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0. By a graph we mean here a finite undirected graph without loops and multiple
edges (i.e. a graph in the sense of [2], for example). Studying graphs we will inves-
tigate sets of ordered triples of vertices. For the sake of brevity, the ordered triple
(u,v,z) of any objects u,v and x will be denoted by uvz.

Let G be a connected graph, and let dg denote its distance function. Obviously,
the vertex set V(G) of G together with d¢ create a metric space. Following [6], by
a step in G we mean an ordered triple uvx € (V(G))? such that

dg(u,v) =1 and dg(v,z) =dg(u,x) — 1.

The set of all steps in G will be referred to as the step set of G. The step set of a
connected graph is the central notion of the present paper.
Let H be a graph, and let M C (V(H))3. Following [7], we say that M is associated

with H if ) ) ) ) )
u and v are adjacent in H if and only if there exists

a vertex x of H such that either wvx € M or vux € M

for all distinct vertices v and v of H.

Proposition. Let G be a connected graph, and let M denote the step set of G.
Then M is associated with G and the following Axioms YO(M)-Y5(M) and Y*(M)
hold (for arbitrary u,v,z,y € V(G)):

YO(M) uwvr € M = vuu € M,
Y1(M) {wvz,vuy} C M =z #y,
Y2(M) {uve, zyv} C M = ayu € M,
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Y3(M) {wvx,zyv} C M = wvy € M,

Y4(M) {wvz, zyy} C M = {zyu, yzv,vvy} N M # 0,
Y5(M) u#zr=3zecV(G) (uzz € M),

Y*(M) {wvz,vuy, zyy} C M = axyu € M.

Proof is easy and can be found in [6] (see Part One of the proof of Theorem 1
there).

Let G be a connected graph, let M C (V(G))3, and let M be associated with
G. In [6] the present author proved that M is the step of G if and only if M fulfils
Axioms YO(M) — Y5(M), Y*(M) and the following Axiom Y6(M) (for arbitrary
u,v,z,y € V(G)):

Y6(M) {wvz,uyv} C M =y =v.

This result will be improved in Theorem 3. As we will see, Axiom Y6(M) is not
necessary for characterizing the step set of a connected graph. The proof of Theorem
3 will be based on new arguments. The most important of them will be presented in
Theorem 1.

Remark 1. Let G be a connected graph. Then dg is a metrics on V(G). The
step set of G is an important notion for studying metric properties of G (with respect
to dg). There are two other notions important for this study: the set of all shortest
paths (geodesics) in G and the interval function of G in the sense of Mulder [3].
(Ct. the notion of a finite graphic interval space in the sense of Bandelt, van de Vel
and Verheul [1]). The set of all shortest paths in G was characterized in [4] and the
interval function of G’ was characterized in [5].)

1. In the rest of the paper, the letters f, g, ..., and n will be reserved for denoting
integers.

In this section, we will assume that a nonempty set U is given. The results of the
following two observations and of Lemmas A and B can be found in [6] or [7]. We
will need them for proving Theorem 1.

Observation 1 (see [6]). Let M C U?, and let M fulfil Axioms YO(M) and
Y1(M). It is clear that

if rst € M, then s#r #t.

Observation 2 (see [6]). Let M C U3, and let M fulfil Axioms Y2(M) and
Y3(M). Let ug,u1,v1,v2,...,v, € U, where h > 2, and let

(1) V1V2UQ, - - -, Vh_1VpUg € M.
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Assume that ujugv; € M. Using induction, we can easily prove that
VgVg41U1, UrUoVg+1 € M foreach g, 1< g < h—1.

Lemma A (see [7]). Let M C U®, and let M fulfil Axioms YO(M), Y2(M) and
Y3(M). Let wy,...,w, € U, where h > 1, and let

wrws_1wg € M for each f, 1 < f < h.

Then
wg_1wgwp € M for each g, 1 < g < h.

Outline of the proof. We proceed by induction on h. The case when h = 1
follows from Axiom Y O0(M). Let h > 2. By virtue of the induction hypothesis,

WQWLWhH 1y« Wh_oWh_1WhH_1 € M.

Since wpwp—1we € M, Observation 2 and Axiom Y0(M) imply the desired result.
O

Lemma B (see [6]). Let M C U3, and let M fulfil Axioms Y2(M) and Y3(M).

Let ug,...,ux—1,v0,...,vx € U, where k > 2, let
(20) VOULUQ, -+« Vi1 VU € M,
and let
UTUQVT, - - -, Ufp—1UK_2Vk_1 € M.
Then
(2:) ViU 41U, - -+, Vp—1VkU; € M and
UiUi—1Vit1s - - -, UiUi—1V € M

for each i, 1 <1< k—1.

Outline of the proof. We will prove that (2;) holds for each i, 0 < i < k — 1.
We proceed by induction on i. The case when ¢ = 0 is obvious. Let 1 <i < k — 1.
Clearly, u;u;—1v; € M. If we combine the induction hypothesis with Observation 2,
we get (2;). O
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For proving Theorem 1, we will need one more lemma. This lemma is a modifica-
tion of Lemma B:

Lemma B’. Let M C U3, and let M fulfil Axioms YO0(M), Y2(M) and Y3(M).

Let wo, w1, ..., Wntk—1 € U, where k > 2 and m > 1, let
(30) WOWL Wiy s - -+ Wyny—1 WinWyn, € M,
and let
Wint1WmW1s - -« U k—1 W+ k—2Wk—1 € M.
Then
(34) WiWip 1 Wit -+ Wingi—1 Wt iWmyi € M and
Win4iWimnti—1Wis « -+ s Winti Win4i—1Wm+i—1 € M

for eachi, 1 <1< k—1.

Proof. The case when m = 1 is obvious. Let m > 2. We will prove that (3;)
holds for each i, 0 < i < k — 1. We proceed by induction on 4. If i = 0, then (3;)
holds trivially. Let 1 < i < k — 1. By virtue of the induction hypothesis,

WiWit 1 Winti—1s - -+ » Winti—2Wmti—1Wmti—1 € M.
Clearly, Wy, +1Wm+i—1w; € M. Observation 2 implies that

WiWi 41 Wintis -+ Wingi—2Wmti—1Wmy; € M and

Win+iWimtim1Wit1s -« , WintiWmti—1Wm+i—1 € M.

Recall that wy, +iwm+i—1w; € M. As follows from Axiom YO(M), Wy ti—1Wrm4iWimti
€ M. Thus, we get (3;). O

We now state the main result of the present paper. Its wording is rather long:

Theorem 1. Let z,...,741n, € U, where min(g,h) > 1, and let Q,T C U3.
Assume that

(4) TOT1TL, -+ s Tgth—1Tg+nTgrn € QN T,
(5) TOL1Lg, ..., Lg—1LqTq € Q,
(6) TgTg4120, -+ Tgth—1Tg+nTo € T
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and if xgypn # xo, then xpxp_12g4n ¢ T. Define j = max(g,h) if £g4n = xo and
Jj=hifxgn # xo. If x4y = 0, then put

LTgthtl = L1y, Lgthtj = Tj.

Next, assume that @ fulfils Axioms Y0(Q) —Y4(Q) and Y*(Q) and T fulfils Axioms
YO(T) —Y3(T) and Y*(T) (for arbitrary u,v,z,y € U). Finally, assume that the
following Rules A1, Ay, B,C and D hold for each m,0 < m < j — 1:

Ay Tgtmt1TgtrmTmt1 € QNT & T 1Tmi2Tg4m €T =
Tm1Zm42Lg4m € Q,

Ay m<J—2& Topmt1Zgem+2Tmt1 € QNT & T 1TmTgpmy2 €T =
Tm41TmTgm+2 € @,

B Tgtmt1TgtmTmtl € Q — T = Ty 1TmTgymt1 €T,

c Tgtm+1ZgtmTmi1 & Q@ & TmTmi1ZTgymi1 € Q =
T Em41Lg4m41 € T

D TmTm41Tg+m € Q & TrmTmi1Zg4m+t1 €T & TgpmTgrm+1Tms1 €T =

TgtmTgtm+1Tm+1 € Q.

Then z4x441%0 € Q.

Proof. Suppose, to the contrary, that
(7) TyTgr170 & Q.
We will first prove that
(8) either g4 ;xg1—12; ¢ Q or zjr; 12945 ¢ T.

Let 44 = xo and g > h. Since 244, = xo, combining (4) and (7) we get h > 2.
Further, combining the fact that x4, = o with (6) and Lemma A, we get

Tt hTgth—1Lg, Tgth—1Lgth—2Lg,- -+, Lg412gTg € T.
Recall that h > 2. Using Lemma A again, we get
TgZg1Tgth—1,-- s Lgth—2Lg+h—1Tg+h—1 € T

Thus, we see that

Tyt hTgth—1Tg, TgTgy1Tgrh—1 € T.
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First, assume that ¢ = h. We see that xg;xg4;-17;, ;24109451 € T.
By (7), zjzjizgr; ¢ Q. If vgijzgrj12; € Q, then Rule A; implies that
TjTjt1Tg+j—1 € Q, and thus, by Axiom Y2(Q), zjz;4124+; € Q; a contradic-
tion. Hence z44;x44;-12; ¢ Q. Now, let g > h. By virtue of (5), xog—122424 € Q.
As follows from Axiom A1(Q), xog2g—124 ¢ Q. Hence zgqjxg4;-12; ¢ Q again.

Let xg4n # xo or h > g. Then j = h. If z4qp # zo, we get z;xj_1244; ¢ T.
Assume that x4+, = 9. Then h > g. As follows from (6), z,—12p20 € T. By Axiom
Y1(T), xhxn—120 ¢ T. Hence x;x;_1244; ¢ T again.

Thus (8) is proved.

By virtue of (8), there exists k, 1 < k < j, such that

(9) either x4 ,Tgrr—12k ¢ Q OF TpTp—1Tgyk T
and
(10) Lg4+iTgtri—1Ti € Q and x;x,_1044; € T foreach i, 1 <1<k — 1.

Let k > 2. Combining (5) and (10) with Lemma B’, we get
(11) ZTiTip1%g4+i € Q for each i, 1 <i <k — 1.

First, assume that gy, = 9. Then h > 2. Combining (6) and (10) with Lemma
B’, we get

(12) Tg+iTg+it+1Ti, TiTi—1Tg+i+1 € T for each 1, 1<1 < k—1.
Now, assume that 2445 # 0. Since j = h and k > 2, we see that A > 2. Combining

(6) and (10) with Lemma B, we get (12) again.
By virtue of (7), there exists f,0 < f < k — 1, such that

(13) Tt fTgrft12f & Q
and
(14) if f <k—2, then x4 109422541 € Q.

If f > 1, then it follows from (11) and (12) that
(15) Cprpteyf € Q and zgy gy paxy €T
If f =0, then by (5) and (6) we get (15) again.
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We distinguish two cases.

Case 1. Let g4 fr12g5xri1 € Q. If gy 1294 sx 1 ¢ T, then Rule B implies
that

(16) Tr1Zpgyfi1 €T

Let gt 12945t rr1 € T. By (15), xgysxgtr 125 € T. As follows from (4) and
Axiom YO(T), xf41z5xp € T. Thus, Axiom Y*(T) gives (16) again.

First, let f = k—1. Since g4 jy12g+5Ts11 € Q, (9) implies that zf112 gy 41 ¢
T, which contradicts (16).

Now, let f < k—2. By (14), g4 f+1Tg4f+22f+1 € Q. As follows from (12),
Tgtf+1Tg+f4+2Lf+1, Tf41TfTgrf+2 € 1. Rule Ap implies that 12524712 € Q.
By Axiom Y2(Q), zf+125xg45+1 € Q. By virtue of (15), xyx 112445 € Q. Accord-

ing to (4), TgtfTgt f+1Zg+5+1 € Q. Axiom Y*(Q) implies that zgq frgqrr125 € Q,
which contradicts (13).

Case 2. Let g4 f112g4 72541 ¢ Q. Recall that (by (15)) xrzsi1244f € Q and

by (13), Tt fTgtf+1Tf ¢ Q Since (by (4)) Tt fLgtf+1Tg+f+1 € Q, Axiom Y4(Q)
implies that

TfTf1Tgyfr1 € Q.

Since Tyt fy12g45Tr11 ¢ Q, Rule C implies that

(17) TpTpi1Tgype1 €T

Since (by (15)) g4 g+ s+12s € T, Axiom Y'3(T) implies that zg4 frgtpy12p41 € T
Recall that z;x 11244+ € Q. Combining these facts with (17) and Rule D, we get

TgtfTgyft10f41 € Q.

Since 1124+ € Q, Axiom Y2(Q) implies that x4t ;g4 12y € Q, which con-
tradicts (13).
We conclude that 4244120 € @, which completes the proof. O

Remark 2. The idea of Theorem 1 is partially inspired by the lemma in [8].
In the next two sections of this paper Theorem 1 will be applied. We will utilize

it in the proofs of Theorems 2 and 3.

2. In this section we will prove a theorem concerning the step set of a connected
graph. For proving this theorem we will also need the following lemma. Its idea was
implicitly contained in the proof of Lemma 3 of [6].
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Lemma C. Let U be a finite nonempty set, let M C U3, and let M fulfil Axioms
YO(M)—Y3(M). Let n > 1. Consider an infinite sequence

Uo, U1, U2, - - -
of elements in U such that upun,+i1ug € M. Assume that

if Upyg = up, then Upigyr1 = Unig and

if Uptg # wo, then UpiygUnygrito € M

for each ¢ > 1. Then there exists h > 1 such that either u,+, = wug or
UpUp—1Unyh & M.

Proof. Suppose, to the contrary, that w,+s # uo and uyuy_1unsy € M for
each f > 1. Therefore wupqftngfriuo € M for each f > 0. Put j = |U| and
m = (j —1)n+ 1. By Lemma B,

UiUi—1Uppgy « -y UilUi—1Upym € M for each i, 1 <i<m—1.
Thus, according to Observation 1,
Ui F Uppiy - -+ Untm fOr each ¢, 1 <i<m— 1.
This implies that the elements
ULy Up+1,--- 7’U,jn+1

are mutually distinct. We get |U| > j, which is a contradiction. Thus the lemma is
proved. O

Let G be a connected graph, and let M € V(G). For each n > 0, we define
M(G,< n) ={uwz € M;u,v,z € V(G) and dg(u,z) < n}.
Instead of M (G, < n) we will shortly write M (< n).

Theorem 2. Let G be a connected graph, let M C (V(G))3, let M be associated
with G, and let M fulfil Axioms YO(M)—-Y3(M), Y5(M) and Y*(M) (for arbitrary
u,v,x,y € V(G)). Let S denote the step set of G. Then
(18,) S(En)CM(<n)=5(<n)=M(<n)
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for every n > 0.

Proof. Put dg = d. We proceed by induction on n. Since M (< 0) =0, (18p)
holds. Let n > 1. Assume that S(< n) C M (< n). Then S(<n—1) C M(<n—-1).
By the induction hypothesis, S(< n —1) = M (< n —1). Assume that (18,,) does
not hold. Then there exist r,s,t € V(G) such that

rst € M(<n)—M(<n—1)and rst ¢ S.

Since d(r,t) = n, we see that there exist xg,z1,...,z, € V(G) such that zy = t,
x, =7 and

TOT1Tp, ., Tpn_1TnTy € S.

Combining Axiom Y5(M) with Lemma C, we see that there exist h > 1 and
Tntly- -« Tnth € V(G) such that z, 11 = s,

TnTpi120,- - Tnth—1TnpnTo € M, and

if ©pin # xo, then zpxp_1Tn4n € M.
Put @ =S, T =M and g = n. Hence
(19) Q(<9) CT(< 9).
Since S(<n—1) = M(< n—1), we have
(20) Qlg-1)=T(<g-1)

Let 7 be defined as in Theorem 1. Consider an arbitrary m, 0 < m < j — 1. We
will show that Rules Ay, Ay, B, C and D are fulfilled. (Recall that Q = S.)

(A1) Let Zgymy1Zg4m@Tmy1 € Q. Then d(Tgsm, Tmt1) < g — 1. I Tyg1 o
Zg+m € T, then (20) implies that @y, 11 Zm2Zg4m € Q.

(A2) Let m < j — 2, and let 244 mi1Zg+mt28mt1 € Q. Then d(zmi1, Tgrmy2) <
g— 1. If 212 Tgrme2 € T, then (20) implies that 41 ZmTgtmt2 € Q.

(B) Obviously, d(g+m+1, Tm+1) < g- By (19), Zgtm+1Zg+mTm+1 € Q@ — T

(C) Let 2grmt1Zg4m@Tms1 € Q. Then d(zgimi1,Tmt1) < d(Tgrm, Tmt1) <
g — 1. Hence d(Tm,Zgtm+1) < 9. If Tm@mi12Zg4m+1 € Q, then (19) implies that
T Tm+1Tg+m+1 € T

(D) Let 2 Zm+41%g4m € Q. Then d(zgtm, Tm+1) < g—1. U ZgymTgtm41Tmy1 €
T, then (20) implies that g1 mTgtm+1Tm+1 € Q.

Thus Rules A;, A, B, C and D are fulfilled. Since Q = S, the proposition implies
that @ fulfils Axioms Y0(Q)-Y4(Q) and Y*(Q). By Theorem 1, z4z44120 € Q.
Since x4 =7, T441 = s and xg = t, we have a contradiction.

Thus, we get (18,,), which completes the proof. O
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Remark 3. The idea of Theorem 2 has a certain connection to that of Lemma 3
in [9] (but the proofs of these results are deeply distinct).

Corollary. Let G be a connected graph, let M C (V(G))3, let M be associated
with G, and let M fulfil Axioms YO(M)-Y3(M), Y5(M) and Y*(M) (for arbitrary
u,v,x,y € V(G)). Let S denote the step set of G. If S C M, then S = M.

3. The step set of a connected graph was characterized by the present author
in [6]. That characterization will be improved in Theorem 3. For proving Theorem
3 we will need two more observations and two more lemmas.

Observation 3 (see [7]). Let U be a nonempty set, let M C U?, and let M fulfil
Axioms Y2(M) and Y3(M). Let ug,uq,v1,...,v, € U, where h > 2, and let (1)
hold. Assume that uguivy, € M. Using the induction on h — g, we can easily prove
that

VgUg+1U1, UoU1Vg € M
for each g, 1 < g < h—1.

The following lemma was implicitly contained in the proof of Lemma 3 of [7].

Lemma D. Let U be a nonempty set, let M C U3, and let M fulfil Axioms
Y2(M) —Y4(M). Let ug,u1,wo, ..., wg € U, where g > 1, let upuiuy € M, and let

WoW1LUQ, - - - , Wg—1WglUg € M.
Assume that wo = wy. Then

(21) WoW1UL,y - - -, Wg—1WqUL € M.

Proof. Put wgyi =wi,...,wse = wy. We distinguish two cases.

Case 1. Assume that there exists f, 0 < f < g—1, such that either (a) uvyuowsi1 €
M or (b) wouiwy € M. First, let (a) hold. Since

Wi 1Wi42U0, - - Wit gWitgt1tio € M,
Observation 2 implies that

W WiaULs - - Wit gWepgr1ty € M,
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and thus (21) holds. Now, let (b) hold. Then upuiwys44 € M. Since
WFWF41UQ, - - - s Whpg—1WfgUo € M,
Observation 3 implies that
WEWFL1UL, - o Whgpg_1WrpgUs € M,
and thus (21) holds.

Case 2. Assume that uiuowysy1, uouiwy ¢ M for each f, 0 < f < g — 1. Since
wouiuy € M, Axiom Y4(M) implies that (21) holds again. Hence the lemma is
proved. O

Observation 4 (see [7]). Let G be a connected graph, let M C (V(G))3, let M
be associated with G, and let M fulfil Axioms YO(M)-Y4(M). Let ug,vy,...,v €
V(G), where h > 2, and let (1) hold. Combining Observation 1 with Lemma D, we
get vy #£ vp.

Lemma E (see [7]). Let G be a connected graph, let M C (V(G))3, let M be
associated with G, and let M fulfil Axioms YO0(M) — Y5(M). Consider distinct
r,t € V(G). Then there exist m > 1 and ro,71,...,mm € V(G) such that ro = r,
rm =t and

ror1it, ..., Tm_1Tmt € M.

Outline of the proof. Since V(G) is finite, it is easy to prove the lemma by
combining the result of Observation 4 with Axiom Y'5(M). O

Remark 4. Let n > 2, let xg,...,Zn, Yo,---,Yn and z be mutually distinct
elements, and let G be the graph with

V(G) :{fﬂo,...,l’n, yO,“-aynaZ}

and with the edge set as follows:

g<n, f#g}

<n, 0<i<n, h#1}
j<npU{{yr, 2} 0 <k <n}.

Hzp,zg}; 0< f<n, 0
Ul{yn,vi}; 0 <
<

U{{wjaz}a

<
h

Obviously, G is connected. Put z, 41 = %0, Ynt1 = yo. Let M C (V(G))? be defined
as follows: wvw € M if and only if
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either v and v are adjacent in G and w = v
or there exist f, 0 < f < n, and g, 0 < g < n, such that

either x¢x 1y, = vow

Or YrYf41Tg = UVW.

Obviously, M is associated with G. It is not difficult to see that M fulfils Axioms
YO(M)-Y3(M), Y5(M) and Y*(M) (for arbitrary u,v,z € V(G)) but does not fulfil
Axiom Y4(M). We can see that for G and M the result of Lemma E does not hold.

Theorem 3. Let G be a connected graph, let M C (V(G))?, and let M be
associated with G. Then the following statements (A) and (B) are equivalent:

(A) M is the step set of G,

(B) M fulfils Axioms YO(M)-Y5(M) and Y*(M) (for arbitrary u,v,z € V(G)).

Proof. Let S denote the step set of G. Put d = dg.

By the proposition, (A) = (B). We will prove that (B) = (A). Suppose, to the
contrary, that (A4) holds but (B) does not hold. It is easy to see that S(< 1) C
M (< 1). Thus, by virtue of Theorem 2, there exists n > 2 such that S(< n) — M (<
n) # 0 and S(< n—1) = M(< n—1). Therefore, there exist r, s,t € V(G) such that
d(r,t) = n, rst € S but rst ¢ M. Since r # t, Lemma E implies that there exist
g >1and zg,...,x4 € V(G) such that 29 =7, z, =t and

TOT1Tg, .-, Tg—1TqTg € M.
Obviously, there exist £g41,...,Tg4n € V(G) such that z441 = s, T44n = zo and
TgTg4120, -+, Lgtn—1Lg4nTo € S.

Put Q =M, T =S and h = n. Since S(<n—1) = M(<n—1), we have
(22) T(Kh-1)=Q(<h—-1).

Let j be defined as in Theorem 1. Consider an arbitrary m, 0 < m < j — 1. We
will show that Rules A1, Ao, B, C' and D are fulfilled. (Recall that T'=S.)

(A1) Let 2grmi1Zg4m@Tms1 € T. Since d(xgym+1, Tm+1) < h, we have d(Tg4m,
Tm41) K h—1. If @1 Ty 2Zg4m € T, then (22) implies that T 1Zm422g4m € Q.

(A2) Let m < j—2 and let Zg4mt1Zg+m+2Tm+1 € T. Since d(Tgsm+1, Tm+1) < b,
we have d(Zgtmt2, Tmy1) < h— 1. If 2pp128mTgpme2 € T, then (22) implies that

Tm+1TmTgm+2 € Q.
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(B) Let zgim+1Zg+mTmi1 € Q — T. Clearly, d(Tgtmt1,Tmt1) < h. If
d(Tg4m+1, Tm+1) < h — 1, then (22) leads to a contradiction. Thus d(zg4m+1,
Tm+41) = h. We get Tp1ZmTgtmt1 € T

(C) Clearly, d(zm, Tg4m+1) < h— 1. If 2 Tmi1Zg4m+1 € Q, then (22) implies
that TmTmi1Tgyme1 €T

(D) Let ZmZm+41Zg4m+1 € T. We get d(Tm+1, Tgrm+1) < h — 2 and there-
fore, d(zm+1,%g4m) < h— 1. If ZgymTgrmt1Tmy1 € T, then (22) implies that
TgrmTgrm+1Tmy1 € Q.

Thus Rules A1, A2, B, C and D are fulfilled. By Theorem 1, 424120 € . Since
Ty =T, Tgr1 = s and xo = t, we have a contradiction.

Thus (B) = (A), which completes the proof. O
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