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A THEOREM FOR AN AXIOMATIC APPROACH TO METRIC

PROPERTIES OF GRAPHS

Ladislav Nebeský*, Praha

(Received May 20, 1997)

0. By a graph we mean here a finite undirected graph without loops and multiple
edges (i.e. a graph in the sense of [2], for example). Studying graphs we will inves-

tigate sets of ordered triples of vertices. For the sake of brevity, the ordered triple
(u, v, x) of any objects u, v and x will be denoted by uvx.

Let G be a connected graph, and let dG denote its distance function. Obviously,
the vertex set V (G) of G together with dG create a metric space. Following [6], by

a step in G we mean an ordered triple uvx ∈ (V (G))3 such that

dG(u, v) = 1 and dG(v, x) = dG(u, x)− 1.

The set of all steps in G will be referred to as the step set of G. The step set of a
connected graph is the central notion of the present paper.

LetH be a graph, and letM ⊆ (V (H))3. Following [7], we say thatM is associated
with H if

u and v are adjacent in H if and only if there exists

a vertex x of H such that either uvx ∈ M or vux ∈ M

for all distinct vertices u and v of H .

Proposition. Let G be a connected graph, and let M denote the step set of G.

Then M is associated with G and the following Axioms Y 0(M)–Y 5(M) and Y ∗(M)
hold (for arbitrary u, v, x, y ∈ V (G)):

Y 0(M) uvx ∈ M ⇒ vuu ∈ M ,

Y 1(M) {uvx, vuy} ⊆ M ⇒ x �= y,

Y 2(M) {uvx, xyv} ⊆ M ⇒ xyu ∈ M ,
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Y 3(M) {uvx, xyv} ⊆ M ⇒ uvy ∈ M ,

Y 4(M) {uvx, xyy} ⊆ M ⇒ {xyu, yxv, uvy} ∩M �= ∅,
Y 5(M) u �= x ⇒ ∃ z ∈ V (G) (uzx ∈ M),
Y ∗(M) {uvx, vuy, xyy} ⊆ M ⇒ xyu ∈ M .

Proof is easy and can be found in [6] (see Part One of the proof of Theorem 1

there).
Let G be a connected graph, let M ⊆ (V (G))3, and let M be associated with

G. In [6] the present author proved that M is the step of G if and only if M fulfils
Axioms Y 0(M) − Y 5(M), Y ∗(M) and the following Axiom Y 6(M) (for arbitrary

u, v, x, y ∈ V (G)):

Y 6(M) {uvx, uyv} ⊆ M ⇒ y = v.

This result will be improved in Theorem 3. As we will see, Axiom Y 6(M) is not

necessary for characterizing the step set of a connected graph. The proof of Theorem
3 will be based on new arguments. The most important of them will be presented in

Theorem 1.

Remark 1. Let G be a connected graph. Then dG is a metrics on V (G). The

step set of G is an important notion for studying metric properties of G (with respect
to dG). There are two other notions important for this study: the set of all shortest

paths (geodesics) in G and the interval function of G in the sense of Mulder [3].
(Cf. the notion of a finite graphic interval space in the sense of Bandelt, van de Vel

and Verheul [1]). The set of all shortest paths in G was characterized in [4] and the
interval function of G was characterized in [5].)

1. In the rest of the paper, the letters f, g, . . . , and n will be reserved for denoting

integers.
In this section, we will assume that a nonempty set U is given. The results of the

following two observations and of Lemmas A and B can be found in [6] or [7]. We
will need them for proving Theorem 1.

Observation 1 (see [6]). Let M ⊆ U3, and let M fulfil Axioms Y 0(M) and
Y 1(M). It is clear that

if rst ∈ M, then s �= r �= t.

Observation 2 (see [6]). Let M ⊆ U3, and let M fulfil Axioms Y 2(M) and
Y 3(M). Let u0, u1, v1, v2, . . . , vh ∈ U , where h � 2, and let

(1) v1v2u0, . . . , vh−1vhu0 ∈ M.
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Assume that u1u0v1 ∈ M . Using induction, we can easily prove that

vgvg+1u1, u1u0vg+1 ∈ M for each g, 1 � g � h− 1.

Lemma A (see [7]). Let M ⊆ U3, and let M fulfil Axioms Y 0(M), Y 2(M) and
Y 3(M). Let w0, . . . , wh ∈ U , where h � 1, and let

wfwf−1w0 ∈ M for each f, 1 � f � h.

Then

wg−1wgwh ∈ M for each g, 1 � g � h.

Outline of the �����. We proceed by induction on h. The case when h = 1

follows from Axiom Y 0(M). Let h � 2. By virtue of the induction hypothesis,

w0w1wh−1, . . . , wh−2wh−1wh−1 ∈ M.

Since whwh−1w0 ∈ M , Observation 2 and Axiom Y 0(M) imply the desired result.
�

Lemma B (see [6]). Let M ⊆ U3, and let M fulfil Axioms Y 2(M) and Y 3(M).
Let u0, . . . , uk−1, v0, . . . , vk ∈ U , where k � 2, let

(20) v0v1u0, . . . , vk−1vku0 ∈ M,

and let

u1u0v1, . . . , uk−1uk−2vk−1 ∈ M.

Then

vivi+1ui, . . . , vk−1vkui ∈ M and(2i)

uiui−1vi+1, . . . , uiui−1vk ∈ M

for each i, 1 � i � k − 1.

Outline of the �����. We will prove that (2i) holds for each i, 0 � i � k − 1.
We proceed by induction on i. The case when i = 0 is obvious. Let 1 � i � k − 1.
Clearly, uiui−1vi ∈ M . If we combine the induction hypothesis with Observation 2,
we get (2i). �
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For proving Theorem 1, we will need one more lemma. This lemma is a modifica-

tion of Lemma B:

Lemma B’. Let M ⊆ U3, and let M fulfil Axioms Y 0(M), Y 2(M) and Y 3(M).
Let w0, w1, . . . , wm+k−1 ∈ U , where k � 2 and m � 1, let

(30) w0w1wm, . . . , wm−1wmwm ∈ M,

and let

wm+1wmw1, . . . , vm+k−1wm+k−2wk−1 ∈ M.

Then

wiwi+1wm+i, . . . , wm+i−1wm+iwm+i ∈ M and(3i)

wm+iwm+i−1wi, . . . , wm+iwm+i−1wm+i−1 ∈ M

for each i, 1 � i � k − 1.

�����. The case when m = 1 is obvious. Let m � 2. We will prove that (3i)
holds for each i, 0 � i � k − 1. We proceed by induction on i. If i = 0, then (3i)

holds trivially. Let 1 � i � k − 1. By virtue of the induction hypothesis,

wiwi+1wm+i−1, . . . , wm+i−2wm+i−1wm+i−1 ∈ M.

Clearly, wm+1wm+i−1wi ∈ M . Observation 2 implies that

wiwi+1wm+i, . . . , wm+i−2wm+i−1wm+i ∈ M and

wm+iwm+i−1wi+1, . . . , wm+iwm+i−1wm+i−1 ∈ M.

Recall that wm+iwm+i−1wi ∈ M . As follows from Axiom Y 0(M), wm+i−1wm+iwm+i

∈ M . Thus, we get (3i). �

We now state the main result of the present paper. Its wording is rather long:

Theorem 1. Let x0, . . . , xg+h ∈ U , where min(g, h) � 1, and let Q, T ⊆ U3.

Assume that

x0x1x1, . . . , xg+h−1xg+hxg+h ∈ Q ∩ T,(4)

x0x1xg, . . . , xg−1xgxg ∈ Q,(5)

xgxg+1x0, . . . , xg+h−1xg+hx0 ∈ T(6)
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and if xg+h �= x0, then xhxh−1xg+h /∈ T . Define j = max(g, h) if xg+h = x0 and

j = h if xg+h �= x0. If xg+h = x0, then put

xg+h+1 = x1, . . . , xg+h+j = xj .

Next, assume that Q fulfils Axioms Y 0(Q)−Y 4(Q) and Y ∗(Q) and T fulfils Axioms

Y 0(T ) − Y 3(T ) and Y ∗(T ) (for arbitrary u, v, x, y ∈ U). Finally, assume that the

following Rules A1, A2, B, C and D hold for each m, 0 � m � j − 1:

A1 xg+m+1xg+mxm+1 ∈ Q ∩ T & xm+1xm+2xg+m ∈ T ⇒
xm+1xm+2xg+m ∈ Q,

A2 m � j − 2 & xg+m+1xg+m+2xm+1 ∈ Q ∩ T & xm+1xmxg+m+2 ∈ T ⇒
xm+1xmxg+m+2 ∈ Q,

B xg+m+1xg+mxm+1 ∈ Q− T ⇒ xm+1xmxg+m+1 ∈ T,

C xg+m+1xg+mxm+1 /∈ Q & xmxm+1xg+m+1 ∈ Q ⇒
xmxm+1xg+m+1 ∈ T,

D xmxm+1xg+m ∈ Q & xmxm+1xg+m+1 ∈ T & xg+mxg+m+1xm+1 ∈ T ⇒
xg+mxg+m+1xm+1 ∈ Q.

Then xgxg+1x0 ∈ Q.

�����. Suppose, to the contrary, that

(7) xgxg+1x0 /∈ Q.

We will first prove that

(8) either xg+jxg+j−1xj /∈ Q or xjxj−1xg+j /∈ T.

Let xg+h = x0 and g � h. Since xg+h = x0, combining (4) and (7) we get h � 2.
Further, combining the fact that xg+h = x0 with (6) and Lemma A, we get

xg+hxg+h−1xg, xg+h−1xg+h−2xg, . . . , xg+1xgxg ∈ T.

Recall that h � 2. Using Lemma A again, we get

xgxg+1xg+h−1, . . . , xg+h−2xg+h−1xg+h−1 ∈ T.

Thus, we see that
xg+hxg+h−1xg, xgxg+1xg+h−1 ∈ T.
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First, assume that g = h. We see that xg+jxg+j−1xj , xjxj+1xg+j−1 ∈ T .

By (7), xjxj+1xg+j /∈ Q. If xg+jxg+j−1xj ∈ Q, then Rule A1 implies that
xjxj+1xg+j−1 ∈ Q, and thus, by Axiom Y 2(Q), xjxj+1xg+j ∈ Q; a contradic-
tion. Hence xg+jxg+j−1xj /∈ Q. Now, let g > h. By virtue of (5), x2g−1x2gxg ∈ Q.

As follows from Axiom A1(Q), x2gx2g−1xg /∈ Q. Hence xg+jxg+j−1xj /∈ Q again.
Let xg+h �= x0 or h > g. Then j = h. If xg+h �= x0, we get xjxj−1xg+j /∈ T .

Assume that xg+h = x0. Then h > g. As follows from (6), xh−1xhx0 ∈ T . By Axiom
Y 1(T ), xhxh−1x0 /∈ T . Hence xjxj−1xg+j /∈ T again.

Thus (8) is proved.
By virtue of (8), there exists k, 1 � k � j, such that

(9) either xg+kxg+k−1xk /∈ Q or xkxk−1xg+k /∈ T

and

(10) xg+ixg+i−1xi ∈ Q and xixi−1xg+i ∈ T for each i, 1 � i � k − 1.

Let k � 2. Combining (5) and (10) with Lemma B’, we get

(11) xixi+1xg+i ∈ Q for each i, 1 � i � k − 1.

First, assume that xg+h = x0. Then h � 2. Combining (6) and (10) with Lemma
B’, we get

(12) xg+ixg+i+1xi, xixi−1xg+i+1 ∈ T for each i, 1 � i � k − 1.

Now, assume that xg+h �= x0. Since j = h and k � 2, we see that h � 2. Combining
(6) and (10) with Lemma B, we get (12) again.

By virtue of (7), there exists f, 0 � f � k − 1, such that

(13) xg+fxg+f+1xf /∈ Q

and

(14) if f � k − 2, then xg+f+1xg+f+2xf+1 ∈ Q.

If f � 1, then it follows from (11) and (12) that

(15) xfxf+1xg+f ∈ Q and xg+fxg+f+1xf ∈ T.

If f = 0, then by (5) and (6) we get (15) again.
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We distinguish two cases.

Case 1. Let xg+f+1xg+fxf+1 ∈ Q. If xg+f+1xg+fxf+1 /∈ T , then Rule B implies

that

(16) xf+1xfxg+f+1 ∈ T.

Let xg+f+1xg+fxf+1 ∈ T . By (15), xg+fxg+f+1xf ∈ T . As follows from (4) and
Axiom Y 0(T ), xf+1xfxf ∈ T . Thus, Axiom Y ∗(T ) gives (16) again.

First, let f = k−1. Since xg+f+1xg+fxf+1 ∈ Q, (9) implies that xf+1xfxg+f+1 /∈
T , which contradicts (16).

Now, let f � k − 2. By (14), xg+f+1xg+f+2xf+1 ∈ Q. As follows from (12),
xg+f+1xg+f+2xf+1, xf+1xfxg+f+2 ∈ T . Rule A2 implies that xf+1xfxg+f+2 ∈ Q.

By Axiom Y 2(Q), xf+1xfxg+f+1 ∈ Q. By virtue of (15), xfxf+1xg+f ∈ Q. Accord-
ing to (4), xg+fxg+f+1xg+f+1 ∈ Q. Axiom Y ∗(Q) implies that xg+fxg+f+1xf ∈ Q,

which contradicts (13).

Case 2. Let xg+f+1xg+fxf+1 /∈ Q. Recall that (by (15)) xfxf+1xg+f ∈ Q and
by (13), xg+fxg+f+1xf /∈ Q. Since (by (4)) xg+fxg+f+1xg+f+1 ∈ Q, Axiom Y 4(Q)

implies that
xfxf+1xg+f+1 ∈ Q.

Since xg+f+1xg+fxf+1 /∈ Q, Rule C implies that

(17) xfxf+1xg+f+1 ∈ T.

Since (by (15)) xg+fxg+f+1xf ∈ T , Axiom Y 3(T ) implies that xg+fxg+f+1xf+1 ∈ T .

Recall that xfxf+1xg+f ∈ Q. Combining these facts with (17) and Rule D, we get

xg+fxg+f+1xf+1 ∈ Q.

Since xfxf+1xg+f ∈ Q, Axiom Y 2(Q) implies that xg+fxg+f+1xf ∈ Q, which con-

tradicts (13).
We conclude that xgxg+1x0 ∈ Q, which completes the proof. �

Remark 2. The idea of Theorem 1 is partially inspired by the lemma in [8].

In the next two sections of this paper Theorem 1 will be applied. We will utilize
it in the proofs of Theorems 2 and 3.

2. In this section we will prove a theorem concerning the step set of a connected
graph. For proving this theorem we will also need the following lemma. Its idea was
implicitly contained in the proof of Lemma 3 of [6].
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Lemma C. Let U be a finite nonempty set, let M ⊆ U3, and let M fulfil Axioms

Y 0(M)− Y 3(M). Let n � 1. Consider an infinite sequence

u0, u1, u2, . . .

of elements in U such that unun+1u0 ∈ M . Assume that

if un+g = u0, then un+g+1 = un+g and

if un+g �= u0, then un+gun+g+1u0 ∈ M

for each g � 1. Then there exists h � 1 such that either un+h = u0 or

uhuh−1un+h /∈ M .

�����. Suppose, to the contrary, that un+f �= u0 and ufuf−1un+f ∈ M for

each f � 1. Therefore un+fun+f+1u0 ∈ M for each f � 0. Put j = |U | and
m = (j − 1)n+ 1. By Lemma B,

uiui−1un+i, . . . , uiui−1un+m ∈ M for each i, 1 � i � m− 1.

Thus, according to Observation 1,

ui �= un+i, . . . , un+m for each i, 1 � i � m− 1.

This implies that the elements

u1, un+1, . . . , ujn+1

are mutually distinct. We get |U | > j, which is a contradiction. Thus the lemma is

proved. �

Let G be a connected graph, and let M ∈ V (G). For each n � 0, we define

M(G, � n) = {uvx ∈ M ;u, v, x ∈ V (G) and dG(u, x) � n}.

Instead of M(G, � n) we will shortly write M(� n).

Theorem 2. Let G be a connected graph, let M ⊆ (V (G))3, let M be associated

with G, and letM fulfil Axioms Y 0(M)−Y 3(M), Y 5(M) and Y ∗(M) (for arbitrary
u, v, x, y ∈ V (G)). Let S denote the step set of G. Then

(18n) S(� n) ⊆ M(� n)⇒ S(� n) =M(� n)
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for every n � 0.

�����. Put dG = d. We proceed by induction on n. Since M(� 0) = ∅, (180)
holds. Let n � 1. Assume that S(� n) ⊆ M(� n). Then S(� n− 1) ⊆ M(� n− 1).
By the induction hypothesis, S(� n − 1) = M(� n − 1). Assume that (18n) does
not hold. Then there exist r, s, t ∈ V (G) such that

rst ∈ M(� n)−M(� n− 1) and rst /∈ S.

Since d(r, t) = n, we see that there exist x0, x1, . . . , xn ∈ V (G) such that x0 = t,
xn = r and

x0x1xn, . . . , xn−1xnxn ∈ S.

Combining Axiom Y 5(M) with Lemma C, we see that there exist h � 1 and

xn+1, . . . , xn+h ∈ V (G) such that xn+1 = s,

xnxn+1x0, . . . , xn+h−1xn+hx0 ∈ M, and

if xn+h �= x0, then xhxh−1xn+h /∈ M.

Put Q = S, T =M and g = n. Hence

(19) Q(� g) ⊆ T (� g).

Since S(� n− 1) =M(� n− 1), we have

(20) Q(� g − 1) = T (� g − 1).

Let j be defined as in Theorem 1. Consider an arbitrary m, 0 � m � j − 1. We
will show that Rules A1, A2, B, C and D are fulfilled. (Recall that Q = S.)

(A1) Let xg+m+1xg+mxm+1 ∈ Q. Then d(xg+m, xm+1) � g − 1. If xm+1xm+2

xg+m ∈ T , then (20) implies that xm+1xm+2xg+m ∈ Q.

(A2) Let m � j − 2, and let xg+m+1xg+m+2xm+1 ∈ Q. Then d(xm+1, xg+m+2) �
g − 1. If xm+1xmxg+m+2 ∈ T , then (20) implies that xm+1xmxg+m+2 ∈ Q.

(B) Obviously, d(xg+m+1, xm+1) � g. By (19), xg+m+1xg+mxm+1 /∈ Q− T .
(C) Let xg+m+1xg+mxm+1 /∈ Q. Then d(xg+m+1, xm+1) � d(xg+m, xm+1) �

g − 1. Hence d(xm, xg+m+1) � g. If xmxm+1xg+m+1 ∈ Q, then (19) implies that
xmxm+1xg+m+1 ∈ T .

(D) Let xmxm+1xg+m ∈ Q. Then d(xg+m, xm+1) � g−1. If xg+mxg+m+1xm+1 ∈
T , then (20) implies that xg+mxg+m+1xm+1 ∈ Q.

Thus Rules A1, A2, B, C and D are fulfilled. Since Q = S, the proposition implies
that Q fulfils Axioms Y 0(Q)–Y 4(Q) and Y ∗(Q). By Theorem 1, xgxg+1x0 ∈ Q.

Since xg = r, xg+1 = s and x0 = t, we have a contradiction.
Thus, we get (18n), which completes the proof. �
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Remark 3. The idea of Theorem 2 has a certain connection to that of Lemma 3
in [9] (but the proofs of these results are deeply distinct).

Corollary. Let G be a connected graph, let M ⊆ (V (G))3, let M be associated

with G, and let M fulfil Axioms Y 0(M)–Y 3(M), Y 5(M) and Y ∗(M) (for arbitrary
u, v, x, y ∈ V (G)). Let S denote the step set of G. If S ⊆ M , then S =M .

3. The step set of a connected graph was characterized by the present author
in [6]. That characterization will be improved in Theorem 3. For proving Theorem
3 we will need two more observations and two more lemmas.

Observation 3 (see [7]). Let U be a nonempty set, let M ⊆ U3, and let M fulfil

Axioms Y 2(M) and Y 3(M). Let u0, u1, v1, . . . , vh ∈ U , where h � 2, and let (1)
hold. Assume that u0u1vh ∈ M . Using the induction on h− g, we can easily prove

that

vgvg+1u1, u0u1vg ∈ M

for each g, 1 � g � h− 1.

The following lemma was implicitly contained in the proof of Lemma 3 of [7].

Lemma D. Let U be a nonempty set, let M ⊆ U3, and let M fulfil Axioms

Y 2(M)− Y 4(M). Let u0, u1, w0, . . . , wg ∈ U , where g � 1, let u0u1u1 ∈ M , and let

w0w1u0, . . . , wg−1wgu0 ∈ M.

Assume that w0 = wg. Then

(21) w0w1u1, . . . , wg−1wgu1 ∈ M.

�����. Put wg+1 = w1, . . . , w2g = wg . We distinguish two cases.

Case 1. Assume that there exists f , 0 � f � g−1, such that either (a) u1u0wf+1 ∈
M or (b) u0u1wf ∈ M . First, let (a) hold. Since

wf+1wf+2u0, . . . , wf+gwf+g+1u0 ∈ M,

Observation 2 implies that

wf+1wf+2u1, . . . , wf+gwf+g+1u1 ∈ M,
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and thus (21) holds. Now, let (b) hold. Then u0u1wf+g ∈ M . Since

wfwf+1u0, . . . , wf+g−1wf+gu0 ∈ M,

Observation 3 implies that

wfwf+1u1, . . . , wf+g−1wf+gu1 ∈ M,

and thus (21) holds.

Case 2. Assume that u1u0wf+1, u0u1wf /∈ M for each f , 0 � f � g − 1. Since
u0u1u1 ∈ M , Axiom Y 4(M) implies that (21) holds again. Hence the lemma is

proved. �

Observation 4 (see [7]). Let G be a connected graph, let M ⊆ (V (G))3, let M

be associated with G, and let M fulfil Axioms Y 0(M)–Y 4(M). Let u0, v1, . . . , vh ∈
V (G), where h � 2, and let (1) hold. Combining Observation 1 with Lemma D, we
get v1 �= vh.

Lemma E (see [7]). Let G be a connected graph, let M ⊆ (V (G))3, let M be

associated with G, and let M fulfil Axioms Y 0(M) − Y 5(M). Consider distinct

r, t ∈ V (G). Then there exist m � 1 and r0, r1, . . . , rm ∈ V (G) such that r0 = r,

rm = t and

r0r1t, . . . , rm−1rmt ∈ M.

Outline of the �����. Since V (G) is finite, it is easy to prove the lemma by
combining the result of Observation 4 with Axiom Y 5(M). �

Remark 4. Let n � 2, let x0, . . . , xn, y0, . . . , yn and z be mutually distinct

elements, and let G be the graph with

V (G) = {x0, . . . , xn, y0, . . . , yn, z}

and with the edge set as follows:

{{xf , xg}; 0 � f � n, 0 � g � n, f �= g}
∪{{yh, yi}; 0 � h � n, 0 � i � n, h �= i}
∪{{xj, z}; 0 � j � n} ∪ {{yk, z}; 0 � k � n}.

Obviously, G is connected. Put xn+1 = x0, yn+1 = y0. Let M ⊆ (V (G))3 be defined
as follows: uvw ∈ M if and only if
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either u and v are adjacent in G and w = v

or there exist f , 0 � f � n, and g, 0 � g � n, such that

either xfxf+1yg = uvw

or yfyf+1xg = uvw.

Obviously, M is associated with G. It is not difficult to see that M fulfils Axioms

Y 0(M)–Y 3(M), Y 5(M) and Y ∗(M) (for arbitrary u, v, x ∈ V (G)) but does not fulfil
Axiom Y 4(M). We can see that for G and M the result of Lemma E does not hold.

Theorem 3. Let G be a connected graph, let M ⊆ (V (G))3, and let M be

associated with G. Then the following statements (A) and (B) are equivalent:

(A) M is the step set of G,

(B) M fulfils Axioms Y 0(M)–Y 5(M) and Y ∗(M) (for arbitrary u, v, x ∈ V (G)).

�����. Let S denote the step set of G. Put d = dG.
By the proposition, (A) ⇒ (B). We will prove that (B) ⇒ (A). Suppose, to the

contrary, that (A) holds but (B) does not hold. It is easy to see that S(� 1) ⊆
M(� 1). Thus, by virtue of Theorem 2, there exists n � 2 such that S(� n)−M(�
n) �= ∅ and S(� n− 1) =M(� n− 1). Therefore, there exist r, s, t ∈ V (G) such that
d(r, t) = n, rst ∈ S but rst /∈ M . Since r �= t, Lemma E implies that there exist

g � 1 and x0, . . . , xg ∈ V (G) such that x0 = r, xg = t and

x0x1xg, . . . , xg−1xgxg ∈ M.

Obviously, there exist xg+1, . . . , xg+n ∈ V (G) such that xg+1 = s, xg+n = x0 and

xgxg+1x0, . . . , xg+n−1xg+nx0 ∈ S.

Put Q =M , T = S and h = n. Since S(� n− 1) =M(� n− 1), we have

(22) T (� h− 1) = Q(� h− 1).

Let j be defined as in Theorem 1. Consider an arbitrary m, 0 � m � j − 1. We
will show that Rules A1, A2, B, C and D are fulfilled. (Recall that T = S.)

(A1) Let xg+m+1xg+mxm+1 ∈ T . Since d(xg+m+1, xm+1) � h, we have d(xg+m,

xm+1) � h−1. If xm+1xm+2xg+m ∈ T , then (22) implies that xm+1xm+2xg+m ∈ Q.
(A2) Letm � j−2 and let xg+m+1xg+m+2xm+1 ∈ T . Since d(xg+m+1, xm+1) � h,

we have d(xg+m+2, xm+1) � h − 1. If xm+1xmxg+m+2 ∈ T , then (22) implies that
xm+1xmxg+m+2 ∈ Q.
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(B) Let xg+m+1xg+mxm+1 ∈ Q − T . Clearly, d(xg+m+1, xm+1) � h. If

d(xg+m+1, xm+1) � h − 1, then (22) leads to a contradiction. Thus d(xg+m+1,

xm+1) = h. We get xm+1xmxg+m+1 ∈ T .
(C) Clearly, d(xm, xg+m+1) � h − 1. If xmxm+1xg+m+1 ∈ Q, then (22) implies

that xmxm+1xg+m+1 ∈ T .
(D) Let xmxm+1xg+m+1 ∈ T . We get d(xm+1, xg+m+1) � h − 2 and there-

fore, d(xm+1, xg+m) � h − 1. If xg+mxg+m+1xm+1 ∈ T , then (22) implies that
xg+mxg+m+1xm+1 ∈ Q.

Thus Rules A1, A2, B, C and D are fulfilled. By Theorem 1, xgxg+1x0 ∈ Q. Since
xg = r, xg+1 = s and x0 = t, we have a contradiction.

Thus (B)⇒ (A), which completes the proof. �
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