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Abstract. In this paper, sufficient conditions have been obtained for oscillation of solutions
of a class of nth order linear neutral delay-differential equations. Some of these results have
been used to study oscillatory behaviour of solutions of a class of boundary value problems
for neutral hyperbolic partial differential equations.
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1. During the last few years many authors have obtained sufficient conditions for
oscillation of solutions of neutral differential equations of higher orders (see [1, 2,

6, 8]). The conditions assumed differ from authors to authors due to the different
techniques they use and different type of equations they consider. It is interesting to

note that the conditions assumed by different authors for a similar type of equations
are often not comparable. In a recent paper [6]. P.K. Mohanty and the author have

considered oscillation of solutions of a class of linear homogeneous neutral differential
equations of order n. In the present work we consider equations of the form

(1) (y(t)− py(t− τ))(n) +
m∑

i=1

qi(t)y(t− τi(t)) = 0,

where 0 � p < 1, τ > 0 and τi, qi ∈ C([0,∞),�), 1 � i � m, such that τi(t) � 0.
These equations and the conditions assumed here are different from those in earlier
works.

By a solution of (1) we mean a real-valued continuous function y on [Ty,∞)
for some Ty > 0 such that (y(t) − py(t − τ)) is n-times continuously differentiable
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and (1) is satisfied for t ∈ [Ty,∞). Such a solution is said to be oscillatory if it has
arbitrarily large zeros; otherwise, it is called nonoscillatory. Eq. (1) is oscillatory if
all its solutions are oscillatory.
In Section 2 sufficient conditions are obtained for oscillation of solutions of (1).

Some of the results of this section are used to predict oscillation of some Neumann
and Dirichlet boundary value problems for neutral hyperbolic partial differential

equations in Section 3.
We need the following lemmas for our work:

Lemma 1.1. [7] If

(H1) 0 � qi(t) � q0, 0 � τi(t) � τ0, t ∈ [0,∞), 1 � i � m,

where q0 and τ0 are positive constants, and

(H2) lim
t→∞

inf inf
λ>0

[
λ−1

m∑

i=1

qi(t) exp(λτi(t))

]
> 1,

then (2) is oscillatory, where

(2) x′(t) +
m∑

i=1

qi(t)x(t − τi(t)) = 0.

Lemma 1.2. [7] If

(H3) τi(t) = τi, t ∈ [0,∞), is a positive constant and qi(t) � 0, 1 � i � m,

and (H2) is satisfied, then (2) is oscillatory.

Lemma 1.3. ([3], p. 67). If qi, τi ∈ C([0,∞), [0,∞)), 1 � i � m, then the

differential inequality

(3) u′(t) +
m∑

i=1

qi(t)u(t− τi(t)) � 0

has an eventually positive solution if and only if (2) has an eventually positive solu-

tion.

Lemma 1.4. ([4], [5], p. 193). Let u ∈ Cn([0,∞),�) be of constant sign, let
u(n)(t) be of constant sign and not identically equal to zero in any interval [t0,∞),
t0 � 0, and u(t)u(n)(t) � 0. Then
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(i) there exists a t1 > 0 such that u(k)(t), k = 1, . . . , n − 1, is of constant sign on
[t1,∞),

(ii) there exists an integer r, 0 � r � n− 1, which is even if n is odd and is odd if
n is even, such that

u(t)u(k)(t) > 0, k = 0, 1, . . . , r, t � t1,

(−1)n+k−1u(t)u(k)(t) > 0, k = r + 1, . . . , n− 1, t � t1,

and

(iii)

|u(t)| � (t− t1)n−1

(n− 1) . . . (n− r)
|u(n−1)(2n−r−1t)|, t � t1.

Lemma 1.5. Let n � 3 be an odd integer, α ∈ C([0,∞), [0,∞)), 0 < α(t) � α0,

and u ∈ Cn([0,∞),�) such that (−1)iu(i)(t) > 0, 0 � i � n − 1, and u(n)(t) � 0.
Then

u(t− α(t)) � (α(t))
n−1

(n− 1)! u(n−1)(t)

for t � α0.

�����. By Taylor’s expansion we have

u(t− α(t)) = u(t) + (−α(t))u′(t) +
(−α(t))2

2!
u′′(t) + . . .

+
(−α(t))n−1

(n− 1)! u(n−1)(t) +
(−α(t))n

n!
u(n)(t− θα(t)),

where 0 � θ � 1. Thus

u(t− α(t)) � (α(t))
n−1

(n− 1)! u(n−1)(t)

for t � α0, since n is an odd integer. Hence the lemma is proved. �

2. In this section we obtain sufficient conditions for oscillation of (1).

Remark. If f : (0,∞) → (0,∞) is given by f(λ) = λ−1eλσ, where σ > 0 is a

constant, then lim
λ→∞

f(λ) = ∞, lim
λ→0+

f(λ) = ∞ and f ′(λ) = λ−2(λσ − 1)eλσ. Thus

f ′(λ) > 0 for λ > σ−1 and f ′(λ) < 0 for λ < σ−1. Hence the least value is obtained
at λ = σ−1. Consequently, we have

inf
λ>0

f(λ) = f(σ−1) = σe.
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Theorem 2.1. Let n � 1 be an odd integer and let (H1) hold. If

(H4) lim
t→∞

inf inf
λ>0

[
λ−1

m∑

i=1

qi(t)(τi(t))n−1 exp(λn−1τi(t))

]
> nn−1,

then (1) is oscillatory.

�����. Let y(t) be a nonoscillatory solution of (1) on [Ty,∞), Ty > 0. Without

any loss of generality, we may assume that y(t) > 0 for t � t0 � Ty. We set, for
t � t1 � t0 +max{τ, τ0},

(4) z(t) = y(t)− py(t− τ).

Thus

z(t) � y(t), z(t) > −py(t− τ) and

(5)

z(n)(t) +
m∑

i=1

qi(t)y(t− τi(t)) = 0

for t � t1. It follows from (H4) that

nn−1 < lim
t→∞

inf inf
λ>0

[
λ−1τn−1

0 exp(λn−1τ0)
m∑

i=1

qi(t)

]

< n−1τn−1
0 τ0e lim

t→∞
inf

( m∑

i=1

qi(t)

)
,

that is,

lim
t→∞

inf
m∑

i=1

qi(t) > e−1τ−n
0 nn > 0.

Thus ∫ ∞

0

( m∑

i=1

qi(t)

)
dt =∞.

Hence there exists a k ∈ {1, . . . , m} such that

(6)
∫ ∞

0
qk(t) dt =∞.

Clearly, (5) yields

(7) z(n)(t) � −qk(t)y(t− τk(t)) � 0
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for t � t1. Since qk(t) �≡ 0, then (7) implies that z(i)(t), 0 � i � n− 1, is of constant
sign for t � t2 � t1.

Suppose that z(t) < 0 for t � t2. We may note that this case does not arise if

p = 0. Since n is odd, then z′(t) � 0 if n = 1 and z′(t) < 0 if n � 3 for t � t2. If
lim

t→∞
z(t) = µ0, then −∞ � µ0 < 0. Thus z(t) < −µ, where 0 < µ < ∞, for t � t3 �

t2. From (5) we obtain −py(t− τ) < −µ, t � t3, that is, µ < py(t− τ) < y(t − τ),

t � t3, that is, µ < y(t), t � t3. Hence (7) yields, for t � t3 + τ0, that

z(n)(t) � −µqk(t).

Then lim
t→∞

z(t) = −∞ in view of (6). This in turn implies that lim
t→∞

y(t) = ∞ by
(5). Hence there exists a sequence 〈tj〉 such that lim

j→∞
tj = ∞, lim

j→∞
y(tj) = ∞ and

y(tj) = max{y(t) : t3 + τ0 � t � ti}. We may choose j large enough such that
tj − τ > t3 + τ0. Thus

z(tj) = y(tj)− py(tj − τ) � (1− p)y(tj)

and hence lim
j→∞

z(tj) = ∞, a contradiction. Then z(t) > 0 for t � t2. This implies

that z(n−1)(t) > 0, t � t2. If n = 1, then (5) yields that

z′(t) +
m∑

i=1

qi(t)z(t− τi(t)) � 0

for t � t2 + τ0, that is, z(t) is an eventually positive solution of (2), a contradiction
in view of (H4) and Lemma 1.1. If n � 3, then Lemma 1.4 implies that there exists
an even integer r, 0 � r � n− 1, such that

z(�)(t) > 0, 0 � � � r,

(−1)n+�−1z(�)(t) > 0, r + 1 � � � n− 1,

for t � t4 > t2. If r = 0, then z′(t) < 0 for t � t4. If r � 2, then z(t) > 0, z′(t) > 0

and z′′(t) > 0 for t � t4 and hence lim
t→∞

z(t) = ∞. Consequently, lim
t→∞

y(t) = ∞
and (7) yields that z(n)(t) < −Lqk(t) for large t, where L > 0 is a constant. Thus
lim

t→∞
z(t) = −∞, a contradiction. Then r = 0, that is, (−1)iz(i)(t) > 0, 0 � i � n−1,

for t � t4. From (5) we obtain, for t � t4 + τ0,

(8) z(n)(t) +
m∑

i=1

qi(t)z(t− τi(t)) � 0.
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By Lemma 1.5,

z(t− τi(t)) = z
(
t− τi(t)

n
− n− 1

n
τi(t)

)

� 1
(n− 1)!

(n− 1
n

)n−1
(τi(t))n−1z(n−1)

(
t− τi(t)

n

)

for t � t4 + τ0. Hence (8) yields

z(n)(t) +
1

(n− 1)!
(n− 1

n

)n−1 m∑

i=1

qi(t)(τi(t))n−1z(n−1)
(
t− τi(t)

n

)
� 0,

that is, z(n−1)(t) is an eventually positive solution of

u′(t) +
1

(n− 1)!
(n− 1

n

)n−1 m∑

i=1

qi(t)(τi(t))n−1u
(
t− τi(t)

n

)
� 0,

a contradiction due to (H4) and Lemmas 1.1 and 1.3. Hence the theorem is proved.

�

Remark. If n = 1 and p = 0, then (1) reduces to (2) and (H4) reduces to (H2).
Thus Theorem 2.1 may be viewed as a generalization of Lemma 1.1.

Remark. If n � 3 is an odd integer, then we may prove Theorem 2.1 with an
assumption weaker than (H4).

Theorem 2.2. Let n � 3 be an odd integer and let (H1) hold. If

lim
t→∞

inf inf
λ>0

[
λ−1

m∑

i=1

qi(t)(τi(t))n−1 exp(λn−1τi(t))

]
(H5)

> (n− 1)!
( n

n− 1
)n−1

,

then (1) is oscillatory.

The proof is similar to that of Theorem 2.1 and hence is omitted.

Remark. Theorems 2.1 and 2.2 remain true for p = 1. Indeed, p = 1 implies
that z(t) = y(t) − y(t − τ) (see (4)). If z(t) < 0 for t � t2, then y(t) < y(t − τ),

t � t2, and hence y(t) is bounded. On the other hand, proceeding as in the proof of
Theorem 2.1 one obtains in this case lim

t→∞
z(t) = −∞, which implies that lim

t→∞
y(t) =

∞, a contradiction. The rest of the proof is the same as that of Theorem 2.1.
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Remark. We may notice that the assumptions (H4) and (H5) are independent
of p.

Theorem 2.3. Suppose that 0 < p < 1, n � 3, is an odd integer and (H1) holds.
If

(H6) lim
t→∞

inf inf
λ>0

[
λ−1

m∑

i=1

qi(t)(τi(t))n−1 exp(λn−1τi(t))

]
> nn−1(1− p),

then (1) is oscillatory.

�����. One may proceed as in the proof of Theorem 2.1 to obtain z(t) > 0 for
t � t2 and (−1)iz(i)(t) > 0, 0 � i � n − 1, for t � t4 � t2. From (4) we get, for
t � t5 � max{t4, t1 + �τ},

y(t) = z(t) + py(t− τ)

= z(t) + pz(t− τ) + p2y(t− 2τ)
= z(t) + pz(t− τ) + p2z(t− 2τ) + p3y(t− 3τ)
...

= z(t) + pz(t− τ) + . . .+ p�z(t− �τ) + p�+1y(t− (�+ 1)τ).

Since z′(t) < 0 for t � t4, we have

y(t) � (1 + p+ . . .+ p�)z(t)

� (1− p�+1)
1− p

z(t)

for t � t5. For 0 < ε < 1
2 we may choose � sufficiently large such that p�+1 < ε.

Thus, for t � t5,

y(t) >
1− ε

1− p
z(t).

Then (5) yields, for t � t5 + τ0,

z(n)(t) +
1− ε

1− p

m∑

i=1

qi(t)z(t− τi(t)) � 0.

As in the proof of Theorem 2.1,

z(t− τi(t)) >
1

(n− 1)!
(n− 1

n

)n−1
(τi(t))

n−1z(n−1)
(
t− τi(t)

n

)
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for t � t5 + τ0. Hence z(n−1)(t) is an eventually positive solution of

u′(t) +
1− ε

1− p

1
(n− 1)!

(n− 1
n

)n−1 m∑

i=1

qi(t)(τi(t))n−1u
(
t− τi(t)

n

)
� 0,

a contradiction due to the assumption (H6) and Lemmas 1.1. and 1.3. This completes
the proof of the theorem. �

Remark. For 0 < p < 1, (H4) =⇒ (H6). Further, (H6) =⇒ (H5) if 0 < p � 1
2

but these assumptions are not comparable if p > 1
2 . We may note that Theorem 2.3

does not hold if (H6) is replaced by the weaker condition

lim inf
t→∞

inf
λ>0

[
λ−1

m∑

i=1

qi(t)(τi(t))n−1 exp(λn−1τi(t))

]
> (n− 1)!

( n

n− 1
)n−1

(1− p).

Corresponding to Lemma 1.2 we have three similar results.

Theorem 2.4. Let n � 1 be an odd integer and let (H3) hold. If

(H′4) lim
t→∞

inf inf
λ>0

[
λ−1

m∑

i=1

qi(t)τ
n−1
i exp(λn−1τi)

]
> nn−1,

then (1) with τi(t) = τi, 1 � i � m, is oscillatory.

Theorem 2.5. Let n � 3 be an odd integer and let (H3) hold. If

(H′5) lim
t→∞

inf inf
λ>0

[
λ−1

m∑

i=1

qi(t)τ
n−1
i exp(λn−1τi)

]
> (n− 1)!

( n

n− 1
)n−1

,

then (1) with τi(t) = τi, 1 � i � m, is oscillatory.

Theorem 2.6. Let 0 < p < 1, n � 3, be an odd integer and let (H3) hold. If

(H′6) lim
t→∞

inf inf
λ>0

[
λ−1

m∑

i=1

qi(t)τ
n−1
i exp(λn−1τi)

]
> nn−1(1− p),

then (1) with τi(t) = τi, 1 � i � m, is oscillatory.

Theorem 2.7. Suppose that n � 2 is an even integer and (H1) holds. If

(H7) lim
t→∞

inf inf
λ>0

[
λ−1

m∑

i=1

qi(t)(τi(t))
n−1 exp(λτi(t))

]
> (n− 1)!2(n−1)(2n−1),

then every solution of (1) is oscillatory or tends to zero as t →∞.
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�����. Let y(t) be a solution of (1) on [Ty,∞), Ty > 0. If y(t) is oscillatory,

then we have nothing to prove. Suppose that y(t) is non-oscillatory. Hence we may
assume, without any loss of generality, that y(t) > 0 for t � t0 > Ty. Then setting
z(t) as in (4) for t � t1 � t0 +max[τ, τ0) we get (5) for t � t1. Since z(n)(t) � 0 for
t � t1, then z(i)(t), 0 � i � n− 1, is of constant sign for t � t2 � t1. Let z(t) > 0 for
t � t2. It follows from Lemma 1.4 that there exists an odd integer r, 1 � r � n− 1,
such that

z(�)(t) > 0, 0 � � � r,

(−1)n+�−1z(�)(t) > 0, r + 1 � � � n− 1,

|z(t)| � (t− t2)n−1

(n− 1) . . . (n− r)
|z(n−1)(2n−r−1t)|

for t � t2. As z(n−1)(t) < 0 implies that z(t) < 0 for large t, we have z(n−1)(t) > 0

for t � t2. Moreover, z′(t) > 0 for t � t2 since r � 1 is an odd integer. Hence

z(t) � (t− t2)n−1

(n− 1) . . . (n− r)
z(n−1)(2n−r−1t),

t � t2. Thus, for t � t3 � t22n−2(1− 2−n)−1,

z(t) � z(2r+1−nt) � (2
r+1−nt− t2)n−1

(n− 1) . . . (n− r)
z(n−1)(t)

� (n− r − 1)!(t− t22n−r−1)n−1

(n− 1)!2(n−r−1)(n−1) z(n−1)(t)

>
(t− t22n−r−1)n−1

(n− 1)!2(n−1)2 z(n−1)(t)

>
tn−1z(n−1)(t)

(n− 1)! 2(n−1)(2n−1) .

Then (5) yields

z(n)(t) +
1

(n− 1)!2(n−1)(2n−1)
m∑

i=1

qi(t)(t − τi(t))
n−1z(n−1)(t− τi(t)) � 0

for t � t3. Hence, for t � t3 + 2τ0, we obtain

z(n)(t) +
1

(n− 1)!2(n−1)(2n−1)
m∑

i=1

qi(t)(τi(t))n−1z(n−1)(t− τi(t)) � 0,
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that is, z(n−1)(t) is an eventually positive solution of

u′(t) +
1

(n− 1)! 2(n−1)(2n−1)
m∑

i=1

qi(t)(τi(t))
n−1u(t− τi(t)) � 0,

a contradiction in view of the assumption (H7) and Lemmas 1.1 and 1.3. Thus
z(t) < 0 for t � t2. We may note that this case does not arise if p = 0. Clearly, (6)

follows from (H7) for some k ∈ {1, . . . , m}. If z′(t) < 0 for t � t2, then proceeding
as in Theorem 2.1 we arrive at a contradiction. Suppose that z′(t) > 0 for t � t2.

Thus −∞ < λ0 � 0, where λ0 = lim
t→∞

z(t). If λ0 < 0, then we obtain a contradiction

as in the case z′(t) < 0 for t � t2. Hence λ0 = 0. We claim that y(t) is bounded.
If not, then there exists a sequence 〈tj〉 such that lim

j→∞
tj = ∞, lim

j→∞
y(tj) =∞ and

y(tj) = max{y(t) : t2 � t � tj}. It is possible to choose j sufficiently large such that
tj − τ > t2. Hence

z(tj) = y(tj)− py(tj − τ) � (1 − p)y(tj).

Thus lim
j→∞

z(tj) =∞, a contradiction. Hence our claim holds. From (4) we obtain

lim
t→∞

sup z(t) = lim
t→∞

sup[y(t)− py(t− τ)]

� lim
t→∞

sup y(t) + lim
t→∞

inf(−py(t− τ))

� (1− p) lim
t→∞

sup y(t),

that is, lim
t→∞

sup y(t) � 0. Hence lim
t→∞

y(t) = 0 and the proof of the theorem is

complete. �

Corollary 2.8. If all conditions of Theorem 2.7 are satisfied, then every un-
bounded solution of (1) oscillates.

Corollary 2.9. Suppose that the conditions of Theorem 2.7 are satisfied. Then
the equation

(9) y(n)(t) +
m∑

i=1

qi(t)y(t− τi(t)) = 0

is oscillatory.

Corollary 2.10. Let n > 0 be an integer and let (H1) hold. If

(H8) lim
t→∞

inf inf
λ>0

[
λ−1

m∑

i=1

qi(t)(τi(t))n−1 exp(λn−1τi(t))

]
> (n− 1)! 2(n−1)(2n−1)

then (9) is oscillatory.

This follows from Theorems 2.1 and 2.7 since (H8) implies (H4) and (H7).
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Remark. We may notice that (H8) reduces to (H2) for n = 1.

Theorem 2.11. Suppose that n � 2 is an even integer, 0 � p � 1, τ < σ0 �
τi(t) � τ0 and 0 � qi(t) � q0, 1 � i � m, where σ0, τ0, q0 are constants. If (H7) holds
and

(H9) lim
t→∞

sup

t∫

t−(σ0−τ)

(t− s)n−1
( m∑

i=1

qi(s)

)
ds > (n− 1)!

then every solution of (1) oscillates.

�����. We proceed as in the proof of Theorem 2.7 to obtain a contradiction

in the case z(t) > 0 for t � t2. Thus z(t) < 0 for t � t2. We may note that this
case does not arise if p = 0. Hence 0 < p � 1 for this case. If z′(t) < 0 for t � t2,

then a contradiction is obtained as in the proof of Theorem 2.7. Thus z′(t) > 0 for
t � t2. Consequently, z(t) is bounded and (−1)k+1z(k)(t) > 0, 1 � k � n − 1, for
t � t3 � t2. From (5) we obtain z(t) > −y(t− τ) and hence

0 � z(n)(t)−
m∑

i=1

qi(t)z(t− τi(t) + τ)

� z(n)(t)−
( m∑

i=1

qi(t)

)
z(t− σ0 + τ)

for t � t3 + τ0. By Taylor’s expansion, for t3 + τ0 + σ0 < s < t,

z(s− (σ0 − τ)) = z(t− (σ0 − τ)) + (s− t)z′(t− (σ0 − τ)) +
(s− t)2

2!
z′′(t− (σ0 − τ))

+ . . .+
(s− t)n−1

(n− 1)! z(n−1)(t− (σ0 − τ)) +
(s− t)n

n!
z(n)(ξ),

where ξ lies between s− (σ0 − τ) and t− (σ0 − τ). Thus

z(s− (σ0 − τ)) � (s− t)n−1

(n− 1)! z(n−1)(t− (σ0 − τ))

and hence

0 � z(n)(s) +
(t− s)n−1

(n− 1)!

( m∑

i=1

qi(s)

)
z(n−1)(t− (σ0 − τ)).
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Integrating from t− (σ0 − τ) to t, for t > t3 + τ0 + 2σ0, we obtain

z(n−1)(t− (σ0 − τ))
(n− 1)!

t∫

t−(σ0−τ)

(t− s)n−1
( m∑

i=1

qi(s)

)
ds

� z(n−1)(t− (σ0 − τ))− z(n−1)(t)

< z(n−1)(t− (σ0 − τ)),

that is, ∫ t

t−(σ0−τ)
(t− s)n−1

( m∑

i=1

qi(s)

)
ds < (n− 1)!,

a contradiction to (H9), which completes the proof of the theorem. �

Remark. It seems that (H7) and (H9) are not comparable in general. However,
for m = 1, τ1(t) = σ0, q1(t) = q0 and n = 1, (H9) implies (H7) because (H7) reduces

to eq0σ0 > 1 and (H9) reduces to q0(σ0 − τ) > 1.

Theorem 2.12. Let n � 2 be an even integer and let (H3) hold. If

(H′7) lim
t→∞

inf inf
λ>0

[
λ−1

m∑

i=1

qi(t)τ
n−1
i exp(λτi)

]
> (n− 1)! 2(n−1)(2n−1),

then (1) with τi(t) = τi, 1 � i � m, is oscillatory.

Remark. From the proof of Theorems 2.1, 2.2, 2.3 and 2.7 it is clear that the
following results hold for the equation

(10) (y(t)− p(t)y(t− τ))(n) +
m∑

i=1

qi(t)y(t− τi(t)) = 0,

where p ∈ C([0,∞),�) and τ, qi, τi, 1 � i � m, are the same as in (1).

Theorem 2.13. (i) Suppose that the conditions of Theorem 2.1 are satisfied. If
0 � p(t) � p2 < 1, where p2 is a constant, then (10) is oscillatory.
(ii) If the conditions of Theorem 2.2 are satisfied and 0 � p(t) � p2 < 1, then (10)

is oscillatory.

(iii) Let 0 < p1 � p(t) � p2 < 1, let p(t) be periodic of a period τ , let n � 3 be an
odd integer and let (H1) hold. If (H6) holds with p replaced by p1, then (10) is
oscillatory.

(iv) If the conditions of Theorem 2.7 are satisfied and 0 � p(t) � p2 < 1, then every
solution of (10) oscillates or tends to zero as t →∞.
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Theorem 2.14. Let n � 1 be an odd integer, 0 � p � 1, qi(t) � 0 and τ < σ0 �
τi(t) � τ0, 1 � i � m, where σ0 and τ0 are constants. If

(H10) lim
t→∞

sup

t∫

t−(σ0−τ)

(t− s)n−1
(
−

m∑

i=1

qi(s)

)
ds > (n− 1)!

then the bounded solutions of (1) oscillate.

�����. Let y(t) be a bounded solution of (1) on [Ty,∞), Ty > 0. If possible, let

y(t) be nonoscillatory. We may assume, without any loss of generality, that y(t) > 0
for t � t0 > Ty. Setting z(t) as in (4) for t � t1 � t0 +max{τ, τ0}, we get

(11)

z(t) � y(t), z(t) > −py(t− τ) � −y(t− τ) and

z(n)(t) = −
m∑

i=1

qi(t)y(t− τi(t)) � 0.

Since qi(t) �≡ 0, 1 � i � m, then z(k)(t), 0 � k � n − 1, is of constant sign for
t � t2 � t1. Further, y(t) being bounded implies that z(t) is bounded. Clearly, it

follows from (H10) that

(12)
∫ ∞

0

( m∑

i=1

qi(t)

)
dt = −∞.

Indeed, if

∫ ∞

0

( m∑

i=1

qi(t)

)
dt > −∞,

then, for t � 2(σ0 − τ),

∫ t

t−(σ0−τ)
(t− s)n−1

( m∑

i=1

qi(s)

)
ds � (σ0 − τ)n−1

∫ t

t−(σ0−τ)

( m∑

i=1

qi(s)

)
ds

= (σ0 − τ)n−1
[ ∫ t

σ0−τ

( m∑

i=1

qi(s)

)
ds−

∫ t−(σ0−τ)

σ0−τ

( m∑

i=1

qi(s)

)
ds

]
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implies that

lim
t→∞

inf

t∫

t−(σ0−τ)

(t− s)n−1
( m∑

i=1

qi(s)

)
ds

� (σ0 − τ)n−1 lim
t→∞

inf

[ t∫

σ0−τ

( m∑

i=1

qi(s)

)
ds−

t−(σ0−τ)∫

σ0−τ

( m∑

i=1

qi(s)

)
ds

]

� (σ0 − τ)n−1
[
lim

t→∞
inf

t∫

σ0−τ

( m∑

i=1

qi(s)

)
ds− lim

t→∞
sup

t−(σ0−τ)∫

σ0−τ

( m∑

i=1

qi(s)

)
ds

]
= 0,

a contradiction to (H10).
If n = 1, then z′(t) � 0 for t � t2. If n � 3, then the boundedness of z(t)

implies that (−1)k+1z(k)(t) > 0, 1 � k � n − 1, for t � t2. Let z(t) > 0 for t � t2.
Then 0 < lim

t→∞
z(t) < ∞ and hence by (11), lim

t→∞
inf y(t) � lim

t→∞
z(t) > 0. Thus

y(t) > λ > 0 for t � t3 � t2. Consequently, for t � t3 + τ0, we obtain
∫ t

t3

( m∑

i=1

qi(s)y(s− τi(s))

)
ds

=
∫ t3+τ0

t3

( m∑

i=1

qi(s)y(s− τi(s))

)
ds+

∫ t

t3+τ0

( m∑

i=1

qi(s)y(s− τi(s))

)
ds

< λ

∫ t

t3+τ0

( m∑

i=1

qi(s)

)
ds,

that is,

lim
t→∞

∫ t

t3

( m∑

i=1

qi(s)y(s− τi(s))

)
ds = −∞.

On the other hand, integrating (11) yields
∫ t

t3

( m∑

i=1

qi(s)y(s− τi(s))

)
ds = z(n−1)(t3)− z(n−1)(t) > z(n−1)(t3),

a contradiction. Hence z(t) < 0 for t � t2. By (11), we have for t � t2 + τ0

0 = z(n)(t) +
m∑

i=1

qi(t)y(t− τi(t))

� z(n)(t)−
m∑

i=1

qi(t)z(t− τi(t) + τ)

� z(n)(t)−
( m∑

i=1

qi(t)

)
z(t− (σ0 − τ))
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because z′(t) � 0 for t � t2. By Taylor’s expansion, for t2 + σ0 < s < t,

z(s− (σ0 − τ)) = z(t− (σ0 − τ)) + (s− t)z′(t− (σ0 − τ)) +
(s− t)2

2!
z′′(t− (σ0 − τ))

+ . . .+
(s− t)n−1

(n− 1)! z(n−1)(t− (σ0 − τ)) +
(s− t)n

n!
z(n)(ξ),

where ξ lies between s− (σ0 − τ) and t− (σ0 − τ). Hence

z(s− (σ0 − τ)) � (s− t)n−1

(n− 1)! z(n−1)(t− (σ0 − τ)).

Thus, for s � t2 + τ0 + σ0,

0 � z(n)(s)−
( m∑

i=1

qi(s)

)
z(s− (σ0 − τ))

� z(n)(s)−
( m∑

i=1

qi(s)

)
(s− t)n−1

(n− 1)! z(n−1)(t− (σ0 − τ)).

Integrating from t− (σ0 − τ) to t, for t � t2 + 2σ0 + τ0, yields

z(n−1)(t− (σ0 − τ))
(n− 1)!

t∫

t−(σ0−τ)

(t− s)n−1
(
−

m∑

i=1

qi(s)

)
ds

� z(n−1)(t− (σ0 − τ)) − z(n−1)(t)

> z(n−1)(t− (σ0 − τ)),

that is,
t∫

t−(σ0−τ)

(t− s)n−1
(
−

m∑

i=1

qi(s)

)
ds < (n− 1)!,

a contradiction to (H10). Hence the theorem is proved. �

Theorem 2.15. Let n � 2 be an even integer, 0 � p � 1, qi(t) � 0 and
0 < σ0 � τi(t) � τ0, 1 � i � m, where σ0 and τ0 are constants. If

(H11) lim
t→∞

sup
∫ t

t−σ0

(t− s)n−1
(
−

m∑

i=1

qi(s)

)
ds > (n− 1)!,

then the bounded solutions of (1) oscillate.
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�����. Let y(t) be a bounded nonoscillatory solution of (1) such that y(t) > 0

for t � t0 > 0. Setting z(t) as in (4), we get (11) for t � t1 � t0 + max{τ, τ0}.
Further, (H11) implies (12). Since boundedness of y(t) implies that z(t) is bounded,
then (−1)kz(k)(t) > 0 for 1 � k � n−1 and t � t2 � t1. Let z(t) < 0 for t � t2. Thus

there exists 0 < µ < ∞ such that z(t) < −µ for t � t3 � t2. Then by (11), y(t) > µ

for t � t3. Proceeding as in the proof of Theorem 2.14, we obtain a contradiction.

Hence z(t) > 0 for t � t2. By Taylor’s expansion, for t2 + σ0 < s < t,

z(s− σ0) = z(t− σ0) + (s− t)z′(t− σ0) +
(s− t)2

2!
z′′(t− σ0) + . . .

+
(s− t)n−1

(n− 1)! z(n−1)(t− σ0) +
(s− t)n

n!
z(n)(ξ),

where ξ lies between s− σ0 and t− σ0. Hence

z(s− σ0) >
(s− t)n−1

(n− 1)! z(n−1)(t− σ0).

Consequently, (11) implies that, for t2 + σ0 + τ0 < s,

0 = z(n)(s) +
m∑

i=1

qi(s)y(s− τi(s))

� z(n)(s) +
m∑

i=1

qi(s)z(s− τi(s))

� z(n)(s) +

( m∑

i=1

qi(s)

)
z(s− σ0)

� z(n)(s) +

(
−

m∑

i=1

qi(s)

)
(t− s)n−1

(n− 1)!. z(n−1)(t− σ0)

since z′(t) < 0. Integrating from t− σ0 to t, for t � t2 + 2σ0 + τ0, we obtain

z(n−1)(t− σ0)
(n− 1)!

∫ t

t−σ0

(t− s)n−1
(
−

m∑

i=1

qi(s)

)
ds

� z(n−1)(t− σ0)− z(n−1)(t) > z(n−1)(t− σ0),

that is, ∫ t

t−σ0

(t− s)n−1
(
−

m∑

i=1

qi(s)

)
ds < (n− 1)!,

a contradiction to (H11), which completes the proof of the theorem. �
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Remark. We may note that (H10) =⇒ (H11). Further, theorems similar to

Theorems 2.14 and 2.15 hold for (10) if we assume 0 � p(t) � 1.

3. In this section we use some of the results of the previous section to obtain sufficient
conditions for the oscillation of solutions of Dirichlet and Neumann boundary value
problems for a class of neutral hyperbolic partial differential equations. We consider

utt(x, t)− βutt(x, t− τ) −
[
b(t)∆u(x, t) +

�∑

j=1

bj(t)∆u(x, t − σj)

]
(12)

+
m∑

i=1

qi(t)u(x, t− τi(t)) = 0

(x, t) ∈ ΩX(0,∞), where Ω is a bounded domain in �n with piece-wise smooth
boundary Γ ≡ ∂Ω and ∆ is the Laplacian in �n , with the boundary condition

(NBC)
∂u

∂ν
= 0 on ΓX(0,∞)

or

(DBC) u = 0 on ΓX(0,∞),

where ν denotes the unit exterior normal vector to Γ. We assume that 0 � β � 1,
τ > 0, qi, τi, b, bj ∈ C([0,∞,�), 1 � i � m, 1 � j � �, such that 0 � τi(t) � τ0 and

b(t) > 0, where τ0 is a constant. Let T0 = max{τ, σj , τ0 : 1 � j � �}. By a solution
of the problem (12), (NBC) we mean a real-valued continuous function u(x, t) on

ΩX(−T0,∞) such that utt(x, t) and ∆u(x, t) exist, (12) is satisfied identically on
ΩX(0,∞) and (NBC) holds. A solution u(x, t) of the problem (12), (NBC) is said

to be oscillatory if u(x, t) has a zero in ΩX(t0,∞) for every t0 � 0. It is known that
the first eigenvalue λ1 of the eigenvalue problem

−∆w = λw in Ω, w = 0 on Γ

is positive and the associated eigenfunction ϕ(x) is of one a sign and hence may be

chosen positive in Ω. For a sufficiently smooth function u(x, t) we denote

U(t) =
∫

Ω
u(x, t) dx and Ũ(t) =

∫

Ω
u(x, t)ϕ(x) dx, t > 0.

Theorem 3.1. Suppose that τ � σ0 � τi(t) and 0 � qi(t) � q0, 1 � i � m, where

σ0 and q0 are constants. If (H7) and (H9) hold, then every solution of the problem
(12), (NBC) oscillates in ΩX(0,∞).
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�����. Let u(x, t) be a solution of the problem (12), (NBC) which does not

oscillate in ΩX(0,∞). Then there exists a t0 > 0 such that u(x, t) �= 0 in ΩX(t0,∞).
We may take u(x, t) > 0 in ΩX(t0,∞). For t > t0+T0 we integrate (12) with respect
to x over the domain Ω to obtain

U ′′(t)− βU ′′(t− τ) +
m∑

i=1

qi(t)U(t− τi(t)) = 0,

that is, U(t) is a positive solution of (1) with n = 2 and p = β, a contradiction due
to Theorem 2.11. Hence the theorem is proved. �

Theorem 3.2. Let the conditions of Theorem 3.1 hold. If σ0 � min{σj : 1 �
j � �} and 0 < b(t), bj(t) � q0/λ1, 1 � j � �, then every solution of the problem

(12), (DBC) oscillates in ΩX(0,∞).
�����. If u(x, t) is a solution of the problem (12), (DBC) which does not

oscillate in ΩX(0,∞), then we may take u(x, t) > 0 in ΩX(t0,∞) for some t0 � 0.
Since

∫

Ω
∆u(x, t)ϕ(x) dx =

∫

Ω
u(x, t)∆ϕdx+

∫

Γ

∂u

∂ν
ϕds−

∫

Γ
u

∂ϕ

∂ν
ds

= −λ1

∫

Ω
u(x, t)ϕdx = −λ1U(t),

then multiplying (12) through by Φ(κ) and integrating the resulting identity with

respect to x over the domain Ω we get

Ũ ′′(t)− βŨ ′′(t− τ) + λ1

(
b(t)Ũ(t) +

�∑

j=1

bj(t)Ũ(t− σj)

)

+
m∑

i=1

qi(t)Ũ (t− τi(t)) = 0.

A contradiction is obtained due to Theorem 2.11 since Ũ(t) > 0 for t � t0+T0. This
completes the proof of the theorem. �

Theorem 3.3. Suppose that qi(t) � 0 and 0 < σ0 � τi(t), 1 � i � m, where σ0 is

a constant. If (H11) holds, then every bounded solution of the problem (12), (NBC)
oscillates in ΩX(0,∞).
In view of Theorem 2.15, the proof is similar to that of Theorem 3.1 and hence is

omitted.
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