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PTÁK HOMOMORPHISM THEOREM REVISITED

J. R. Ferrer, M. López Pellicer and L. M. Sánchez Ruiz, Valencia

(Received July 30, 1997)

Abstract. Rodrigues’ extension (1989) of the classical Pták’s homomorphism theorem to
a non-necessarily locally convex setting stated that a nearly semi-open mapping between
a semi-B-complete space and an arbitrary topological vector space is semi-open. In this
paper we study this extension and, as a consequence of the results obtained, provide an
improvement of Pták’s homomorphism theorem.
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1. Introduction

Pták’s theory characterizes B-complete spaces as those locally convex spaces (l.c.s.)
E for which every continuous nearly open linear mapping of E into any l.c.s. F is

open (cf. [2, 11]). These results were carried over to a non-locally convex setting
by Adasch (cf. [1]) and Sánchez Ruiz [9] who mixed locally convex and non-locally

convex spaces, both of them getting a generalization of Pták spaces in the absence
of local convexity conditions and preserving completeness. This did not happen

in Rodrigues’ extension to the non-locally convex setting [4, 5] which gives Pták’s
theorem when l.c.s. are considered in the range. And even when a homomorphism

theorem in his general setting is not achieved since only semi-openness is ensured in
the conclusion, there are interesting ideas in his development that we aim to focus on

and clarify in this paper from a different viewpoint. As a consequence of the results
obtained here we are able to furnish a new homomorphism theorem with weaker
conditions than in Pták’s.

Throughout this paper the word ‘space’ will stand for ‘Hausdorff topological vector
space over the field of real numbers’ and our notation is standard. Let us just recall

Partially supported by DGICYT PR97-0342.

341



that if U and V are the sets of all neighbourhoods of the spaces E and F , then

a linear mapping f of E into F is nearly open if f(U) ∈ V for each U ∈ U . If
E is locally convex, then E is B-complete (or a Pták space) if each subspace L of
its dual E′, such that L ∩ U◦ is σ(E′, E)-closed for all U ∈ U , is σ(E′, E)-closed.

And following [1], given a space E(τ), τ◦◦ will denote its associated locally convex
topology which is generated by all absolutely convex neighbourhoods of the origin.

2. New reading and consequences of Rodrigues’ ideas

One of the concepts used by Rodrigues [4] is that of an adequate map between spaces.
To this aim he first considers what he calls small adjoint of a linear map T between

two spaces E and F , i.e. the mapping T t of the set ∆ = {d ∈ T (E)
′
: d ◦ T ∈ E′},

with T (E) endowed with the topology induced by F , into E′ defined by T t(d) = d◦T .

Definition 2.1. A linear map T between spaces E and F is said to be adequate
if given x ∈ E, a ∈ E′, then 〈x, T t(∆)〉 = {0} and 〈KerT, a〉 = {0} implies 〈x, a〉 = 0.

Remark 2.1. It is easy to check the statement on [4, p. 324] that if F is locally
convex and T is continuous, then T is adequate. In fact, under these circumstances

continuity of T implies that ∆ = T (E)
′
and since 〈T (E), T (E)′〉 is a dual pairing,

condition 〈x, T t(∆)〉 = {0} implies that 〈Tx, d〉 = 0 for all d ∈ T (E)
′
and con-

sequently Tx = 0, i.e. x ∈ KerT . Then, condition 〈KerT, a〉 = {0} gives that
〈x, a〉 = 0 and T is adequate. The existence of non-continuous adequate maps be-
tween locally convex spaces will be easily concluded from our Proposition 2.2 which
gives a characterization of adequate maps via duality arguments.

We will identify ∆ with Λ = {d ∈ (T (E))′ : d ◦ T ∈ E′}, with T (E) endowed with
the topology induced by F in a natural way since each continuous linear form on
T (E) can be easily extended to a continuous linear form on its closure.

Lemma 2.1. Let τT be the final topology on T (E) induced by T , and let τ0
be the infimum of the topologies τT and the one induced by F on T (E). Then
Λ =

(
T (E)(τ0)

)′
.

�����. Assume d ∈ Λ, and let U be an open zero neighbourhood in � . Then
T−1(d−1(U)) is an open neighbourhood of the origin in E, and therefore d−1(U) is

an open neighbourhood of the origin in T (E)(τT ), thus d ∈
(
T (E)(τT )

)′
. On the

other hand, d−1(U) is also an open neighbourhood of the origin in T (E) with the

topology induced by F since d is continuous on T (E). Hence d−1(U) is an open
neighbourhood of the origin in T (E)(τ0), thus d ∈

(
T (E)(τ0)

)′
.
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Conversely, given h ∈
(
T (E)(τ0)

)′
, h ∈

(
T (E)(τT )

)′
and since the linear map of

E onto T (E)(τT ) is continuous, h ◦ T ∈ E′. Also, h is continuous on T (E) endowed
with the topology induced by F , which implies that h ∈ Λ. �

With the notation of the above lemma, we have the following

Proposition 2.2. Let T be a linear map of E into F . The following assertions
are equivalent:

(i) T is adequate.

(ii)
(
T (E)(τ0)

)′
is σ

((
T (E)(τT )

)′
, T (E)(τT )

)
-dense in

(
T (E)(τT )

)′
.

�����. [(i) ⇒ (ii)]. Let A be the σ
((
T (E)(τT )

)′
, T (E)(τT )

)
-closure of(

T (E)(τ0)
)′
in

(
T (E)(τT )

)′
and suppose that A �

(
T (E)(τT )

)′
. Then the the-

orem of Hahn-Banach applied to each ψ ∈
(
T (E)(τT )

)′ \ A gives a Tx ∈ T (E) such
that ψ(Tx) = 1 and 〈Tx,A〉 = {0}. In particular this yields that 〈Tx,∆〉 = {0}, or
equivalently 〈x, T t(∆)〉 = {0}.
On the other hand if we consider a ∈ E′ defined by 〈x, a〉 = 〈Tx, ψ〉, then it satisfies

〈KerT, a〉 = 〈T (KerT ), ψ〉 = {0}. However, 〈x, a〉 = ψ(Tx) = 1 and therefore T is
not adequate.

[(ii)⇒ (i)]. Let x ∈ E, a ∈ E′ be such that 〈x, T t(∆)〉 = {0} and 〈KerT, a〉 = {0}.
By the above lemma the former of these conditions is equivalent to ϕ(Tx) = 0 for
all ϕ ∈

(
T (E)(τ0)

)′
. Then (ii) implies that

〈
Tx,

(
T (E)(τT )

)′〉
= {0}.

Now 〈KerT, a〉 = {0} enables us to consider â ∈
(
T (E)(τT )

)′
defined by

â(Tx) = ax. Therefore â(Tx) = 0, i.e. 〈x, a〉 = 0 and T is adequate. �

Remark 2.2. Proposition 2.2 enables us to find non-continuous adequate maps
between locally convex spaces, just by considering the identity map i : E(τ1) →
E(τ2), with τ1 strictly coarser than τ2, since then τ0 = inf{τ1, τ2} = τ1 and (E(τ0))′
is σ(E∗, E)-dense in E∗.

Given a linear map T between the spaces E and F and a seminorm P on E, a

new seminorm P/T is considered on T (E) by means of P/T (y) = inf P (T−1y) for
each y ∈ T (E). Then T is semi-open [4] if PT is continuous on T (E) whenever P is

continuous on E. This definition is tightly related to openness with the associated
locally convex topologies and thus Theorem 10 of [4] provides a homomorphism

theorem for these topologies. This follows from the fact that P is continuous if and
only if {x ∈ E : P (x) < 1} is open in E, that P/T is continuous if and only if
{y ∈ T (E) : P/T (y) < 1} is open in T (E), and that T ({x ∈ E : P (x) < 1}) =
{y ∈ T (E) : P/T (y) < 1}. And therefore T is semi-open if and only if for each
seminorm P on E such that {x ∈ E : P (x) < 1} is open, then T ({x ∈ E : P (x) < 1})
is open. Bearing this in mind, we have
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Proposition 2.3. Let T be a linear map between the spaces E(τ1) and F (τ2).
The following assertions are equivalent:

(i) T is semi-open.

(ii) T : E(τ◦◦1 )→ F (τ◦◦2 ) is open.

A space E is semi-B-complete [4] if each subspace L of E′ such that L ∩ E∗
P is

σ(E′, E)-compact in E′ for all continuous seminorms P on E, is σ(E′, E)-closed.

In this definition E∗
P = {a ∈ E∗ : a � P on E}. A standard argument gives the

following characterization of this space as well as of E′
P = {a ∈ E′ : a � P on E}

through duality.

Lemma 2.4. E′
P = {x ∈ E : P (x) < 1}◦ with the polar taken in 〈E,E′〉 and

E∗
P = {x ∈ E : P (x) < 1}◦ with the polar taken in 〈E,E∗〉.

Therefore E is semi-B-complete if and only if each subspace L of E′ such that
L ∩ E′

P = L ∩ {x ∈ E : P (x) < 1}◦ is σ(E′, E)-compact in E′ for all continu-

ous seminorms P on E, is σ(E′, E)-closed. Hence it follows that if a space E(τ)
is semi-B-complete, then E(τ◦◦) is B-complete. This property reminds the one of

subbarrelled spaces [8] (introduced for the first time in [6] and called semi-barrelled
in [4])—those in which every barrel is a neighbourhood of the origin (cf. [10, Re-

mark 2.1])—for which the implication E(τ) subbarrelled ⇒ E(τ◦◦) barrelled holds,
the question whether the converse is true remaining open. Subbarrelled spaces are

precisely the class of spaces characterized by satisfying the closed graph theorem
when Fréchet or Banach spaces are considered in the range, [8], whilst the spaces

E(τ) for which E(τ◦◦) is barrelled are the class of spaces characterized by satisfying
the Banach-Steinhaus theorem when Fréchet or Banach spaces are considered in the

range, [7].

Rodrigues [4, Theorem 10] states that a nearly semi-open map between a

semi-B-complete space and an arbitrary topological vector space is semi-open.
Here a nearly semi-open map stands for a map T between two spaces E and F such

that for every continuous seminorm P on E, there exists a continuous seminorm
Q on T (E) such that, if b ∈ T (E)′ and b ◦ T ∈ E′

P , then b ∈ T (E)′Q. Next we point
out that, in the same way as with semi-open and open maps, there is a tight rela-
tion between this property and nearly openness with the associated locally convex

topologies.

Proposition 2.5. Let T be a linear map between the spaces E(τ1) and F (τ2).
The following assertions are equivalent:

(i) T is nearly semi-open.

(ii) T : E(τ◦◦1 )→ F (τ◦◦2 ) is nearly open.

344



�����. Note that b ◦T ∈ E′
P is equivalent to saying that |b(Tx)| � 1 whenever

P (x) < 1 since E′
P = {x ∈ E : P (x) < 1}◦. Thus (i) means that {b ∈ T (E)′ :

|b(Tx)| � 1 whenever P (x) < 1} ⊆ T (E)′Q, which is equivalent to T ({x ∈ E : P (x) <
1})◦ ⊆ {y ∈ T (E) : Q(y) < 1}◦, where the polars are taken in 〈T (E), T (E)′〉. Taking
polars again, the above is equivalent to the inclusion {y ∈ T (E) : Q(y) � 1} ⊆
T ({x ∈ E : P (x) < 1}) with the closure taken in 〈T (E), T (E)′〉, i.e. that the closure
of the image by means of T of a τ◦◦1 -neighbourhood of the origin is a neighbourhood
of the origin in T (E) with the topology induced by τ◦◦2 , which is precisely (ii). �

This proposition clearly generalizes [4, Lemma 7] making its proof immediate.

3. The homomorphism theorem

Theorem 3.1. Let E be a locally convex space. The following assertions are
equivalent:

(i) Each adequate nearly open linear mapping T of E into any l.c.s. F is a strict
morphism.

(ii) E is a Pták space.

�����. [(i)⇒ (ii)]. This implication follows from Pták’s theory and Remark 2.1.
[(ii) ⇒ (i)] We will follow the notation of Lemma 2.1 and assume that T is onto,

which means no loss of generality. Then Proposition 2.2 implies that ∆ = {d ∈ F ′ :
d ◦ T ∈ E′} = (F (τ0))′ is σ

(
(F (τT ))′, F (τT )

)
-dense in (F (τT ))′. On the other hand,

for each neighbourhood of the origin U in E, U◦ ∩T t(∆) = T t(T (U)◦) = T t(T (U)
◦
)

is σ(E′, E)-compact and therefore σ(E′, E)-closed. Under (ii) this gives that T t(∆)

is σ(E′, E)-closed and therefore ∆ is σ
(
(F (τT ))′, F (τT )

)
-closed. Hence ∆ = (F (τT ))′

and both τ0 and τT generate the same dual.

In order to see that T is open it suffices to check that the topology on F is finer

than τT . Let V be a τT -barrel τT -neighbourhood of the origin in F . Then there is
a neighbourhood of the origin in E such that T (U) ⊆ V , and therefore T (U)

τT ⊆ V .

The above coincidence of duals yields T (U)
τT
= T (U)

τ0
, and since the topology on

F is finer than τ0, it follows that T (U) ⊆ T (U)
τ0 ⊆ V . Finally, nearly openness

of T implies that T (U) is a neighbourhood of the origin in F , therefore V is also a
neighbourhood of the origin in F , and T is a strict morphism. �
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