i) if $c \in C,\left\{p_{i}: i \in I\right\} \subseteq P$, then $c \wedge \sup \left\{p_{i}: i \in I\right\}=\sup \left\{c \wedge p_{i}: i \in I\right\}$;
(ii) if $p \in P,\left\{c_{j}: j \in J\right\} \subseteq C$ and $p \wedge c_{j}=0$ for each $j \in J$, then $p \wedge \sup \left\{c_{j}: j \in\right.$ $J\}=0$;
(iii) if $c, c^{\prime} \in C, \downarrow c \leqslant \downarrow c^{\prime}$ and the relations $p \in P, p \leqslant \downarrow c, p \wedge c^{\prime}=0$ imply $p \wedge c=0$, then $c \leqslant c^{\prime}$;
(iv) if $z_{1}, z_{2} \in Z, z_{1} \geqslant z_{2}, p \in P, p \leqslant z_{1}$ and c_{0} is the greatest element of the set $\left\{c \in C: c \leqslant z_{1}, c \wedge z_{2}=0\right\}$, then $p \wedge c_{0}=0$ implies $p \leqslant z_{2}$ and $p \wedge c_{0}>0$ implies $p \leqslant \downarrow c_{0}$.

These conditions are not satisfied, in general. Let, e.g., \mathbb{C} be as in Fig. $1, Z=$ $\{0, p, q, 1\}$. Then $P=\{p, q\}$ and (i) does not hold, while (ii) holds. If \mathbb{C} is as in Fig. $2, Z=\{0, p, q, 1\}$, then neither (i) nor (ii) is satisfied. On the other hand, if \mathbb{C} is any infinitely distributive complete lattice and Z is any of its complete sublattices which is a z-lattice, both (i) and (ii) are satisfied. So, e.g., a three-element chain with $Z=\{0,1\}$ satisfies (i), (ii), (iv), while (iii) does not hold. Let \mathbb{C} be as in Fig. 3 with $Z=\{0,1, p, q, r\}$. Then (i), (ii), (iii) hold but (iv) is not satisfied.

Fig. 1

Fig. 2

Fig. 3

Lemma 1.1. Let \mathbb{C}, Z, P be as above and let the conditions (i), (ii) be satisfied. Then for any $z_{1}, z_{2} \in Z, z_{1} \geqslant z_{2}$, the set $\left\{c \in C: c \leqslant z_{1}, c \wedge z_{2}=0\right\}$ has a greatest element.

Proof. Evidently $0 \in\left\{c \in C: c \leqslant z_{1}, c \wedge z_{2}=0\right\}$. Take $c_{0}=\sup \{c \in C: c \leqslant$ $\left.z_{1}, c \wedge z_{2}=0\right\}$. Evidently $c_{0} \leqslant z_{1}$. If $z_{2}=0$, then $c_{0} \wedge z_{2}=0$ holds trivially. Let $z_{2}>0$. Then $z_{2}=\sup \left\{p_{i}: i \in I\right\}$ for a nonempty subset $\left\{p_{i}: i \in I\right\}$ of P. The relation $c \wedge z_{2}=0$ implies $c \wedge p_{i}=0$ for each $i \in I$. Thus $p_{i} \wedge c_{0}=0$ for each $i \in I$ by (ii). Using (i) we obtain $c_{0} \wedge z_{2}=\sup \left\{c_{0} \wedge p_{i}: i \in I\right\}=0$.

Under the assumptions as in 1.1 let us denote the greatest element of the set $\left\{c \in C: c \leqslant z_{1}, c \wedge z_{2}=0\right\}$ by $z_{1}-z_{2}$.

Lemma 1.2. Let the assumptions of 1.1 be satisfied and let, moreover, (iii) hold. Then each $c \in C$ can be expressed as $c=z_{1}-z_{2}$ for some $z_{1}, z_{2} \in Z, z_{1} \geqslant z_{2}$.

Proof. Let $c \in C$. Denote $z_{1}=\downarrow c, z_{2}=\sup \left\{p \in P: p \leqslant z_{1}, p \wedge c=0\right\}$ (by $\sup \emptyset$ the element 0 is meant). Evidently $z_{2} \leqslant z_{1}, c \leqslant z_{1}, c \wedge z_{2}=0$, so that $z_{1}-z_{2} \geqslant c$. Now we are going to show, using (iii), that $z_{1}-z_{2} \leqslant c$ holds, too. The inequalities $c \leqslant z_{1}-z_{2} \leqslant z_{1}$ imply $\downarrow c \leqslant \downarrow\left(z_{1}-z_{2}\right) \leqslant \downarrow z_{1}=z_{1}=\downarrow c$, so that $\downarrow\left(z_{1}-z_{2}\right)=z_{1}=\downarrow c$. Let $p \in P, p \leqslant \downarrow\left(z_{1}-z_{2}\right)=z_{1}$ and $p \wedge c=0$. Then $p \leqslant z_{2}$ and consequently $p \wedge\left(z_{1}-z_{2}\right)=0$, since $z_{2} \wedge\left(z_{1}-z_{2}\right)=0$. The condition (iii) yields $z_{1}-z_{2} \leqslant c$.

Notice that the elements z_{1}, z_{2} in 1.2 are not determined uniquely. E.g., $1-1=$ $0-0=0$.

Lemma 1.3. Let the assumptions of 1.2 be satisfied and let, moreover, (iv) hold. Then the lattice $\mathbb{C}=(C, \leqslant)$ is isomorphic to $(\operatorname{Conv}(P, \leqslant), \subseteq)$ (the partial order in P being inherited from that in C).

Proof. Let us define a mapping φ from C into the system of subsets of P by $c \in C, c=z_{1}-z_{2}, z_{1}, z_{2} \in Z, z_{1} \geqslant z_{2} \Longrightarrow \varphi(c)=\left\{p \in P: p \leqslant z_{1}, p \nless z_{2}\right\}$. First we will show that this definition is correct. Let $c \in C, c=z_{1}-z_{2}=z_{1}^{\prime}-z_{2}^{\prime}$ for some $z_{1}, z_{2}, z_{1}^{\prime}, z_{2}^{\prime} \in Z, z_{1} \geqslant z_{2}, z_{1}^{\prime} \geqslant z_{2}^{\prime}$. Let $p \in P, p \leqslant z_{1}, p \nless z_{2}$. Using (iv) we obtain $p \wedge c>0, p \leqslant \downarrow c$. Obviously $\downarrow c \leqslant z_{1}^{\prime}$, hence $p \leqslant z_{1}^{\prime}$. If $p \leqslant z_{2}^{\prime}$ held, we would have $p \wedge c=0$, since $z_{2}^{\prime} \wedge c=0$, a contradiction. We have proved $\left\{p \in P: p \leqslant z_{1}, p \nless z_{2}\right\} \subseteq\left\{p \in P: p \leqslant z_{1}^{\prime}, p \nless z_{2}^{\prime}\right\}$. The converse inclusion can be proved analogously.

Notice that if $c=z_{1}-z_{2}$ for some $z_{1}, z_{2} \in Z, z_{1} \geqslant z_{2}$, then $\sup \{p \in P: p \leqslant$ $\left.z_{1}, p \wedge c>0\right\}=\downarrow c$. Namely, we have $z_{1}=\sup \left\{p \in P: p \leqslant z_{1}, p \wedge c=0\right\} \vee \sup \{p \in$ $\left.P: p \leqslant z_{1}, p \wedge c>0\right\}$, which implies $c=c \wedge z_{1}=c \wedge \sup \left\{p \in P: p \leqslant z_{1}, p \wedge c>0\right\} \leqslant$ $\sup \left\{p \in P: p \leqslant z_{1}, p \wedge c>0\right\}$ by (i). Now using (iv) we obtain $\sup \{p \in P: p \leqslant$ $\left.z_{1}, p \wedge c>0\right\} \leqslant \downarrow c$ and consequently $\sup \left\{p \in P: p \leqslant z_{1}, p \wedge c>0\right\}=\downarrow c$.

It is easy to see that $\varphi(c)$ is a convex subset of P. We are going to show that φ is onto. Let Q be any convex subset of P. Set $X=\{x \in P: x \leqslant q$ for some $q \in$
$Q\}, Y=X-Q$. Further, let $z_{1}=\sup X, z_{2}=\sup Y$. Obviously $z_{1}, z_{2} \in Z$, $z_{1} \geqslant z_{2}$. We are going to show that $\varphi\left(z_{1}-z_{2}\right)=Q$. First, let $p \leqslant z_{1}, p \notin Q$. The relation $p \leqslant z_{1}$ yields $p \in X$, since p is totally irreducible, so that $p \in Y$. But then $p \leqslant z_{2}$. Thus $\left\{p \in P: p \leqslant z_{1}, p \nless z_{2}\right\} \subseteq Q$. Now let $p \in Q$. Then $p \in X$, which implies $p \leqslant z_{1}$. Assume that $p \leqslant z_{2}$. Then $p \leqslant y$ for some $y \in Y$. But as $Y \subseteq X$, there exists $q \in Q$ with $y \leqslant q$. We have $p \leqslant y \leqslant q, p, q \in Q$, which implies $y \in Q$, a contradiction.

It remains to prove that if $c, c^{\prime} \in C$, then

$$
c \leqslant c^{\prime} \text { if and only if } \varphi(c) \subseteq \varphi\left(c^{\prime}\right)
$$

Let $c, c^{\prime} \in C$. Take $z_{1}=\downarrow c, z_{1}^{\prime}=\downarrow c^{\prime}, z_{2}=\sup \left\{p \in P: p \leqslant z_{1}, p \wedge c=0\right\}$, $z_{2}^{\prime}=\sup \left\{p \in P: p \leqslant z_{1}^{\prime}, p \wedge c^{\prime}=0\right\}$. We know that $c=z_{1}-z_{2}, c^{\prime}=z_{1}^{\prime}-z_{2}^{\prime}$. Now suppose that $c \leqslant c^{\prime}$. Then evidently $z_{1} \leqslant z_{1}^{\prime}$. Take any $p \in P$ with $p \leqslant z_{1}, p \nless z_{2}$. We have $p \leqslant z_{1}^{\prime}, p \wedge c>0$ and consequently $p \wedge c^{\prime}>0$, which implies $p \nless z_{2}^{\prime}$. We have proved $\varphi(c) \subseteq \varphi\left(c^{\prime}\right)$. Conversely, let $\varphi(c) \subseteq \varphi\left(c^{\prime}\right)$. First we will show that $z_{1} \leqslant z_{1}^{\prime}$. As we have noticed, we have $\sup \left\{p \in P: p \leqslant z_{1}, p \wedge c>0\right\}=\downarrow c=z_{1}$, $\sup \left\{p \in P: p \leqslant z_{1}^{\prime}, p \wedge c^{\prime}>0\right\}=\downarrow c^{\prime}=z_{1}^{\prime}$. Since $\left\{p \in P: p \leqslant z_{1}, p \wedge c>0\right\}=$ $\left\{p \in P: p \leqslant z_{1}, p \nless z_{2}\right\} \subseteq\left\{p \in P: p \leqslant z_{1}^{\prime}, p \nless z_{2}^{\prime}\right\}=\left\{p \in P: p \leqslant z_{1}^{\prime}, p \wedge c^{\prime}>0\right\}$, we have $z_{1} \leqslant z_{1}^{\prime}$. Further, $\varphi(c) \subseteq \varphi\left(c^{\prime}\right)$ implies also that if $p \leqslant z_{1}, p \wedge c^{\prime}=0$, then $p \wedge c=0$. Using (iii) we infer $c \leqslant c^{\prime}$. The proof is complete.

Now we are going to prove the converse.
Let $\mathbb{A}=(A, \leqslant)$ be any partially ordered set. Let us recall that $\mathcal{C}=(\operatorname{Conv} \mathbb{A}, \subseteq)$ is a complete lattice, \emptyset is its least, A the greatest element. If $\left\{C_{i}: i \in I\right\} \subseteq$ Conv \mathbb{A}, then $\bigwedge\left\{C_{i}: i \in I\right\}=\bigcap\left\{C_{i}: i \in I\right\}, \bigvee\left\{C_{i}: i \in I\right\}=\left[\bigcup\left\{C_{i}: i \in I\right\}\right]$. Consider the system \mathcal{Z} of all $Z \subseteq A$ which are down-closed, i. e. fulfil the condition

$$
x \leqslant y, y \in Z \Longrightarrow x \in Z
$$

It is easy to see that $\mathcal{Z} \subseteq \operatorname{Conv} \mathbb{A}$ and that (\mathcal{Z}, \subseteq) is a complete sublattice of \mathcal{C} containing \emptyset and A. By the way, if $\left\{Z_{i}: i \in I\right\} \subseteq \mathcal{Z}$, then $\vee\left\{Z_{i}: i \in I\right\}=\cup\left\{Z_{i}: i \in\right.$ $I\}$. It si also easy to verify that nonempty totally irreducible elements of (\mathcal{Z}, \subseteq) are just the sets $(a\rangle=\{x \in A: x \leqslant a\}$ for all possible $a \in A$ and that each $Z \in \mathcal{Z}$ is the join of all $(z\rangle, z \in Z$. So we have proved

Lemma 1.4. The complete sublattice (\mathcal{Z}, \subseteq) of $(\operatorname{Conv} \mathbb{A}, \subseteq)$ is a z-lattice.
Denote by \mathcal{P} the system of all $(a\rangle, a \in A$.
Now it is clear that
(1) if $C \in \operatorname{Conv} \mathbb{A},\left\{a_{i}: i \in I\right\} \subseteq A$, then $C \cap\left(\cup\left\{\left(a_{i}\right\rangle: i \in I\right\}\right)=\vee\left\{C \cap\left(a_{i}\right\rangle: i \in\right.$ $I\}$; and
(2) if $a \in A,\left\{C_{j}: j \in J\right\} \subseteq \operatorname{Conv} \mathbb{A},(a\rangle \cap C_{j}=\emptyset$ for each $j \in J$, then $(a\rangle \cap\left(\vee\left\{C_{j}\right.\right.$: $j \in J)=\emptyset$.

If $C \in \operatorname{Conv} \mathbb{A}$, then evidently $\downarrow C=\{x \in A$: there exists $c \in C$ with $x \leqslant c\}$. If $Z_{1}, Z_{2} \in \mathcal{Z}, Z_{1} \supseteq Z_{2}$, then the greatest element of the system $\{C \in \operatorname{Conv} \mathbb{A}: C \subseteq$ $\left.Z_{1}, C \cap Z_{2}=\emptyset\right\}$ is $Z_{1}-Z_{2}$ (in the set theoretical meaning). The following can be proved easily:
(3) if $C, C^{\prime} \in \operatorname{Conv} \mathbb{A}, \downarrow C \subseteq \downarrow C^{\prime}$ and $a \in A,(a\rangle \subseteq \downarrow C,(a\rangle \cap C^{\prime}=\emptyset$ imply ($a\rangle \cap C=\emptyset$, then $C \subseteq C^{\prime}$; and
(4) if $Z_{1}, Z_{2} \in \mathcal{Z}, Z_{1} \supseteq Z_{2}, a \in Z_{1}$, then $(a\rangle \cap\left(Z_{1}-Z_{2}\right)=\emptyset$ implies $(a\rangle \subseteq Z_{2}$ and $(a\rangle \cap\left(Z_{1}-Z_{2}\right) \neq \emptyset$ implies $(a\rangle \subseteq \downarrow\left(Z_{1}-Z_{2}\right)$.

The above results can be summarized as follows:

Lemma 1.5. If $\mathbb{A}=(A, \leqslant)$ is a partially ordered set, $\mathcal{C}=(\operatorname{Conv} \mathbb{A}, \subseteq), \mathcal{Z}$ and \mathcal{P} are as above, then the conditions (i)-(iv) are satisfied.

Combining 1.3 and 1.5 we obtain the following theorem.

Theorem 1.6. Let $\mathbb{C}=(C, \leqslant)$ be a complete lattice, card $C \geqslant 2$. Then \mathbb{C} is isomorphic to (Conv $\mathbb{A}, \subseteq)$ for a partially ordered set \mathbb{A} if and only if \mathbb{C} has a complete sublattice Z containing the least and the greatest elements of C, which is a z-lattice, with the conditions (i)-(iv) being satisfied.

2. Direct decomposition

If a lattice $\mathbb{L}=(L, \wedge, \vee, \leqslant)$ is isomorphic to $\operatorname{Conv} \mathbb{A}$ for a nonempty partially ordered set \mathbb{A}, we will refer to it as a c-lattice.

Theorem 2.1. The direct product of any nonempty system of c-lattices is a c-lattice.

Proof. Let $\left\{\mathbb{A}_{i}: i \in I\right\}$ be any nonempty system of partially ordered sets. Let \mathbb{A} be their cardinal sum. It is easy to see that the mapping $X(\in \operatorname{Conv} \mathbb{A}) \mapsto\left(X \cap A_{i}\right)_{i \in I}$ is an isomorphism of the lattice $\operatorname{Conv} \mathbb{A}$ onto the direct product of the lattices Conv \mathbb{A}_{i} $(i \in I)$.

Let $\mathbb{A}=(A, \preceq)$ be any partially ordered set. Denoting by S the set of all couples $(u, v) \in A \times A$ such that $u \in \operatorname{Min} \mathbb{A}, v \in \operatorname{Max} \mathbb{A}$ and v covers u, define

$$
a \preceq_{c} b(a, b \in A) \Leftrightarrow a \preceq b, \quad(a, b) \notin S .
$$

It is easy to see that \preceq_{c} is a partial order in A and $\operatorname{Conv}(A, \preceq)=\operatorname{Conv}\left(A, \preceq_{c}\right)$. The order \preceq_{c} will be said to be the c-order corresponding to \preceq.

Theorem 2.2. Let $\mathbb{A}=(A, \preceq)$ be any partially ordered set. The lattice Conv \mathbb{A} is directly irreducible if and only if the partially ordered set $\left(A, \preceq_{c}\right)$ is connected.

Proof. If $\left(A, \preceq_{c}\right)$ is disconnected, then there exist nonempty subsets B, C of A such that $\left(A, \preceq_{c}\right)$ is the cardinal sum of $\left(B, \preceq_{c}\right)$ and $\left(C, \preceq_{c}\right)$. But then Conv $\mathbb{A}=$ $\operatorname{Conv}\left(A, \preceq_{c}\right)$ is isomorphic to $\operatorname{Conv}\left(B, \preceq_{c}\right) \times \operatorname{Conv}\left(C, \preceq_{c}\right)$, so that $\operatorname{Conv} \mathbb{A}$ is directly reducible.

Conversely, let Conv \mathbb{A} be directly reducible, i.e. there exist lattices $\mathbb{L}_{1}, \mathbb{L}_{2}$, each containing at least two elements, and an isomorphism φ : $\operatorname{Conv} \mathbb{A} \rightarrow \mathbb{L}_{1} \times \mathbb{L}_{2}$. Evidently $\mathbb{L}_{1}, \mathbb{L}_{2}$ are complete atomic lattices. φ maps atoms of the lattice Conv \mathbb{A} into atoms of the direct product $\mathbb{L}_{1} \times \mathbb{L}_{2}$. Set $A_{1}=\{a \in A: \varphi(\{a\})=(p, 0)$ for an atom p of $\left.\mathbb{L}_{1}\right\}, A_{2}=\left\{a \in A: \varphi(\{a\})=(0, q)\right.$ for an atom q of $\left.\mathbb{L}_{2}\right\}$. Evidently $A_{1}, A_{2} \neq \emptyset, A_{1} \cup A_{2}=A$. Let \mathbb{A}_{1} and \mathbb{A}_{2} be A_{1} and A_{2}, respectively, with the order inherited from $\left(A, \preceq_{c}\right)$. The aim is to show that $\left(A, \preceq_{c}\right)$ is the cardinal sum of \mathbb{A}_{1} and \mathbb{A}_{2}, which will imply that $\left(A, \preceq_{c}\right)$ is disconnected. We have to prove that if $a_{1} \in A_{1}, a_{2} \in A_{2}$, then a_{1}, a_{2} are incomparable in $\left(A, \preceq_{c}\right)$. Let $a_{1} \in A_{1}$, $a_{2} \in A_{2}, \varphi\left(\left\{a_{1}\right\}\right)=\left(p_{1}, 0\right), \varphi\left(\left\{a_{2}\right\}\right)=\left(0, q_{1}\right)$. As $\varphi\left(\left[\left\{a_{1}, a_{2}\right\}\right]\right)=\varphi\left(\left\{a_{1}\right\} \vee\left\{a_{2}\right\}\right)=$ $\varphi\left(\left\{a_{1}\right\}\right) \vee \varphi\left(\left\{a_{2}\right\}\right)=\left(p_{1}, 0\right) \vee\left(0, q_{1}\right)=\left(p_{1}, q_{1}\right)$ and $\left(p_{1}, 0\right),\left(0, q_{1}\right)$ are the only atoms in $\mathbb{L}_{1} \times \mathbb{L}_{2}$ which are less than $\left(p_{1}, q_{1}\right)$, the elements a_{1}, a_{2} are incomparable or one of them covers the other in $\left(A, \preceq_{c}\right)$. Assume, e.g., that a_{2} covers a_{1}. By the definition of \preceq_{c} there exists $a \in A$ such that either $a \preceq_{c} a_{1}, a \neq a_{1}$, or $a_{2} \preceq_{c} a$, $a \neq a_{2}$. Let, e.g., the first possibility occur. Then $\left\{a_{1}\right\} \subset\left[\left\{a, a_{2}\right\}\right]$, which implies $\left(p_{1}, 0\right)=\varphi\left(\left\{a_{1}\right\}\right)<\varphi\left(\left[\left\{a, a_{2}\right\}\right]\right)=\varphi(\{a\}) \vee \varphi\left(\left\{a_{2}\right\}\right)$. Now $\varphi(\{a\})$ is of the form $(p, 0)$ or $(0, q)$, so that $\left(p_{1}, 0\right)<\left(p, q_{1}\right)$ or $\left(p_{1}, 0\right)<\left(0, q_{1} \vee q_{2}\right)$, respectively. The first inequality implies $p_{1}=p$, which contradicts $a \neq a_{1}$. The latter case is also impossible. So a_{1}, a_{2} are incomparable and the proof is complete.

Theorem 2.3. Every c-lattice is the direct product of directly irreducible c lattices.

Proof. Let $\mathbb{A}=(A, \preceq)$ be any partially ordered set, \preceq_{c} the c-order corresponding to \preceq. Let $\mathbb{A}_{i}=\left(A_{i}, \preceq_{c}\right)(i \in I)$ be maximal connected subsets of $\left(A, \preceq_{c}\right)$. Then the lattice $\operatorname{Conv} \mathbb{A}=\operatorname{Conv}\left(A, \preceq_{c}\right)$ is isomorphic to the direct product of $\operatorname{Conv} \mathbb{A}_{i}$ and all Conv \mathbb{A}_{i} are directly irreducible c-lattices by 2.2 .

Acknowledgement. The author is indebted to the referee for his valuable suggestions.

References

[1] C. C. Chen, M. K. Koh: On the lattice of convex sublattices of a finite lattice. Nanta Math. 5 (1972), 93-95.
[2] V. I. Igošin: Lattices of intervals and lattices of convex sublattices of lattices. Mežvuzovskij naučnyj sbornik 6 - Uporjadočennyje množestva i rešotki, Saratov (1980), 69-76. (In Russian.)
[3] M. Kolibiar: Intervals, convex sublattices and subdirect representations of lattices. Universal Algebra and Applications, Banach Center Publications 9, Warsaw (1982), 335-339.
[4] J. Lihová: On convexly isomorphic posets. Czechoslovak Math. J. 49 (1999), 135-148.
[5] V. I. Marmazejev: The lattice of convex sublattices of a lattice. Mežvuzovskij naučnyj sbornik 6 - Uporjadočennyje množestva i rešotki, Saratov (1986), 50-58. (In Russian.)
[6] M. Zelina: Selfduality of the system of convex subsets of a partially ordered set. CMUC AA 34, 3 (1990), 593-595.

Author's address: Prírodovedecká fakulta UPJŠ, 04154 Košice, Jesenná 5, Slovakia, e-mail: lihova@duro.upjs.sk.

