Czechoslovak Mathematical Journal

Ladislav Nebeský
 A theorem for an axiomatic approach to metric properties of graphs

Czechoslovak Mathematical Journal, Vol. 50 (2000), No. 1, 121-133
Persistent URL: http://dml.cz/dmlcz/127556

Terms of use:

© Institute of Mathematics AS CR, 2000

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

A THEOREM FOR AN AXIOMATIC APPROACH TO METRIC PROPERTIES OF GRAPHS

Ladislav Nebesky̌*, Praha

(Received May 20, 1997)
0. By a graph we mean here a finite undirected graph without loops and multiple edges (i.e. a graph in the sense of [2], for example). Studying graphs we will investigate sets of ordered triples of vertices. For the sake of brevity, the ordered triple (u, v, x) of any objects u, v and x will be denoted by $u v x$.

Let G be a connected graph, and let d_{G} denote its distance function. Obviously, the vertex set $V(G)$ of G together with d_{G} create a metric space. Following [6], by a step in G we mean an ordered triple $u v x \in(V(G))^{3}$ such that

$$
d_{G}(u, v)=1 \quad \text { and } \quad d_{G}(v, x)=d_{G}(u, x)-1 .
$$

The set of all steps in G will be referred to as the step set of G. The step set of a connected graph is the central notion of the present paper.

Let H be a graph, and let $M \subseteq(V(H))^{3}$. Following [7], we say that M is associated with H if

u and v are adjacent in H if and only if there exists

a vertex x of H such that either $u v x \in M$ or $v u x \in M$
for all distinct vertices u and v of H.

Proposition. Let G be a connected graph, and let M denote the step set of G. Then M is associated with G and the following Axioms $Y 0(M)-Y 5(M)$ and $Y^{*}(M)$ hold (for arbitrary $u, v, x, y \in V(G)$):
$Y 0(M) \quad u v x \in M \Rightarrow v u u \in M$,
$Y 1(M) \quad\{u v x, v u y\} \subseteq M \Rightarrow x \neq y$,
$Y 2(M) \quad\{u v x, x y v\} \subseteq M \Rightarrow x y u \in M$,

[^0]$Y 3(M) \quad\{u v x, x y v\} \subseteq M \Rightarrow u v y \in M$,
$Y 4(M) \quad\{u v x, x y y\} \subseteq M \Rightarrow\{x y u, y x v, u v y\} \cap M \neq \emptyset$,
$Y 5(M) \quad u \neq x \Rightarrow \exists z \in V(G)(u z x \in M)$,
$Y^{*}(M) \quad\{u v x, v u y, x y y\} \subseteq M \Rightarrow x y u \in M$.
Proof is easy and can be found in [6] (see Part One of the proof of Theorem 1 there).

Let G be a connected graph, let $M \subseteq(V(G))^{3}$, and let M be associated with G. In [6] the present author proved that M is the step of G if and only if M fulfils Axioms $Y 0(M)-Y 5(M), Y^{*}(M)$ and the following Axiom $Y 6(M)$ (for arbitrary $u, v, x, y \in V(G)):$
$Y 6(M) \quad\{u v x, u y v\} \subseteq M \Rightarrow y=v$.
This result will be improved in Theorem 3. As we will see, Axiom $Y 6(M)$ is not necessary for characterizing the step set of a connected graph. The proof of Theorem 3 will be based on new arguments. The most important of them will be presented in Theorem 1.

Remark 1. Let G be a connected graph. Then d_{G} is a metrics on $V(G)$. The step set of G is an important notion for studying metric properties of G (with respect to $\left.d_{G}\right)$. There are two other notions important for this study: the set of all shortest paths (geodesics) in G and the interval function of G in the sense of Mulder [3]. (Cf. the notion of a finite graphic interval space in the sense of Bandelt, van de Vel and Verheul [1]). The set of all shortest paths in G was characterized in [4] and the interval function of G was characterized in [5].)

1. In the rest of the paper, the letters f, g, \ldots, and n will be reserved for denoting integers.

In this section, we will assume that a nonempty set U is given. The results of the following two observations and of Lemmas A and B can be found in [6] or [7]. We will need them for proving Theorem 1.

Observation 1 (see [6]). Let $M \subseteq U^{3}$, and let M fulfil Axioms $Y 0(M)$ and $Y 1(M)$. It is clear that

$$
\text { if } r s t \in M, \quad \text { then } s \neq r \neq t
$$

Observation 2 (see [6]). Let $M \subseteq U^{3}$, and let M fulfil Axioms $Y 2(M)$ and $Y 3(M)$. Let $u_{0}, u_{1}, v_{1}, v_{2}, \ldots, v_{h} \in U$, where $h \geqslant 2$, and let

$$
\begin{equation*}
v_{1} v_{2} u_{0}, \ldots, v_{h-1} v_{h} u_{0} \in M \tag{1}
\end{equation*}
$$

Assume that $u_{1} u_{0} v_{1} \in M$. Using induction, we can easily prove that

$$
v_{g} v_{g+1} u_{1}, u_{1} u_{0} v_{g+1} \in M \text { for each } g, 1 \leqslant g \leqslant h-1
$$

Lemma \mathbf{A} (see [7]). Let $M \subseteq U^{3}$, and let M fulfil Axioms $Y 0(M), Y 2(M)$ and $Y 3(M)$. Let $w_{0}, \ldots, w_{h} \in U$, where $h \geqslant 1$, and let

$$
w_{f} w_{f-1} w_{0} \in M \text { for each } f, 1 \leqslant f \leqslant h .
$$

Then

$$
w_{g-1} w_{g} w_{h} \in M \text { for each } g, 1 \leqslant g \leqslant h .
$$

Outline of the proof. We proceed by induction on h. The case when $h=1$ follows from Axiom $Y 0(M)$. Let $h \geqslant 2$. By virtue of the induction hypothesis,

$$
w_{0} w_{1} w_{h-1}, \ldots, w_{h-2} w_{h-1} w_{h-1} \in M .
$$

Since $w_{h} w_{h-1} w_{0} \in M$, Observation 2 and Axiom $Y 0(M)$ imply the desired result.

Lemma B (see [6]). Let $M \subseteq U^{3}$, and let M fulfil Axioms $Y 2(M)$ and $Y 3(M)$. Let $u_{0}, \ldots, u_{k-1}, v_{0}, \ldots, v_{k} \in U$, where $k \geqslant 2$, let

$$
\begin{equation*}
v_{0} v_{1} u_{0}, \ldots, v_{k-1} v_{k} u_{0} \in M \tag{0}
\end{equation*}
$$

and let

$$
u_{1} u_{0} v_{1}, \ldots, u_{k-1} u_{k-2} v_{k-1} \in M .
$$

Then

$$
\begin{align*}
& v_{i} v_{i+1} u_{i}, \ldots, v_{k-1} v_{k} u_{i} \in M \text { and } \tag{i}\\
& u_{i} u_{i-1} v_{i+1}, \ldots, u_{i} u_{i-1} v_{k} \in M
\end{align*}
$$

for each $i, 1 \leqslant i \leqslant k-1$.
Outline of the proof. We will prove that $\left(2_{i}\right)$ holds for each $i, 0 \leqslant i \leqslant k-1$. We proceed by induction on i. The case when $i=0$ is obvious. Let $1 \leqslant i \leqslant k-1$. Clearly, $u_{i} u_{i-1} v_{i} \in M$. If we combine the induction hypothesis with Observation 2, we get $\left(2_{i}\right)$.

For proving Theorem 1, we will need one more lemma. This lemma is a modification of Lemma B:

Lemma B'. Let $M \subseteq U^{3}$, and let M fulfil Axioms $Y 0(M), Y 2(M)$ and $Y 3(M)$. Let $w_{0}, w_{1}, \ldots, w_{m+k-1} \in U$, where $k \geqslant 2$ and $m \geqslant 1$, let

$$
\begin{equation*}
w_{0} w_{1} w_{m}, \ldots, w_{m-1} w_{m} w_{m} \in M \tag{0}
\end{equation*}
$$

and let

$$
w_{m+1} w_{m} w_{1}, \ldots, v_{m+k-1} w_{m+k-2} w_{k-1} \in M
$$

Then

$$
\begin{align*}
& w_{i} w_{i+1} w_{m+i}, \ldots, w_{m+i-1} w_{m+i} w_{m+i} \in M \text { and } \tag{i}\\
& w_{m+i} w_{m+i-1} w_{i}, \ldots, w_{m+i} w_{m+i-1} w_{m+i-1} \in M
\end{align*}
$$

for each $i, 1 \leqslant i \leqslant k-1$.
Proof. The case when $m=1$ is obvious. Let $m \geqslant 2$. We will prove that $\left(3_{i}\right)$ holds for each $i, 0 \leqslant i \leqslant k-1$. We proceed by induction on i. If $i=0$, then $\left(3_{i}\right)$ holds trivially. Let $1 \leqslant i \leqslant k-1$. By virtue of the induction hypothesis,

$$
w_{i} w_{i+1} w_{m+i-1}, \ldots, w_{m+i-2} w_{m+i-1} w_{m+i-1} \in M
$$

Clearly, $w_{m+1} w_{m+i-1} w_{i} \in M$. Observation 2 implies that

$$
\begin{aligned}
& w_{i} w_{i+1} w_{m+i}, \ldots, w_{m+i-2} w_{m+i-1} w_{m+i} \in M \text { and } \\
& w_{m+i} w_{m+i-1} w_{i+1}, \ldots, w_{m+i} w_{m+i-1} w_{m+i-1} \in M .
\end{aligned}
$$

Recall that $w_{m+i} w_{m+i-1} w_{i} \in M$. As follows from Axiom $Y 0(M), w_{m+i-1} w_{m+i} w_{m+i}$ $\in M$. Thus, we get $\left(3_{i}\right)$.

We now state the main result of the present paper. Its wording is rather long:

Theorem 1. Let $x_{0}, \ldots, x_{g+h} \in U$, where $\min (g, h) \geqslant 1$, and let $Q, T \subseteq U^{3}$. Assume that

$$
\begin{align*}
& x_{0} x_{1} x_{1}, \ldots, x_{g+h-1} x_{g+h} x_{g+h} \in Q \cap T \tag{4}\\
& x_{0} x_{1} x_{g}, \ldots, x_{g-1} x_{g} x_{g} \in Q \tag{5}\\
& x_{g} x_{g+1} x_{0}, \ldots, x_{g+h-1} x_{g+h} x_{0} \in T \tag{6}
\end{align*}
$$

and if $x_{g+h} \neq x_{0}$, then $x_{h} x_{h-1} x_{g+h} \notin T$. Define $j=\max (g, h)$ if $x_{g+h}=x_{0}$ and $j=h$ if $x_{g+h} \neq x_{0}$. If $x_{g+h}=x_{0}$, then put

$$
x_{g+h+1}=x_{1}, \ldots, x_{g+h+j}=x_{j}
$$

Next, assume that Q fulfils Axioms $Y 0(Q)-Y 4(Q)$ and $Y^{*}(Q)$ and T fulfils Axioms $Y 0(T)-Y 3(T)$ and $Y^{*}(T)$ (for arbitrary $u, v, x, y \in U$). Finally, assume that the following Rules A_{1}, A_{2}, B, C and D hold for each $m, 0 \leqslant m \leqslant j-1$:

$$
\begin{array}{ll}
A_{1} & x_{g+m+1} x_{g+m} x_{m+1} \in Q \cap T \& x_{m+1} x_{m+2} x_{g+m} \in T \Rightarrow \\
& x_{m+1} x_{m+2} x_{g+m} \in Q, \\
A_{2} \quad & m \leqslant j-2 \& x_{g+m+1} x_{g+m+2} x_{m+1} \in Q \cap T \& x_{m+1} x_{m} x_{g+m+2} \in T \Rightarrow \\
& x_{m+1} x_{m} x_{g+m+2} \in Q, \\
B & x_{g+m+1} x_{g+m} x_{m+1} \in Q-T \Rightarrow x_{m+1} x_{m} x_{g+m+1} \in T, \\
C & x_{g+m+1} x_{g+m} x_{m+1} \notin Q \& x_{m} x_{m+1} x_{g+m+1} \in Q \Rightarrow \\
& x_{m} x_{m+1} x_{g+m+1} \in T, \\
D & x_{m} x_{m+1} x_{g+m} \in Q \& x_{m} x_{m+1} x_{g+m+1} \in T \& x_{g+m} x_{g+m+1} x_{m+1} \in T \Rightarrow \\
& x_{g+m} x_{g+m+1} x_{m+1} \in Q .
\end{array}
$$

Then $x_{g} x_{g+1} x_{0} \in Q$.
Proof. Suppose, to the contrary, that

$$
\begin{equation*}
x_{g} x_{g+1} x_{0} \notin Q . \tag{7}
\end{equation*}
$$

We will first prove that

$$
\begin{equation*}
\text { either } x_{g+j} x_{g+j-1} x_{j} \notin Q \text { or } x_{j} x_{j-1} x_{g+j} \notin T \tag{8}
\end{equation*}
$$

Let $x_{g+h}=x_{0}$ and $g \geqslant h$. Since $x_{g+h}=x_{0}$, combining (4) and (7) we get $h \geqslant 2$. Further, combining the fact that $x_{g+h}=x_{0}$ with (6) and Lemma A, we get

$$
x_{g+h} x_{g+h-1} x_{g}, x_{g+h-1} x_{g+h-2} x_{g}, \ldots, x_{g+1} x_{g} x_{g} \in T
$$

Recall that $h \geqslant 2$. Using Lemma A again, we get

$$
x_{g} x_{g+1} x_{g+h-1}, \ldots, x_{g+h-2} x_{g+h-1} x_{g+h-1} \in T .
$$

Thus, we see that

$$
x_{g+h} x_{g+h-1} x_{g}, x_{g} x_{g+1} x_{g+h-1} \in T
$$

First, assume that $g=h$. We see that $x_{g+j} x_{g+j-1} x_{j}, x_{j} x_{j+1} x_{g+j-1} \in T$. By (7), $x_{j} x_{j+1} x_{g+j} \notin Q$. If $x_{g+j} x_{g+j-1} x_{j} \in Q$, then Rule A_{1} implies that $x_{j} x_{j+1} x_{g+j-1} \in Q$, and thus, by Axiom $Y 2(Q), x_{j} x_{j+1} x_{g+j} \in Q$; a contradiction. Hence $x_{g+j} x_{g+j-1} x_{j} \notin Q$. Now, let $g>h$. By virtue of (5), $x_{2 g-1} x_{2 g} x_{g} \in Q$. As follows from Axiom $A 1(Q), x_{2 g} x_{2 g-1} x_{g} \notin Q$. Hence $x_{g+j} x_{g+j-1} x_{j} \notin Q$ again.

Let $x_{g+h} \neq x_{0}$ or $h>g$. Then $j=h$. If $x_{g+h} \neq x_{0}$, we get $x_{j} x_{j-1} x_{g+j} \notin T$. Assume that $x_{g+h}=x_{0}$. Then $h>g$. As follows from (6), $x_{h-1} x_{h} x_{0} \in T$. By Axiom $Y 1(T), x_{h} x_{h-1} x_{0} \notin T$. Hence $x_{j} x_{j-1} x_{g+j} \notin T$ again.

Thus (8) is proved.
By virtue of (8), there exists $k, 1 \leqslant k \leqslant j$, such that

$$
\begin{equation*}
\text { either } x_{g+k} x_{g+k-1} x_{k} \notin Q \text { or } x_{k} x_{k-1} x_{g+k} \notin T \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{g+i} x_{g+i-1} x_{i} \in Q \text { and } x_{i} x_{i-1} x_{g+i} \in T \text { for each } i, 1 \leqslant i \leqslant k-1 \tag{10}
\end{equation*}
$$

Let $k \geqslant 2$. Combining (5) and (10) with Lemma B', we get

$$
\begin{equation*}
x_{i} x_{i+1} x_{g+i} \in Q \text { for each } i, 1 \leqslant i \leqslant k-1 . \tag{11}
\end{equation*}
$$

First, assume that $x_{g+h}=x_{0}$. Then $h \geqslant 2$. Combining (6) and (10) with Lemma B', we get

$$
\begin{equation*}
x_{g+i} x_{g+i+1} x_{i}, x_{i} x_{i-1} x_{g+i+1} \in T \text { for each } i, 1 \leqslant i \leqslant k-1 \tag{12}
\end{equation*}
$$

Now, assume that $x_{g+h} \neq x_{0}$. Since $j=h$ and $k \geqslant 2$, we see that $h \geqslant 2$. Combining (6) and (10) with Lemma B, we get (12) again.

By virtue of (7), there exists $f, 0 \leqslant f \leqslant k-1$, such that

$$
\begin{equation*}
x_{g+f} x_{g+f+1} x_{f} \notin Q \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { if } f \leqslant k-2 \text {, then } x_{g+f+1} x_{g+f+2} x_{f+1} \in Q . \tag{14}
\end{equation*}
$$

If $f \geqslant 1$, then it follows from (11) and (12) that

$$
\begin{equation*}
x_{f} x_{f+1} x_{g+f} \in Q \text { and } x_{g+f} x_{g+f+1} x_{f} \in T . \tag{15}
\end{equation*}
$$

If $f=0$, then by (5) and (6) we get (15) again.

We distinguish two cases.

Case 1. Let $x_{g+f+1} x_{g+f} x_{f+1} \in Q$. If $x_{g+f+1} x_{g+f} x_{f+1} \notin T$, then Rule B implies that

$$
\begin{equation*}
x_{f+1} x_{f} x_{g+f+1} \in T \tag{16}
\end{equation*}
$$

Let $x_{g+f+1} x_{g+f} x_{f+1} \in T$. By (15), $x_{g+f} x_{g+f+1} x_{f} \in T$. As follows from (4) and Axiom $Y 0(T), x_{f+1} x_{f} x_{f} \in T$. Thus, Axiom $Y^{*}(T)$ gives (16) again.

First, let $f=k-1$. Since $x_{g+f+1} x_{g+f} x_{f+1} \in Q,(9)$ implies that $x_{f+1} x_{f} x_{g+f+1} \notin$ T, which contradicts (16).

Now, let $f \leqslant k-2$. By (14), $x_{g+f+1} x_{g+f+2} x_{f+1} \in Q$. As follows from (12), $x_{g+f+1} x_{g+f+2} x_{f+1}, x_{f+1} x_{f} x_{g+f+2} \in T$. Rule A_{2} implies that $x_{f+1} x_{f} x_{g+f+2} \in Q$. By Axiom $Y 2(Q), x_{f+1} x_{f} x_{g+f+1} \in Q$. By virtue of (15), $x_{f} x_{f+1} x_{g+f} \in Q$. According to (4), $x_{g+f} x_{g+f+1} x_{g+f+1} \in Q$. Axiom $Y^{*}(Q)$ implies that $x_{g+f} x_{g+f+1} x_{f} \in Q$, which contradicts (13).

Case 2. Let $x_{g+f+1} x_{g+f} x_{f+1} \notin Q$. Recall that (by (15)) $x_{f} x_{f+1} x_{g+f} \in Q$ and by (13), $x_{g+f} x_{g+f+1} x_{f} \notin Q$. Since (by (4)) $x_{g+f} x_{g+f+1} x_{g+f+1} \in Q$, Axiom $Y 4(Q)$ implies that

$$
x_{f} x_{f+1} x_{g+f+1} \in Q .
$$

Since $x_{g+f+1} x_{g+f} x_{f+1} \notin Q$, Rule C implies that

$$
\begin{equation*}
x_{f} x_{f+1} x_{g+f+1} \in T . \tag{17}
\end{equation*}
$$

Since (by (15)) $x_{g+f} x_{g+f+1} x_{f} \in T$, Axiom $Y 3(T)$ implies that $x_{g+f} x_{g+f+1} x_{f+1} \in T$. Recall that $x_{f} x_{f+1} x_{g+f} \in Q$. Combining these facts with (17) and Rule D, we get

$$
x_{g+f} x_{g+f+1} x_{f+1} \in Q .
$$

Since $x_{f} x_{f+1} x_{g+f} \in Q$, Axiom $Y 2(Q)$ implies that $x_{g+f} x_{g+f+1} x_{f} \in Q$, which contradicts (13).

We conclude that $x_{g} x_{g+1} x_{0} \in Q$, which completes the proof.
Remark 2. The idea of Theorem 1 is partially inspired by the lemma in [8].
In the next two sections of this paper Theorem 1 will be applied. We will utilize it in the proofs of Theorems 2 and 3.
2. In this section we will prove a theorem concerning the step set of a connected graph. For proving this theorem we will also need the following lemma. Its idea was implicitly contained in the proof of Lemma 3 of [6].

Lemma C. Let U be a finite nonempty set, let $M \subseteq U^{3}$, and let M fulfil Axioms $Y 0(M)-Y 3(M)$. Let $n \geqslant 1$. Consider an infinite sequence

$$
u_{0}, u_{1}, u_{2}, \ldots
$$

of elements in U such that $u_{n} u_{n+1} u_{0} \in M$. Assume that

$$
\begin{aligned}
& \text { if } u_{n+g}=u_{0}, \text { then } u_{n+g+1}=u_{n+g} \text { and } \\
& \text { if } u_{n+g} \neq u_{0}, \text { then } u_{n+g} u_{n+g+1} u_{0} \in M
\end{aligned}
$$

for each $g \geqslant 1$. Then there exists $h \geqslant 1$ such that either $u_{n+h}=u_{0}$ or $u_{h} u_{h-1} u_{n+h} \notin M$.

Proof. Suppose, to the contrary, that $u_{n+f} \neq u_{0}$ and $u_{f} u_{f-1} u_{n+f} \in M$ for each $f \geqslant 1$. Therefore $u_{n+f} u_{n+f+1} u_{0} \in M$ for each $f \geqslant 0$. Put $j=|U|$ and $m=(j-1) n+1$. By Lemma B,

$$
u_{i} u_{i-1} u_{n+i}, \ldots, u_{i} u_{i-1} u_{n+m} \in M \text { for each } i, 1 \leqslant i \leqslant m-1
$$

Thus, according to Observation 1,

$$
u_{i} \neq u_{n+i}, \ldots, u_{n+m} \text { for each } i, 1 \leqslant i \leqslant m-1 .
$$

This implies that the elements

$$
u_{1}, u_{n+1}, \ldots, u_{j n+1}
$$

are mutually distinct. We get $|U|>j$, which is a contradiction. Thus the lemma is proved.

Let G be a connected graph, and let $M \in V(G)$. For each $n \geqslant 0$, we define

$$
M(G, \leqslant n)=\left\{u v x \in M ; u, v, x \in V(G) \text { and } d_{G}(u, x) \leqslant n\right\} .
$$

Instead of $M(G, \leqslant n)$ we will shortly write $M(\leqslant n)$.

Theorem 2. Let G be a connected graph, let $M \subseteq(V(G))^{3}$, let M be associated with G, and let M fulfil Axioms $Y 0(M)-Y 3(M), Y 5(M)$ and $Y^{*}(M)$ (for arbitrary $u, v, x, y \in V(G))$. Let S denote the step set of G. Then

$$
\begin{equation*}
S(\leqslant n) \subseteq M(\leqslant n) \Rightarrow S(\leqslant n)=M(\leqslant n) \tag{n}
\end{equation*}
$$

for every $n \geqslant 0$.
Proof. Put $d_{G}=d$. We proceed by induction on n. Since $\left.M(\leqslant 0)=\emptyset,(18)_{0}\right)$ holds. Let $n \geqslant 1$. Assume that $S(\leqslant n) \subseteq M(\leqslant n)$. Then $S(\leqslant n-1) \subseteq M(\leqslant n-1)$. By the induction hypothesis, $S(\leqslant n-1)=M(\leqslant n-1)$. Assume that ($18 n$) does not hold. Then there exist $r, s, t \in V(G)$ such that

$$
r s t \in M(\leqslant n)-M(\leqslant n-1) \text { and } r s t \notin S .
$$

Since $d(r, t)=n$, we see that there exist $x_{0}, x_{1}, \ldots, x_{n} \in V(G)$ such that $x_{0}=t$, $x_{n}=r$ and

$$
x_{0} x_{1} x_{n}, \ldots, x_{n-1} x_{n} x_{n} \in S .
$$

Combining Axiom $Y 5(M)$ with Lemma C, we see that there exist $h \geqslant 1$ and $x_{n+1}, \ldots, x_{n+h} \in V(G)$ such that $x_{n+1}=s$,

$$
\begin{aligned}
& x_{n} x_{n+1} x_{0}, \ldots, x_{n+h-1} x_{n+h} x_{0} \in M, \text { and } \\
& \text { if } x_{n+h} \neq x_{0}, \text { then } x_{h} x_{h-1} x_{n+h} \notin M .
\end{aligned}
$$

Put $Q=S, T=M$ and $g=n$. Hence

$$
\begin{equation*}
Q(\leqslant g) \subseteq T(\leqslant g) \tag{19}
\end{equation*}
$$

Since $S(\leqslant n-1)=M(\leqslant n-1)$, we have

$$
\begin{equation*}
Q(\leqslant g-1)=T(\leqslant g-1) . \tag{20}
\end{equation*}
$$

Let j be defined as in Theorem 1. Consider an arbitrary $m, 0 \leqslant m \leqslant j-1$. We will show that Rules A_{1}, A_{2}, B, C and D are fulfilled. (Recall that $Q=S$.)
$\left(A_{1}\right)$ Let $x_{g+m+1} x_{g+m} x_{m+1} \in Q$. Then $d\left(x_{g+m}, x_{m+1}\right) \leqslant g-1$. If $x_{m+1} x_{m+2}$ $x_{g+m} \in T$, then (20) implies that $x_{m+1} x_{m+2} x_{g+m} \in Q$.
$\left(A_{2}\right)$ Let $m \leqslant j-2$, and let $x_{g+m+1} x_{g+m+2} x_{m+1} \in Q$. Then $d\left(x_{m+1}, x_{g+m+2}\right) \leqslant$ $g-1$. If $x_{m+1} x_{m} x_{g+m+2} \in T$, then (20) implies that $x_{m+1} x_{m} x_{g+m+2} \in Q$.
(B) Obviously, $d\left(x_{g+m+1}, x_{m+1}\right) \leqslant g$. By (19), $x_{g+m+1} x_{g+m} x_{m+1} \notin Q-T$.
(C) Let $x_{g+m+1} x_{g+m} x_{m+1} \notin Q$. Then $d\left(x_{g+m+1}, x_{m+1}\right) \leqslant d\left(x_{g+m}, x_{m+1}\right) \leqslant$ $g-1$. Hence $d\left(x_{m}, x_{g+m+1}\right) \leqslant g$. If $x_{m} x_{m+1} x_{g+m+1} \in Q$, then (19) implies that $x_{m} x_{m+1} x_{g+m+1} \in T$.
(D) Let $x_{m} x_{m+1} x_{g+m} \in Q$. Then $d\left(x_{g+m}, x_{m+1}\right) \leqslant g-1$. If $x_{g+m} x_{g+m+1} x_{m+1} \in$ T, then (20) implies that $x_{g+m} x_{g+m+1} x_{m+1} \in Q$.

Thus Rules A_{1}, A_{2}, B, C and D are fulfilled. Since $Q=S$, the proposition implies that Q fulfils Axioms $Y 0(Q)-Y 4(Q)$ and $Y^{*}(Q)$. By Theorem $1, x_{g} x_{g+1} x_{0} \in Q$. Since $x_{g}=r, x_{g+1}=s$ and $x_{0}=t$, we have a contradiction.

Thus, we get $\left(18_{n}\right)$, which completes the proof.

Remark 3. The idea of Theorem 2 has a certain connection to that of Lemma 3 in [9] (but the proofs of these results are deeply distinct).

Corollary. Let G be a connected graph, let $M \subseteq(V(G))^{3}$, let M be associated with G, and let M fulfil Axioms $Y 0(M)-Y 3(M), Y 5(M)$ and $Y^{*}(M)$ (for arbitrary $u, v, x, y \in V(G))$. Let S denote the step set of G. If $S \subseteq M$, then $S=M$.
3. The step set of a connected graph was characterized by the present author in [6]. That characterization will be improved in Theorem 3. For proving Theorem 3 we will need two more observations and two more lemmas.

Observation 3 (see [7]). Let U be a nonempty set, let $M \subseteq U^{3}$, and let M fulfil Axioms $Y 2(M)$ and $Y 3(M)$. Let $u_{0}, u_{1}, v_{1}, \ldots, v_{h} \in U$, where $h \geqslant 2$, and let (1) hold. Assume that $u_{0} u_{1} v_{h} \in M$. Using the induction on $h-g$, we can easily prove that

$$
v_{g} v_{g+1} u_{1}, u_{0} u_{1} v_{g} \in M
$$

for each $g, 1 \leqslant g \leqslant h-1$.
The following lemma was implicitly contained in the proof of Lemma 3 of [7].

Lemma D. Let U be a nonempty set, let $M \subseteq U^{3}$, and let M fulfil Axioms $Y 2(M)-Y 4(M)$. Let $u_{0}, u_{1}, w_{0}, \ldots, w_{g} \in U$, where $g \geqslant 1$, let $u_{0} u_{1} u_{1} \in M$, and let

$$
w_{0} w_{1} u_{0}, \ldots, w_{g-1} w_{g} u_{0} \in M
$$

Assume that $w_{0}=w_{g}$. Then

$$
\begin{equation*}
w_{0} w_{1} u_{1}, \ldots, w_{g-1} w_{g} u_{1} \in M \tag{21}
\end{equation*}
$$

Proof. Put $w_{g+1}=w_{1}, \ldots, w_{2 g}=w_{g}$. We distinguish two cases.
Case 1. Assume that there exists $f, 0 \leqslant f \leqslant g-1$, such that either (a) $u_{1} u_{0} w_{f+1} \in$ M or (b) $u_{0} u_{1} w_{f} \in M$. First, let (a) hold. Since

$$
w_{f+1} w_{f+2} u_{0}, \ldots, w_{f+g} w_{f+g+1} u_{0} \in M
$$

Observation 2 implies that

$$
w_{f+1} w_{f+2} u_{1}, \ldots, w_{f+g} w_{f+g+1} u_{1} \in M
$$

and thus (21) holds. Now, let (b) hold. Then $u_{0} u_{1} w_{f+g} \in M$. Since

$$
w_{f} w_{f+1} u_{0}, \ldots, w_{f+g-1} w_{f+g} u_{0} \in M
$$

Observation 3 implies that

$$
w_{f} w_{f+1} u_{1}, \ldots, w_{f+g-1} w_{f+g} u_{1} \in M
$$

and thus (21) holds.

Case 2. Assume that $u_{1} u_{0} w_{f+1}, u_{0} u_{1} w_{f} \notin M$ for each $f, 0 \leqslant f \leqslant g-1$. Since $u_{0} u_{1} u_{1} \in M$, Axiom $Y 4(M)$ implies that (21) holds again. Hence the lemma is proved.

Observation 4 (see [7]). Let G be a connected graph, let $M \subseteq(V(G))^{3}$, let M be associated with G, and let M fulfil Axioms $Y 0(M)-Y 4(M)$. Let $u_{0}, v_{1}, \ldots, v_{h} \in$ $V(G)$, where $h \geqslant 2$, and let (1) hold. Combining Observation 1 with Lemma D, we get $v_{1} \neq v_{h}$.

Lemma E (see [7]). Let G be a connected graph, let $M \subseteq(V(G))^{3}$, let M be associated with G, and let M fulfil Axioms $Y 0(M)-Y 5(M)$. Consider distinct $r, t \in V(G)$. Then there exist $m \geqslant 1$ and $r_{0}, r_{1}, \ldots, r_{m} \in V(G)$ such that $r_{0}=r$, $r_{m}=t$ and

$$
r_{0} r_{1} t, \ldots, r_{m-1} r_{m} t \in M .
$$

Outline of the proof. Since $V(G)$ is finite, it is easy to prove the lemma by combining the result of Observation 4 with Axiom $Y 5(M)$.

Remark 4. Let $n \geqslant 2$, let $x_{0}, \ldots, x_{n}, y_{0}, \ldots, y_{n}$ and z be mutually distinct elements, and let G be the graph with

$$
V(G)=\left\{x_{0}, \ldots, x_{n}, y_{0}, \ldots, y_{n}, z\right\}
$$

and with the edge set as follows:

$$
\begin{aligned}
& \left\{\left\{x_{f}, x_{g}\right\} ; 0 \leqslant f \leqslant n, 0 \leqslant g \leqslant n, f \neq g\right\} \\
& \quad \cup\left\{\left\{y_{h}, y_{i}\right\} ; 0 \leqslant h \leqslant n, 0 \leqslant i \leqslant n, h \neq i\right\} \\
& \quad \cup\left\{\left\{x_{j}, z\right\} ; 0 \leqslant j \leqslant n\right\} \cup\left\{\left\{y_{k}, z\right\} ; 0 \leqslant k \leqslant n\right\} .
\end{aligned}
$$

Obviously, G is connected. Put $x_{n+1}=x_{0}, y_{n+1}=y_{0}$. Let $M \subseteq(V(G))^{3}$ be defined as follows: $u v w \in M$ if and only if
either u and v are adjacent in G and $w=v$
or there exist $f, 0 \leqslant f \leqslant n$, and $g, 0 \leqslant g \leqslant n$, such that

$$
\begin{aligned}
& \text { either } x_{f} x_{f+1} y_{g}=u v w \\
& \text { or } y_{f} y_{f+1} x_{g}=u v w .
\end{aligned}
$$

Obviously, M is associated with G. It is not difficult to see that M fulfils Axioms $Y 0(M)-Y 3(M), Y 5(M)$ and $Y^{*}(M)$ (for arbitrary $u, v, x \in V(G)$) but does not fulfil Axiom $Y 4(M)$. We can see that for G and M the result of Lemma E does not hold.

Theorem 3. Let G be a connected graph, let $M \subseteq(V(G))^{3}$, and let M be associated with G. Then the following statements (A) and (B) are equivalent:
(A) M is the step set of G,
(B) M fulfils Axioms $Y 0(M)-Y 5(M)$ and $Y^{*}(M)$ (for arbitrary $u, v, x \in V(G)$).

Proof. Let S denote the step set of G. Put $d=d_{G}$.
By the proposition, $(A) \Rightarrow(B)$. We will prove that $(B) \Rightarrow(A)$. Suppose, to the contrary, that (A) holds but (B) does not hold. It is easy to see that $S(\leqslant 1) \subseteq$ $M(\leqslant 1)$. Thus, by virtue of Theorem 2 , there exists $n \geqslant 2$ such that $S(\leqslant n)-M(\leqslant$ $n) \neq \emptyset$ and $S(\leqslant n-1)=M(\leqslant n-1)$. Therefore, there exist $r, s, t \in V(G)$ such that $d(r, t)=n$, rst $\in S$ but $r s t \notin M$. Since $r \neq t$, Lemma E implies that there exist $g \geqslant 1$ and $x_{0}, \ldots, x_{g} \in V(G)$ such that $x_{0}=r, x_{g}=t$ and

$$
x_{0} x_{1} x_{g}, \ldots, x_{g-1} x_{g} x_{g} \in M .
$$

Obviously, there exist $x_{g+1}, \ldots, x_{g+n} \in V(G)$ such that $x_{g+1}=s, x_{g+n}=x_{0}$ and

$$
x_{g} x_{g+1} x_{0}, \ldots, x_{g+n-1} x_{g+n} x_{0} \in S
$$

Put $Q=M, T=S$ and $h=n$. Since $S(\leqslant n-1)=M(\leqslant n-1)$, we have

$$
\begin{equation*}
T(\leqslant h-1)=Q(\leqslant h-1) \tag{22}
\end{equation*}
$$

Let j be defined as in Theorem 1. Consider an arbitrary $m, 0 \leqslant m \leqslant j-1$. We will show that Rules A_{1}, A_{2}, B, C and D are fulfilled. (Recall that $T=S$.)
$\left(A_{1}\right)$ Let $x_{g+m+1} x_{g+m} x_{m+1} \in T$. Since $d\left(x_{g+m+1}, x_{m+1}\right) \leqslant h$, we have $d\left(x_{g+m}\right.$, $\left.x_{m+1}\right) \leqslant h-1$. If $x_{m+1} x_{m+2} x_{g+m} \in T$, then (22) implies that $x_{m+1} x_{m+2} x_{g+m} \in Q$.
$\left(A_{2}\right)$ Let $m \leqslant j-2$ and let $x_{g+m+1} x_{g+m+2} x_{m+1} \in T$. Since $d\left(x_{g+m+1}, x_{m+1}\right) \leqslant h$, we have $d\left(x_{g+m+2}, x_{m+1}\right) \leqslant h-1$. If $x_{m+1} x_{m} x_{g+m+2} \in T$, then (22) implies that $x_{m+1} x_{m} x_{g+m+2} \in Q$.
(B) Let $x_{g+m+1} x_{g+m} x_{m+1} \in Q-T$. Clearly, $d\left(x_{g+m+1}, x_{m+1}\right) \leqslant h$. If $d\left(x_{g+m+1}, x_{m+1}\right) \leqslant h-1$, then (22) leads to a contradiction. Thus $d\left(x_{g+m+1}\right.$, $\left.x_{m+1}\right)=h$. We get $x_{m+1} x_{m} x_{g+m+1} \in T$.
(C) Clearly, $d\left(x_{m}, x_{g+m+1}\right) \leqslant h-1$. If $x_{m} x_{m+1} x_{g+m+1} \in Q$, then (22) implies that $x_{m} x_{m+1} x_{g+m+1} \in T$.
(D) Let $x_{m} x_{m+1} x_{g+m+1} \in T$. We get $d\left(x_{m+1}, x_{g+m+1}\right) \leqslant h-2$ and therefore, $d\left(x_{m+1}, x_{g+m}\right) \leqslant h-1$. If $x_{g+m} x_{g+m+1} x_{m+1} \in T$, then (22) implies that $x_{g+m} x_{g+m+1} x_{m+1} \in Q$.

Thus Rules A_{1}, A_{2}, B, C and D are fulfilled. By Theorem $1, x_{g} x_{g+1} x_{0} \in Q$. Since $x_{g}=r, x_{g+1}=s$ and $x_{0}=t$, we have a contradiction.

Thus $(B) \Rightarrow(A)$, which completes the proof.

References

[1] H.-J. Bandelt, M. van de Vel and E. Verheul: Modular interval spaces. Math. Nachr. 163 (1993), 177-201.
[2] G. Chartrand and L. Lesniak: Graphs \& Digraphs. Third edition. Chapman \& Hall, London, 1996.
[3] H. M. Mulder: The Interval Function of a Graph. Mathematisch Centrum, Amsterdam, 1980.
[4] L. Nebeský: A characterization of the set of all shortest paths in a connected graph. Math. Bohem. 119 (1994), 15-20.
[5] L. Nebeský: A characterization of the interval function of a connected graph. Czechoslovak Math. J. 44 (119) (1994), 173-178.
[6] L. Nebeský: Geodesics and steps in a connected graph. Czechoslovak Math. J. 47 (122) (1997), 149-161.
[7] L. Nebeský: An axiomatic approach to metric properties of connected graphs. Czechoslovak Math. J. 50(125) (2000), 3-14.
[8] L. Nebesky: A new proof of a characterization of the set of all geodesics in a connected graph. Czechoslovak Math. J. 48(123) (1998), 809-813.

Author's address: Filozofická fakulta Univerzity Karlovy, nám. J. Palacha 2, 11638 Praha 1, Czech Republic.

[^0]: *Research supported by the Grant Agency of the Czech Republic, grant No. 405/95/1554.

