
Czechoslovak Mathematical Journal

Václav Tryhuk
On global transformations of functional-differential equations of the first order

Czechoslovak Mathematical Journal, Vol. 50 (2000), No. 2, 279–293

Persistent URL: http://dml.cz/dmlcz/127569

Terms of use:
© Institute of Mathematics AS CR, 2000

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/127569
http://dml.cz


Czechoslovak Mathematical Journal, 50 (125) (2000), 279–293

ON GLOBAL TRANSFORMATIONS OF

FUNCTIONAL-DIFFERENTIAL EQUATIONS

OF THE FIRST ORDER
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Abstract. The paper describes the general form of functional-differential equations of the
first order with m(m � 1) delays which allows nontrivial global transformations consisting
of a change of the independent variable and of a nonvanishing factor. A functional equation

f(t, uv, u1v1, . . . , umvm) = f(x, v, v1, . . . , vm)g(t, x, u, u1, . . . , um)u+h(t, x, u, u1, . . . , um)v

for u �= 0 is solved on � and a method of proof by J. Aczél is applied.
Keywords: functional differential equations, ordinary differential equations, global trans-

formations, functional equations in a single variable, functional equations in several variables
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1. Introduction

The theory of global transformations converting any homogeneous linear differen-

tial equation of the n-th order into another equation of the same kind and order on
the whole interval of their definition, was developed in the monograph of F. Neuman

[8] (see historical remarks, definitions, results and some applications). The most
general form of global pointwise transformations for homogeneous linear differential

equations of the n-th order (n � 2) is

z(t) = L(t)y(ϕ(t)),

This research has been conducted at the Department of Mathematics as part of the
research project “Qualitative Behaviour of Solutions of Functional Differential Equations
Describing Mathematical Models of Technical Phenomena” and has been supported by
CTU grant No. 460078.
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where ϕ is a bijection of an interval J onto an interval I (J ⊆ �, I ⊆ �) and L(t)

is a nonvanishing function on J , i.e. this global transformation consists of a change
of the independent variable and of a nonvanishing factor L. The form of the most
general pointwise transformation of homogeneous linear differential equations with

deviating arguments was derived in [3, 9, 10, 11]. This form coincides for an arbitrary
order with the form considered for linear differential equations of the n-th (n � 2)
order without deviation.
In this paper we derive, similarly to Aczél [1], the general form of differential

equations of the first order with deviating arguments

y′(x) = f(x, y(x), y(ξ1(x)), . . . , y(ξm(x)))

which allows the transformation z(t) = L(t)y(ϕ(t)).

2. Notation, basic definitions

Consider two functional-differential equations withm(m � 1) deviating arguments

(1) y′(x) = f(x, y(x), y(ξ1(x)), . . . , y(ξm(x)))

and

(2) z′(t) = f∗(t, z(t), z(η1(t)), . . . , z(ηm(t)))

defined on I and J respectively.

Definition. We say that (1) is globally transformable into (2) if there exist two
functions ϕ, L such that
– the function L is of the class C1(J) and is nonvanishing on J ;

– the function ϕ is a C1 diffeomorphism of the interval J onto I,

and the function

(3) z(t) = L(t)y(ϕ(t))

is a solution of (2) whenever y(x) is a solution of (1).

We say that (3) is a stationary transformation if it globally transforms the equa-

tion (1) into itself on I, i.e. if L ∈ C1(I), L(x) �= 0 on I, ϕ is a C1 diffeomorphism of
I onto I = ϕ(I) and the function z(x) = L(x)y(ϕ(x)) is a solution of

z′(x) = f(x, z(x), z(ξ1(x)), . . . , z(ξm(x)))
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whenever y is a solution of

y′(x) = f(x, y(x), y(ξ1(x)), . . . , y(ξm(x))), x ∈ I.

Hence, if (3) is a stationary transformation of the equation (1) with a solution y(x),
then L(x)y(ϕ(x)) is also a solution of the same differential equation.

If (1) is globally transformable into (2), then (see [3, 5, 7, 9, 10, 11])

(4) ξj(ϕ(t)) = ϕ(ηj(t))

is satisfied on J for deviations ξj , ηj ; j = 1, 2, . . . , m, and we say that (1), (2) are
equivalent equations.

Observation 1. Every homogeneous linear functional-differential equation of the
first order is a particular case of the equation (1). Consider two functional-differential
equations

(a) y′(x) = f(x, y(x), y(ξ1(x)), . . . , y(ξm(x))) = p0(x)y(x) +
m∑

j=1
pj(x)y(ξj(x)),

x ∈ I,

(b) z′(t) = f∗(t, z(t), z(η1(t)), . . . , z(ηm(t))) = q0(t)z(t) +
m∑

j=1
qj(t)z(ηj(t)), t ∈ J.

If (a) is globally transformable into (b), then the functions ϕ, L satisfy L′(t) =
(p0(ϕ(t))ϕ′(t) − q0(t))L(t) and pj(ϕ(t))ϕ′(t) = qj(t)L(ηj(t))/L(t), j = 1, 2, . . . , m,

on J. Thus ϕ′ is a function depending on ϕ, L, L(η1), . . . , L(ηm), i.e.

ϕ′(t) = g(t, ϕ(t), L(t), L(η1(t)), . . . , L(ηm(t)))

and

L′(t) = h1(t, ϕ(t), ϕ
′(t), L(t))

= h1(t, ϕ(t), g(t, ϕ(t), L(t), L(η1(t)), . . . , L(ηm(t))), L(t))

= h(t, ϕ(t), L(t), L(η1(t)), . . . , L(ηm(t)))

on J .

Assumption. For transformations of homogeneous functional-differential equa-
tions of the first order we assume that there exist two differential equations such
that

ϕ′(t) = g(t, ϕ(t), L(t), L(η1(t)), . . . , L(ηm(t))),

L′(t) = h(t, ϕ(t), L(t), L(η1(t)), . . . , L(ηm(t)))

on J .
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3. Transformations

Lemma 1. The transformation (3) is a stationary transformation of the equa-
tion (1) if and only if ξj(ϕ(t)) = ϕ(ξj(t)) on I = ϕ(I) and the real functions f , g, h

satisfy a functional equation in several variables

(5) f(t, uv, u1v1, . . . , umvm) = f(x, v, v1, . . . , vm)g(t, x, u, u1, . . . , um)u

+ h(t, x, u, u1, . . . , um)v

for t, x, u, u1, . . . , um, v, v1, . . . , vm ∈ �, u �= 0; j = 1, 2, . . . , m.

�����. There exists a global stationary transformation of the equation (1) if and
only if (1) is globally transformable into the equation z′(t) = f(t, z(t), z(ξ1(t)), . . . ,
z(ξm(t))), t ∈ I = ϕ(I), by means of (3) and ξj(ϕ(t)) = ϕ(ξj(t)), j = 1, 2, . . . , m,

t ∈ I. According to the definition of a global transformation,

ϕ(ξj(t)) = ξj(ϕ(t)),

z(ξj(t)) = L(ξj(t))y(ϕ(ξj(t))) = L(ξj(t))y(ξj(ϕ(t))) = L(ξj(t))y(ξj(x)),

i = 1, 2, . . . , m; t ∈ J.

We denote zj = z(ξj), x = ϕ, uj = L(ξj), v = y(ϕ), vj = y(ξj(ϕ)) = y(ϕ(ξj)),
j = 1, 2, . . . , m. Then z′ = L′y(ϕ) + Lẏ(ϕ)ϕ′ (· = d/dϕ) implies that

z′(t) = f(t, z, z1, . . . , zm) = f(t, uv, u1v1, . . . , umvm)

= f(x, v, v1, . . . , vm)g(t, x, u, u1, . . . , um)u + h(t, x, u, u1, . . . , um)v

and we obtain the functional equation (5). �

Theorem 1. The general continuous solution of the functional equation (5) is of
the form

f(t, v, v1, . . . , vm) = a(t)b(v)δ(v1, . . . , vm) + q(t)v,

g(t, x, u, u1, . . . , um) = a(t)b(u)δ(u1, . . . , um)/(a(x)u),

h(t, x, u, u1, . . . , um) = u[q(t)− q(x)g(t, x, u, u1, . . . , um)],

where a, q are arbitrary functions on J ⊆ � (a(x) �= 0) and functions b, δ are

continuous solutions of Cauchy’s power equations

b(uv) = b(u)b(v)
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and

δ(u1v1, . . . , umvm) = δ(u1, . . . , um)δ(v1, . . . , vm)

respectively.

�����. We have the functional equation (5), i.e.

f(t, uv, u1v1, . . . , umvm) = f(x, v, v1, . . . , vm)g(t, x, u, u1, . . . , um)u

+ h(t, x, u, u1, . . . , um)v

on the domain as above, moreover let u �= 0. Choosing ui = 1(i = 1, 2, . . . , m) and
x = 1 we have

(6) f(t, uv, v1, . . . , vm) = f(1, v, v1, . . . , vm)g̃(t, u)u+ h̃(t, u)v

where g̃(t, u) = g(t, 1, u, 1, . . . , 1), h̃(t, u) = h(t, 1, u, 1, . . . , 1). Then (6) and v = 1
give

(7) f(t, u, v1, . . . , vm) = δ∗(v1, . . . , vm)g̃(t, u)u+ h̃(t, u),

δ∗(v1, . . . , vm) = f(1, 1, v1, . . . , vm). If we combine (7) with (6) we get

δ∗(v1, . . . , vm)g̃(t, uv)uv + h̃(t, uv)

= [δ∗(v1, . . . , vm)g̃(1, v)v + h̃(1, v)]g̃(t, u)u+ h̃(t, u)v,

and

g̃(t, uv) = g̃(1, v)g̃(t, u),(8)

h̃(t, uv) = h̃(1, v)g̃(t, u)u+ h̃(t, u)v(9)

are satisfied because δ∗(v1, . . . , vm) is independent of v.

First we solve the functional equation (8). For u = 1 we have

(10) g̃(t, v) = a(t)b̃(v)

where a(t) = g̃(t, 1) and b̃(v) = g̃(1, v). Equations (8) and (10) imply that a(t)b̃(uv) =
a(t)b̃(u)b̃(v) and we obtain Cauchy’s power equation

(11) b̃(uv) = b̃(u)b̃(v).

Then the second functional equation (9) is of the form

(12) h̃(t, uv) = a(t)b̃(u)ud(v) + h̃(t, u)v,
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where d(v) = h̃(1, v) and the function b̃ satisfies (11). Choosing u = 1 we obtain

(13) h̃(t, v) = a(t)b̃(1)d(v) + c(t)v,

c(t) = h̃(t, 1). Substituting (13) into (12) we have

(14) b̃(1)d(uv) = b̃(u)ud(v) + b̃(1)d(u)v.

Hence b̃(1)d(uv) = b̃(1)d(vu) implies d(v)(b̃(u)− b̃(1))u = d(u)(b̃(v) − b̃(1))v and

(15) d(v) = c(b̃(v)− b̃(1))v

(c ∈ � is an arbitrary constant) for a nonconstant solution of the equation (11).
Thus, in view of (7), (10), (13) and (15), we have

(16) f(t, v, v1, . . . , vm) = a(t)b(v)δ(v1, . . . , vm) + q(t)v,

where δ(v1, . . . , vm) = δ∗(v1, . . . , vm)+cb̃(1), q(t) = c(t)−ca(t)b̃(1)2 and b(v) = b̃(v)v
satisfies Cauchy’s power equation (11). According to (5) and (16) we have

a(t)b(uv)δ(u1v1, . . . , umvm) + q(t)uv

= h(t, x, u, u1, . . . , um)v + [a(x)b(v)δ(v1 , . . . , vm) + q(x)v]g(t, x, u, u1, . . . , um)u

and for the function δ(v1, . . . , vm) we have two conditions
a) q(t)uv = q(x)g(t, x, u, u1, . . . , um)uv + h(t, x, u, u1, . . . , um)v, i.e.

(17) h(t, x, u, u1, . . . , um) = [q(t)− q(x)g(t, x, u, u1, . . . , um)]u

and

b) a(t)b(uv)δ(u1v1, . . . , umvm) = a(x)b(v)δ(v1, . . . , vm)g(t, x, u, u1, . . . , um)u, i.e.

(18) g(t, x, u, u1, . . . , um)u = a(t)b(u)δ(u1, . . . , um)/(a(x)K)

using vi = 1 (i = 1, 2, . . . , m), b(uv) = b(u)b(v), K = δ(1, . . . , 1).

Now we substitute the functions f , g, h [i.e. (16), (17) and (18)] into (5). Then

(19) Kδ(u1v1, . . . , umvm) = δ(u1, . . . , um)δ(v1, . . . , vm).

Without loss of generality, we may take K = 1 because δ̃ = δ/K is a solution of

δ̃(u1v1, . . . , umvm) = δ̃(u1, . . . , um)δ̃(v1, . . . , vm)

whenever δ is a solution of (19).
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Summarizing (16), (17) and (18) we conclude that for a nonconstant function b

f(t, v, v1, . . . , vm) = a(t)b(v)δ(v1, . . . , vm) + q(t)v,

g(t, x, u, u1, . . . , um) = a(t)b(u)δ(u1, . . . , um)/(a(x)u),

h(t, x, u, u1, . . . , um) = [q(t)− q(x)g(t, x, u, u1, . . . , um)]u,

where a, q are arbitrary continuous functions (a(x) �= 0) and the function b(u)
is a continuous solution of Cauchy’s power equation b(uv) = b(u)b(v) and δ is a

continuous solution of Cauchy’s power equation

δ(u1v1, . . . , umvm) = δ(u1, . . . , um)δ(v1, . . . , vm)

in several variables.

We have b̃(v) = b̃(1) = 1 in the case that b̃(v) is a nonzero constant solution of (11).
From (10), (13) and (14) one gets g̃(t, v) = a(t), h̃(t, v) = a(t)d(v) + c(t)v, where the

function d(v) satisfies a functional equation of derivations d(uv) = ud(v)+d(u)v (see
Aczél [2], p. 23). Repeating the above arguments we get

f(t, v, v1, . . . , vm) = a(t)vδ(v1, . . . , vm) + a(t)d(v) + c(t)v,

g(t, x, u, u1, . . . , um) = a(t)δ(u1, . . . , um)/a(x),

h(t, x, u, u1, . . . , um) = [a(t)− a(x)g(t, x, u, u1, . . . , um)]ud(v)/v

+ [c(t)− c(x)g(t, x, u, u1, . . . , um)]u + a(t)d(u),

where δ(v1, . . . , vm) = δ∗(v1, . . . , vm) satisfies Cauchy’s power equation in several

variables. We also have d(v) = kv (k ∈ �) because the function h is independent
of v. By virtue of the functional equation of derivations we obtain k = 0, i.e. d(v) = 0

and (15) is satisfied with c = 0. In this case δ(v1, . . . , vm) = δ∗(v1, . . . , vm), q(t) = c(t)
and b(v) = b̃(v)v = v in accordance with (16) and the assertion of Theorem 1 holds

in all cases. �

Observation 2. For every k � 1, let fi, gi, hi (i = 1, 2, . . . , k) be different
continuous solutions of the functional equation (5), i.e.

fi(t, uv, u1v1, . . . , umvm) = fi(x, v, v1, . . . , vm)gi(t, x, u, u1, . . . , um)u

+ hi(t, x, u, u1, . . . , um)v

for i ∈ {1, 2, . . . , k}. Then there exist functions

(20) f = F (f1, f2, . . . , fk), g = G(g1, g2, . . . , gk), h = H(h1, h2, . . . , hk)
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satisfying the functional equation (5) if and only if the identities

F (f1(t, uv, u1v1, . . . , umvm), . . . , fk(t, uv, u1v1, . . . , umvm))

= F (f1g1u+ h1v, . . . , fkgku+ hkv)

= F (f1, f2, . . . , fk)G(g1, g2, . . . , gk)u+H(h1, h2, . . . , hk)v

hold, where fi = fi(x, v, v1, . . . , vm), gi = gi(t, x, u, u1, . . . , um) and hi = hi(t, x, u,

u1, . . . , um), i = 1, 2, . . . , k.

Theorem 2. For k � 1, let fi, gi, hi (i = 1, 2, . . . , k) be different continuous
solutions of the functional equation (5). Then the general continuous solution of the

functional equation

(21)

F (f1g1u+ h1v, . . . , fkgku+ hkv) = F (f1, . . . , fk)G(g1, . . . , gk)u+H(h1, . . . , hk)v

defined on � is of the form

F (f1, f2, . . . , fk) =
k∑

i=1

cifi,

H(h1, h2, . . . , hk) =
k∑

i=1

cihi,

G(g1, g2, . . . , gk) = g1 = g2 = . . . = gk,

where ci ∈ � (i = 1, 2, . . . , k) are arbitrary constants.

�����. We consider an arbitrary fixed k (k � 1). Choosing v = 0 in (21) one
gets

(22) F (f1g1u, . . . , fkgku) = F (f1, . . . , fk)G(g1, . . . , gk)u

and substituting (22) into (21) we obtain

(23) F (f1g1u+ h1v, . . . , fkgku+ hkv) = F (f1g1u, . . . , fkgku) +H(h1, . . . , hk)v.

Then hi = 0 (i = 1, 2, . . . , k) gives

(24) H(0, 0, . . . , 0) = 0.

Similarly, fi = 0 (i = 1, 2, . . . , k) in (21) implies that

(25) F (h1v, . . . , hkv) = F (0, . . . , 0)G(g1, . . . , gk)u+H(h1, . . . , hk)v.
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Substituting hi = 0 (i = 1, 2, . . . , k) into (25) we obtain

F (0, . . . , 0) = F (0, . . . , 0)G(g1, . . . , gk)u+H(0, . . . , 0)v

and by (24) we have

(26) F (0, 0, . . . , 0) = 0.

Hence (25) implies that

F (h1v, . . . , hkv) = H(h1, . . . , hk)v

and choosing v = 1 we obtain

(27) F (h1, . . . , hk) = H(h1, . . . , hk).

If we now define ui = figiu (i = 1, 2, . . . , k) and put v = 1 in (23), then we obtain
Cauchy’s functional equation

(28) F (u1 + h1, . . . , uk + hk) = F (u1, . . . , uk) + F (h1, . . . , hk)

according to (27). The general continuous solution of (28) is of the form

(29) F (u1, . . . , uk) =
k∑

i=1

ciui,

where ci ∈ � (i = 1, 2, . . . , k) are arbitrary constants (see [2]). Thus, by using (27),

(30) H(h1, . . . , hk) =
k∑

i=1

cihi.

From (22) and (29) we have

u

k∑

i=1

cifigi = uG(g1, . . . , gk)
k∑

i=1

cifi,

i.e.
k∑

i=1

cifigi =
k∑

i=1

cifiG(g1, . . . , gk).

We choose successively k-tuples (cj
1, c

j
2, . . . , c

j
k) such that cj

i = 1 for j = i and

cj
i = 0 for j �= i; i, j ∈ {1, 2, . . . , k}. So we prove that

(31) G(g1, g2, . . . , gk) = g1 = g2 = . . . = gk.

The functions (29), (30), (31) are solutions of the functional equation (21) and the
assertion of Theorem 2 is proved. �
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Remark 1. Cauchy’s power equation is of the form

(32) g(xy) = g(x)g(y),

where g : �∗ → �, �∗ = � − {0}. The general solutions in the class of functions
continuous at a point are given by

(33) g(x) = 0, g(x) = |x|c, g(x) = |x|c signx,

c ∈ � being an arbitrary constant (see Aczél [2]). Moreover, g(1) = 1 and g(x) =
g(xy

y ) = g(xy )g(y) if y �= 0 for a nontrivial solution g. If we consider Cauchy’s power

equation in several variables

(34) F (x1y1, x2y2, . . . , xmym) = F (x1, x2, . . . , xm)F (y1, y2, . . . , ym),

F : (�∗ )m → �, then

F (x1y1, x2y2, . . . , xmym)

= F (x1, 1, . . . , 1)F (1, x2, . . . , 1) . . . F (1, 1, . . . , xm)F (y1, y2, . . . , ym)

holds and we have

(35) F (x1, x2, . . . , xm) =
m∏

i=1

δi(xi) = δ1(x1)δ2(x2) . . . δm(xm),

δi(xi) = F (1, . . . , 1, xi, 1, . . . , 1). Moreover, xi = 1 (i = 1, 2, . . . , m) implies that
F (y1, y2, . . . , ym) = F (1, 1, . . . , 1)F (y1, y2, . . . , ym), thus F (1, 1, . . . , 1) = 1 and we

obtain

(36) δi(1) = F (1, 1, . . . , 1) = 1

for i ∈ {1, 2, . . . , m}. Using (34) and (35) one gets
m∏

i=1
δi(xiyi) =

m∏
i=1

δi(xi)δi(yi)

and choosing xi = yi = 1 for i �= j, j being fixed, we get δj(xjyj) = δj(xj)δj(yj),

i, j ∈ {1, 2, . . . , m}, with regard to (36). Consequently, the general solutions of the
equation (34) are of the form (35), where δi (i = 1, 2, . . . , m) are the general solutions

(33) of Cauchy’s power equation.

Theorem 3. If (3) is a stationary transformation of the equation (1) then

(37) f(t, v, v1, . . . , vm) =
k∑

i=1

ai(t)bi(v)
m∏

j=1

δij(vj) + q(t)v
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holds for arbitrary functions ai, q on the interval J and an arbitrary k (k � 1), and

(38) g(t, x, u, u1, . . . , um) =

ai(t)bi(u)
m∏

j=1
δij(uj)

ai(x)u

for every i ∈ {1, 2, . . . , k};

(39) h(t, x, u, u1, . . . , um) = [q(t)− q(x)g(t, x, u, u1, . . . , um)]u,

where functions bi, δij are continuous solutions of Cauchy’s power equations.

�����. The assertion follows from Lemma 1, Theorem 1 and Theorem 2 with

respect to Observation 2 and Remark 1. We have used q(t) =
k∑

i=1
qi(t) in Theorem 3.

�

Remark 2. In the case k � m we obtain from (37) a linear functional-differential
equation

(40) y′(x) = q(x)y(x) + a1(x)y(ξ1(x)) + . . .+ ak(x)y(ξk(x))

choosing bi(x) = |y(x)|0 = 1 for every i ∈ {1, 2, . . . , k}; δij(y(ξj)) = |y(ξj)|0 = 1 if
j �= i and δii(y(ξi)) = |y(ξi)| · sign y(ξi), i, j ∈ {1, 2, . . . , k}, according to Observa-
tion 1.

Theorem 4. The transformation of the form z(t) = L(t)y(ϕ(t)) is the most

general transformation converting any equation

(41) y′(x) =
k∑

i=1

ai(x)bi(y(x))
m∏

j=1

δij(y(ξj(x))) + q(x)y(x)

defined on I into another equation

(42) z′(t) =
k∑

i=1

Ai(t)bi(z(t))
m∏

j=1

δij(z(ηj(t))) +Q(t)z(t)

defined on J . Moreover, (41) is globally transformable into (42) if and only if the

functions L, ϕ satisfy the relations

ξj(ϕ(t)) = ϕ(ηj(t)), j = 1, 2, . . . , m; ϕ(J) = I,(43)

Q(t) =
L′(t)
L(t)

+ q(ϕ(t))ϕ′(t), Ai(t) =
ai(ϕ(t))ϕ′(t)L(t)

bi(L(t))
m∏

j=1
δij(L(ηj(t)))

(44)
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on J . Here the functions bi, δij (i = 1, . . . , k; j = 1, . . . , m) are continuous solutions

of Cauchy’s power equation.

�����. We prove that the transformation z(t) = L(t)y(ϕ(t)) converts any
equation (41) into another equation (42). We have

z(t) = L(t)y(ϕ(t)) = L(t)y(x), L(t) �= 0,
z(ηj(t)) = L(ηj(t))y(ϕ(ηj(t))) = L(ηj(t))y(ξj(ϕ(t))) = L(ηj(t))y(ξj(x))

(j = 1, 2, . . . , m; i = 1, 2, . . . , k), similarly to the proof of Lemma 1. We have the
identities

z′(t) = L′(t)y(ϕ(t)) + L(t)ẏ(ϕ(t))ϕ′(t) =

(
L′(t)
L(t)

+ q(ϕ(t))ϕ′(t)

)
z(t)

+
k∑

i=1

ai(ϕ(t))ϕ′(t)L(t)

bi(L(t))
m∏

j=1
δij(L(ηj(t)))

bi(z(t))
m∏

j=1

δij(z(ηj(t)))

=
k∑

i=1

Ai(t)bi(z(t))
m∏

j=1

δij(z(ηj(t))) +Q(t)z(t), (· = d/dϕ)

and (44) are valid on J. According to Remark 2, every linear differential equation is
a particular case of the equation (41). The most general pointwise transformation

for the linear differential equation (see [3, 10]) is of the form z(t) = L(t)y(ϕ(t)).
This fact implies that (3) is the most general transformation for the equation (41).

Moreover, the transformation (3) converts (41) into (42) if and only if (43) and (44)
hold on J. �

Corollary 1. The transformation (3) is a stationary transformation of the equa-
tion (41) if and only if ϕ is a simultaneous solution of

ξj(ϕ(x)) = ϕ(ξj(x)), j = 1, 2, . . . , m; ϕ(I) = I

(see [12, 13]) and

ai(ϕ(x))ϕ′(x)L(x) = ai(x)bi(L(x))
m∏

j=1

δij(L(ξj(x))); i = 1, . . . , k;

L′(x) = (q(x) − q(ϕ(x))ϕ′(x))L(x), x ∈ I.

Here the functions bi, δij , i ∈ {1, 2, . . . , k}, j ∈ {1, 2, . . . , m}, are continuous solutions
of Cauchy’s power equation.
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Remark 3. The equation (41) involves the equations

y′(x) + p(x)|y(τ(x))|λ sign y(τ(x)) = 0, λ � 0;

y′(x) =
(x− 1)3

x2(x− 2)2 y(x− 1)
3, x � 3;

y′(x) = 21−xy(2x)1/3y(3x)y(4x)1/3;

y′(x) =
|y(x+ sinx)|α1 sign y(x+ sinx)|̇y(x+ cosx)|α2 sign y(x+ cosx)

xβ | ln(x + sinx)|α1 | ln(x+ cosx)|α2 ,

x � 2�, αi > 0, α = α1 + α2 > 1, β < 1;

. . .

considered in [4].

Remark 4 (see [6] and [9], pp. 355, 357). In a situation when the deviating
arguments in equation (41) are constant deviations

ξj(x) = x− cj , cj ∈ � − {0}; j = 1, 2, . . . , m,

the condition ξj(ϕ(t)) = ϕ(ηj(t)) becomes a system of the Abel equations

ϕ(ηj(t)) = ϕ(t) − cj ; j = 1, 2, . . . , m.

When the deviating arguments in (42) are

ηj(t) = t− dj , dj ∈ � − {0},

then we get

ϕ(t− dj) = ϕ(t)− cj ; j = 1, 2, . . . , m.

If we require that the delayed arguments be converted into delayed ones (or the
advanced into advanced), then we need ϕ′(t) > 0, t ∈ J. Let dj/dk be irrational for

a pair j, k ∈ {1, 2, . . . , m}. Then for each fixed j ∈ {1, 2, . . . , m}, the Abel equation
ϕ(t − dj) = ϕ(t) − cj has a general solution ϕ ∈ C1(J), ϕ′(t) > 0, ϕ(J) = I, of the

form

ϕ(t) =
cj

dj
t+ k, k ∈ �.

For the existence of a simultaneous solution ϕ it is then sufficient and necessary to
have 	 = cj/dj (a constant not depending on j) for all j ∈ {1, 2, . . . , m}.
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Example. Consider two equations

y′(x) = a1 exp{λ1x}|y(x)|α sign y(x)y(x− c1)

+ b1 exp{µ1x}|y(x− c1)|βy(x− c2) + q1y(x),

x ∈ I = [a,∞),

z′(t) = a2 exp{λ2t}|z(t)|α sign z(t)z(t− d1)

+ b2 exp{µ2t}|z(t− d1)|βz(t− d2) + q2z(t),

t ∈ J = [b,∞), with constant deviations, ai, bi, ci, di, qi, λi, µi, α, β ∈ �; i = 1, 2;
d1
d2
being irrational, c1

d1
> 0. These two equations are of the form (41) and (42),

respectively. We have

b1(u) = |u|α signu, δ11(u) = u, δ12(u) = 1,

b2(u) = 1, δ21(u) = |u|β, δ22(u) = u, u ∈ �

and the coefficients

a1(x) = a1 exp{λ1x}, a2(x) = b1 exp{µ1x}, q(x) = q1, x ∈ I,

A1(t) = a2 exp{λ2t}, A2(t) = b2 exp{µ2t}, Q(t) = q2, t ∈ J.

Due to Theorem 4 the equations are equivalent if and only if

ϕ(t− dj) = ϕ(t)− cj , ϕ(J) = I, j = 1, 2;

L′(t)
L(t)

= Q(t)− q(ϕ(t))ϕ′(t) = q2 − q1ϕ
′(t),

A1(t) =
a1(ϕ(t))ϕ′(t)L(t)

b1(L(t))δ11(L(t− d1))δ12(L(t− d2))
=

a1(ϕ(t))ϕ′(t)L(t)
|L(t)|α signL(t)L(t− d1)

=
a1(ϕ(t))ϕ′(t)

|L(t)|α−1L(t− d1)
,

A2(t) =
a2(ϕ(t))ϕ′(t)L(t)

b2(L(t))δ21(L(t− d1))δ22(L(t− d2))
=

a2(ϕ(t))ϕ′(t)L(t)
|L(t− d1)|βL(t− d2)

on J.

In accordance with Remark 4 we have ϕ(t) = 	t+k, 	 = c1
d1
= c2

d2
> 0, k ∈ �−{0}

and ϕ(t) = 	(t − b) + a for ϕ(J) = I. Then L′(t)
L(t) = q2 − q1	 and we obtain L(t) =

c exp{kt}, k = q2 − q1	, c ∈ � − {0}. From the last two conditions we get

a2 exp{λ2t} =
a1	 exp{λ1	t} exp{(a− 	b)λ1}

c|c|α−1 exp{(α− 1)kt} exp{kt} exp{−kd1}
,

b2 exp{µ2t} =
cb1	 exp{µ1	t} exp{(a− 	b)µ1} exp{kt}

c|c|β exp{kβt} exp{−kβd1} exp{kt} exp{−kd2}
, t ∈ J.
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Thus the equations are equivalent with respect to the transformation z(t) =

L(t)y(ϕ(t)) if and only if there exist c ∈ � − {0} and 	 ∈ �, 	 > 0, such that

cj = 	dj (j = 1, 2), q2 − q1	 = k,

a2|c|α sign c = 	a1 exp{(a− 	b)λ1} exp{kd1}, λ2 − 	λ1 + kα = 0,
b2|c|β = 	b1 exp{(a− 	b)µ1} exp{kβd1} exp{kd2}, µ2 − 	µ1 + kβ = 0.

For c, k we get the transformation functions L(t) = c exp{kt}, ϕ(t) = (t− b)	+ a.

I am most grateful to Professor J. Aczél and Professor F. Neuman for valuable

remarks improving this paper.
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