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ALMOST BUTLER GROUPS

Ladislav Bican, Praha

(Received December 2, 1998)

Abstract. Generalizing the notion of the almost free group we introduce almost Butler
groups. An almost B2-group G of singular cardinality is a B2-group. Since almost B2-
groups have preseparative chains, the same result in regular cardinality holds under the
additional hypothesis that G is a B1-group. Some other results characterizing B2-groups
within the classes of almost B1-groups and almost B2-groups are obtained. A theorem of
[BR] stating that a group G of weakly compact cardinality λ having a λ-filtration consisting
of pure B2-subgroup is a B2-group appears as a corollary.

All groups in this paper are additively written abelian. By a smooth (ascending)

union of a group G we mean a collection of pure subgroups Gα indexed by an initial
segment of ordinals with the property that Gβ � Gα when β < α and Gα =

⋃
β<α

Gβ

whenever α is a limit ordinal. For unexplained terminology and notation see [F1].

An exact sequence E : 0 −−→ H −−→ G
β−−−→ K −−→ 0 with K torsion-free is

balanced if the induced map β∗ : Hom(J, G) −−→ Hom(J, K) is surjective for each

rank one torsion-free group J . Equivalently, E is balanced if all rank one (completely
decomposable) torsion-free groups are projective with respect to E.

A torsion-free groupB is said to be a B1-group (Butler group) if Bext(B, T ) = 0 for
all torsion groups T , where Bext is the subfunctor of Ext consisting of all balanced-

exact extensions.
A subgroup D of a torsion-free group G is said to be decent in G if D is pure and,

for any finite rank pure subgroup C/D of G/D, there is a finite rank Butler group
B of C such that C = D + B. The subgroup D is said to be prebalanced in G, if

the same holds for every rank one pure subgroup C/D of G/D. Our definition of
a decent subgroup is slightly stronger than that of [AH] since we demand D to be

This research has been partially supported by the grant GAČR 201/95/1453 of the Czech
Republik Grant Agency.
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pure. It is easy to verify that decency is transitive. Also, if A � B � G and if both

A and B/A are decent subgroups of G and G/A, respectively, then B is decent in G.

Another relevant concept in the study of infinite rank Butler groups is the torsion

extension property (TEP). A (pure) subgroup H of a torsion-free group G is said to
have TEP in G, or briefly, H is TEP in G, if every homomorphism H → T with T

torsion extends to a homomorphism G → T .

A torsion-free group G is called a B2-group if G is the union of a smooth ascending

chain of pure subgroups G =
⋃

α<µ
Hα where, for each α + 1 < µ, Hα+1 = Hα + Bα

with Bα a Butler group of finite rank. We will call {Hα | α < µ} a B-filtration of

the group G.

Recall that a pure subgroupK of a torsion-free group G is said to be preseparative,

if for each g ∈ G \K there is a countable subset {h0, h1, . . .} ⊆ K such that for each
h ∈ K there are m, n < ω, m �= 0, with t(g + h) � t(mg + h0)∪ t(mg + h1) ∪ . . .∪
t(mg + hn). In this case we will also say that {h0, h1, . . .} is a preseparative set for
g over K. An equivalent definition of a preseparative subgroup has been given in

Bican, Fuchs [15] under the name ℵ0-prebalanced subgroup. Let K be a corank one
pure subgroup of a torsion-free group G. The types t(J) of those pure rank one
subgroups J of G which are not contained in K generate a lattice ideal IG|K in the
lattice of all types. The subgroup K is preseparative in G if this ideal is countably

generated. If the corank of K in G is greater than one, then K is defined to be
preseparative in G if it is preseparative in every pure subgroup H of G containing K

as a corank one subgroup. A smooth ascending union G =
⋃

α<µ
Hα of preseparative

subgroups with H0 = H and |Gα+1/Gα| � ℵ0 (equivalently Gα+1/Gα of rank one)
for each α < µ is called a preseparative chain from H to G. For H = 0 we speak

about a preseparative chain of G.

Recall [AH] that a collection C of subgroups of G is called an axiom-3 family if

C satisfies (i) 0, G ∈ C; (ii) if {Hi | i ∈ I} is any set of subgroups in C, then their
sum

∑
i∈I

Hi ∈ C; (iii) if H ∈ C and X is a countable subset of G, then there is a

K ∈ C containing H and X such that K/H is countable. If, moreover, each A ∈ C

is TEP in G (and consequently G/A is a B2-group) then such an axiom-3 family

has been called canonical in [BR] . Looking at the proof of [B2; Theorem 6] we see
that with a given B-filtration of a B2-group G it is associated a canonical axiom-3

family F(G) of decent, TEP and B2-subgroups of G in the natural way, given by the
closed subsets of the corresponding ordinal number. It is natural to speak about a

canonical axiom-3 family of decent subgroups corresponding to a given B-filtration

of G. It is not too hard to show (use e.g. [B2; Lemma 3]) that if G =
⋃

α<µ
Hα is

a B-filtration of G and G =
⋃

α<λ

Kα is any smooth ascending union consisting of
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members of the given B-filtration of G, then F(Kβ) ⊆ F(Kα) whenever β � α and⋃
β<α

F(Kβ) ⊆ F(Kα), α limit. Moreover, if H � K are members of F(G), then one
can easily prove the existence of a B-filtration from H to K.

Several recent results (cf. e.g. [FR1], [FR2], [BR], [BRV]) show that Butler groups

form an appropriate generalization of free groups. Recall that for an infinite cardinal
λ a torsion-free group G is said to be λ-free if each subgroup of G of cardinality

strictly less than λ is free. Unlike the case of free abelian groups, a (pure) subgroup
of aB1-group (B2-group) need not be aB1-group (B2-group). However, as mentioned

above, B2-groups are characterized in [AH] (see also [FMa]) as torsion-free groups
having an axiom-3 family C of decent and TEP B2-subgroups, and consequently

every subset X of G is contained in a member of C of cardinality |X | · ℵ0. In the
light of these facts it is natural to work with some families of subgroups of the given
group G and to distinguish between hereditary and non-hereditary families. Thus

we are led to the following definitions.

1. Definition. Let λ be an uncountable cardinal. A collection C of subgroups

of the group G is called a weak λ-cover of G if each member of C has cardinality
less than λ, every subset ∅ �= X ⊆ G with |X | < λ is contained in a member of C

of cardinality |X | · ℵ0 and C is closed under smooth ascending unions H =
⋃

α<κ
Hα

with |H | < λ. Moreover, we say that a weak λ-cover C of the torsion-free group G is
hereditary, if for each uncountable H ∈ C the set CH = {K ∈ C | K � H, |K| < |H |}
is a weak |H |-cover of H .

In what follows similar notions and results concerning B1-groups and B2-groups

will appear several times. For the sake of brevity we shall use the notation B∗-group
in the sense that it means either a B1-group or a B2-group throughout. In other

words, this abbreviation will record two facts at once.

2. Definition. Let λ be an uncountable cardinal. A torsion-free groupG is said
to be a (hereditary) λ-B∗-group if it has a (hereditary) weak λ-cover C consisting of

pure B∗-subgroups. If, moreover, G is of cardinality λ, then G is called a (hereditary)
almost B∗-group.

Recall that a subset C of the regular cardinal λ is called a cub (closed and un-
bounded set) if it is cofinal to λ, i.e. for each α < λ there is β ∈ C with α < β (C is

unbounded) and each limit ordinal α < λ such that α ∩ C is cofinal to α belongs to
C (C is closed). A subset of λ is said to be stationary, if it intersects every cub in

λ non-trivially. Now we are ready to present our results. We start with the singular
cardinality case concerning almost B2-groups.
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κ-Shelah game. Let κ be a regular uncountable cardinal and let G be a torsion-

free group of cardinality |G| > κ+. We define the κ-Shelah game onG in the following
way: Player I picks subgroups G2i, i < ω, of cardinality κ and player II picks G2i+1
such that Gi � Gi+1 for all i < ω. Player II wins if G2i+1 is decent and TEP in

G2i+3 for each i < ω.

3. Lemma. If κ is a regular uncountable cardinal and G an almost B2-group of

cardinality λ > κ+, then player II has a winning strategy in the κ-Shelah game.

�����. Let C be a weak λ-cover of pure B2-subgroups of G. In view of
Lemma 1.2 in [H], the κ-Shelah game is determinated and so we are going to show

that player I has no winning strategy. By way of contradiction let us assume that
I has a winning strategy s and that he has picked G0. Take H0 to be any member

of C of cardinality κ containing G0 and assume that Hβ, β < α, have been already
defined for some 0 < α < κ+. For α limit we simply set Hα =

⋃
β<α

Hβ , while for

α = β + 1 we select Hα to be any member of C of cardinality κ containing Hβ and
all s(Hα0 , . . . , Hαn), α0 < . . . < αn < α, n < ω. The union H =

⋃
α<κ+

Hα belongs to

C by the hypothesis and [B1; Lemma 12] yields the existence of a cub U in κ+ such

that Hα is TEP in H for each α ∈ U . Moreover, in virtue of [BR; Proposition 5.1]
the Hα’s can be assumed decent in H .

Now when player I has chosen G2i in the κ-Shelah game, then player II picks G2i+1
to be Hα, where α is the least non-limit element of U containing G2i. �

As in the case of free groups we are going to prove the following result.

4. Theorem. An almost B2-group of singular cardinality λ is a B2-group.

�����. There is a smooth ascending union λ =
⋃

α<µ
κα with κ0 > µ = cof λ and

κα regular whenever α is non-limit. Further, let C be a weak λ-cover of B2-subgroups

of G and let G =
⋃

α<µ
Gα be a smooth union with Gα ∈ C and |Gα| = κα.

Set G0α = Gα for each α < µ and assume that Gn
α has been already defined for

some n < ω and all α < µ. For α limit or 0 set Hn
α = Gn

α and for α successor take Hn
α

according to the κα-Shelah game G0α, H0α, G1α, H1α, . . ., the hypotheses of Lemma 3
being obviously satisfied. For each α < µ let {hj

α | j < κα} be any list of the elements
of Hn

α . Moreover, Hn
α has a canonical axiom-3 family F(Hn

α) of decent and TEP
subgroups corresponding to a given B-filtration of Hn

α . The routine set-theoretical

arguments lead to the conclusion that we can select Gn+1
α in such a way that it has

cardinality κα, contains Hn
α ∪ {hj

γ | γ < µ, j < κα} and Gn+1
α ∩Hn

α+1 ∈ F(Hn
α+1).

Now for each α non-limit Hn
α is TEP and decent in Hn+1

α by Lemma 9, hence
Hn+1

α /Hn
α is a B2-group by [B2; Theorem 12], the B-filtration of Hn

α extends to that
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of Hn+1
α by [DHR; Proposition 3.9] and consequently F(Hn

α) ⊆ F(Hn+1
α ) ⊆ F(Hα),

where Hα =
⋃

n<ω
Hn

α . Moreover, for α < µ arbitrary we have Hα = Hα ∩ Hα+1 =
⋃

n<ω
(Hn

α ∩ Hn
α+1) �

⋃
n<ω
(Gn+1

α ∩ Hn
α+1) �

⋃
n<ω
(Hn+1

α ∩ Hn+1
α+1) = Hα and so Hα ∈

⋃
n<ω

F(Hn
α+1) ⊆ F(Hα+1). Hence there is a B-filtration from Hα to Hα+1 and

consequently it remains to show that the union G =
⋃

α<µ
Hα is smooth.

Let α < µ be a limit ordinal and let h ∈ Hα be arbitrary. Then h ∈ Hn
α for some

n < ω and consequently h = hj
α for some j < κα. Thus j < κβ for some β < α,

the chain {κα | α < µ} being assumed smooth. This yields h ∈ Gn+1
β � Hβ and the

proof is complete. �

Leaving open the case of almost B1-groups of singular cardinalities we proceed to

the regular cardinals.

In [B3] the following construction based on the ideas of [F2] and [FMa] was inves-
tigated.

5. Construction. Let H be a preseparative subgroup of a torsion-free group

G and let R be a fixed set of representatives of cosets of G/H . For each g ∈ R we fix
a preseparative set {hg

n | n < ω} ⊆ H for g over H . Now if we set B =
〈
〈mg + hg

n〉∗ |
g ∈ R, m, n < ω, m �= 0

〉
then it is easy to verify that G = H +B and |B| = |G/H |.

Further, if G =
⋃

α<µ
Hα is a smooth ascending union of preseparative subgroups,

then for each α < µ we can construct a subgroup Bα � G in such a way that
Hα+1 = Hα + Bα, |Bα| = |Hα+1/Hα| and, obviously, Hα =

∑
�<α

B� + H0 for all

relevant α’s.

Recall that a subset S ⊆ µ is said to be closed, if Lβ∩Bβ � H0+〈Bγ | γ ∈ S, γ < β〉
for each β ∈ S. It was proved in [B3] that for a closed subset S ⊆ µ the subgroup

G(S) = H0+
∑

β∈S

Bβ is pure in G (Lemma 2.3) and preseparative in G (Lemma 2.4).

Moreover, every union of closed subsets is closed (Lemma 2.5).

6. Lemma. Let G =
⋃

α<µ
Hα be a preseparative chain of a torsion-free group G.

If S ⊆ µ is a closed subset, then every element λ ∈ S lies in a countable closed subset

of µ contained in S.

�����. By way of contradiction let us assume that λ ∈ S is the first ordinal

which is not in a countable closed subset contained in S. Since Hλ∩Bλ is countable,
it has a basis {x0, x1, . . .} (possibly finite). If we set ν(g) = ν for g ∈ G whenever

g ∈ Hν+1 \ Hν , then we infer from xi ∈ Hλ that λi = ν(xi) < λ. We claim that
λi ∈ S. If not, then Hλ ∩ Bλ � 〈Bγ | γ ∈ S, γ < λ〉 yields that xi = y + z with
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y ∈ 〈Bγ | γ ∈ S, γ < λi〉 and z ∈ 〈Bγ | γ ∈ S, γ > λi〉. Assuming z non-zero, z is

expressible in the form z = z1 + . . . + zk, 0 �= zi ∈ B�i , with λi < �1 < . . . < �k

and �k as small as possible. Now zk = xi − y − z1 − . . . − zk−1 ∈ H�k−1 , which
contradicts the choice of �k. Hence z = 0 and xi = y ∈ 〈Bγ | γ ∈ S, γ < λi〉 ⊆ Hλi ,

contradicting ν(xi) = λi. Thus λi ∈ S, λi < λ, xi ∈ Bγ1 + . . . + Bγn , γi ∈ S,
γ < λi, and the choice of λ yields the existence of a countable closed subset Si of S

containing λi, γ1, . . . , γn. Now the set S =
⋃

i<ω

Si is a closed countable subset of S

and so is S ∪{λ}, since xi ∈ G(S) for each i < ω and consequently Hλ ∩Bλ � G(S),

G(S) being pure in G and containing the basis {x0, x1, . . .} of Hλ ∩Bλ. �

7. Lemma. Let λ be a regular uncountable cardinal and G =
⋃

α<λ

Hα a λ-

filtration consisting of B2-groups. Then

(a) G has a preseparative chain consisting of B2-groups of cardinalities strictly less

than λ;

(b) G is a hereditary almost B2-group.

�����. (a) By [F3; Theorem 8.2] there is a preseparative chain from Hα to

Hα+1 for every α < µ and the transitivity of preseparativeness yields (a) in view of
the fact that the members of the preseparative chain from Hα to Hα+1 are B2-groups

again by the same reason.

(b) Assume that G =
⋃

α<λ

Hα is a preseparative chain of G consisting of B2-

groups of cardinalities less than λ. Realizing that the family D = {G(S) | S ⊂
λ, S closed and bounded} is a hereditary weak λ-cover of G owing to Lemma 6 and
taking into account the closedness of closed subsets under unions we only have to

verify that G(S) is a B2-group whenever S ⊂ λ is closed and bounded, S ⊆ µ < λ.
Set S0 = S and assume that for some β � µ the closed subsets Sγ , γ < β, of µ have

been already defined. For β limit the union Sβ =
⋃

γ<β

Sγ is a closed subset of µ. If

γ = β − 1 exists and H(Sγ) = Hµ then we stop. Otherwise we take the first ordinal
δ ∈ µ\Sγ. In view of Lemma 6 there is a countable closed subset S′ ⊆ µ containing δ

and we can set Sβ = Sγ∪S′. Obviously, G(Sβ)/G(Sγ) is countable and consequently
in this way we obtain (by [B3; Lemma 2.4]) a preseparative chain from G(S) to Hµ.

Thus G(S) is a B2-group by [F3; Theorem 8.2]. �

8. Corollary. Let λ be a regular uncountable cardinal and G a λ-B2-group with

a weak λ-cover C consisting of B2-groups. If K � G is any subgroup of cardinality

λ, then there is a subgroup H of G of cardinality λ that contains K and is an almost

B2-group. Especially, if K is a smooth ascending union of members of C then it is

an almost B2-group.
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�����. Let {kα | α < λ} be any list of elements of K. Set H0 = 0 and

assume that for some α < λ the members Hβ of C containing {kγ | γ < β} have
been already defined for each β < α. For α limit we simply set Hα =

⋃
β<α

Hβ, while

for α = β + 1 we take as Hα any member of C containing Hβ ∪ {kβ} of cardinality
|Hβ | · ℵ0. Then H =

⋃
α<λ

Hα contains K and is an almost B2-group by Lemma 7.

The rest is obvious. �

9. Theorem. The following conditions are equivalent for an uncountable

torsion-free group G:

(i) G is an almost B2-group;

(ii) G =
⋃

α<λ

Hα is a smooth ascending union of B2-subgroups with |Hα| < |G| for
every α < λ;

(iii) G has a preseparative chain consisting of B2-groups of cardinalities less than

|G|;
(iv) G is a hereditary almost B2-group.

�����. If G is of singular cardinality then it is a B2-group by Theorem 4 and

the assertion holds. For |G| = λ regular (i) implies (ii) and (iv) implies (i) trivially,
while the rest follows easily from the preceding lemma. �

10. Corollary. An almost B2-group is a B2-group if and only if it is a B1-group.

�����. By [F3; Theorem 4.1] and Theorem 9. �

The notion of a λ-cover was introduced and investigated in [BRV]. The only differ-

ence between this and the weak λ-cover is that the weak λ-cover consists of subgroups
of cardinalities strictly less than λ only. Now we are going to extend the notion of a

cub and a stationary set in the following natural way.

11. Definition. Let λ be a regular uncountable cardinal and C a weak λ-cover
of the group G. A collection D of members of C is called a C-cub provided it is closed
under smooth ascending unions H =

⋃
α<κ

Hα with H ∈ C and every element of C is

contained in that of D. Furthermore, a subcollection E of C is called C-stationary if
it intersects each C-cub non-trivally.

If G is a torsion-free B1-group of regular cardinality λ and G =
⋃

α<λ

Gα is any

its λ-filtration consisting of B1-subgroups then there is a cub C ⊆ λ such that, for
each α ∈ C, Gα is TEP in Gβ whenever α < β < λ. This very important result

in the theory of infinite rank Butler groups has been proved in [DHR; Theorem 7.1]
(for the simplified proof see [F2]). As a special case we obviously get that G has a
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λ-filtration G =
⋃

α<λ

Gα such that the set {α < λ | Gα is not TEP in Gα+1} is not
stationary. It follows from [BB; Proposition 2.2] that the general condition is also

sufficient. Now we are going to show that the special one is sufficient, too.

12. Theorem. Let G be an almost B∗-group of regular uncountable cardinal-

ity λ. The following conditions are equivalent:

(i) G is a B∗-group;

(ii) for any λ-filtration G =
⋃

α<λ

Gα of G consisting of B∗-groups the set E = {α <

λ | Gα is not TEP in some Gβ} ⊆ λ is not stationary;

(iii) there is a λ-filtration G =
⋃

α<λ

Gα of G consisting of B∗-groups such that the

set E = {α < λ | Gα is not TEP in some Gβ} ⊆ λ is not stationary;

(iv) for each weak λ-cover C of B∗-subgroups of G the set U = {H ∈ C |
H is not TEP in some K ∈ C} is not C-stationary;

(v) there is a weak λ-cover C of B∗-subgroups of G such that the set U = {H ∈ C |
H is not TEP in some K ∈ C} is not C-stationary.

�����. We start with the B1-groups case. (i) implies (ii). By [DHR; Theo-

rem 7.1] there is a cub C in λ such that for each α ∈ C, Gα is TEP in Gβ for all
α < β < λ. Hence E ∩ C = ∅.
The implications (ii) implies (iii) and (iv) implies (v) are obvious.

(iii) implies (iv). Let G =
⋃

α<λ

Gα be a given λ-filtration of G and let C ⊆ λ be a

cub disjoint with the set E. If C is any weak λ-cover of G consisting of B1-groups,

then we can construct a λ-filtration G =
⋃

α<λ

Hα from the members of C in the

natural way. The set D = {α < λ | Gα = Hα} is a cub in λ and C ∩ D is a cub
in λ, too. Now for each α ∈ C ∩ D we see that Gα = Hα is TEP in any Gβ with

α < β < λ and so the regularity of λ yields that {Gα | α ∈ C ∩D} is a C-cub which
is obviously disjoint with U .

(v) implies (i). Let D ⊆ C be a C-cub such that D ∩ U = ∅. Constructing a
λ-filtration G =

⋃
α<λ

Gα of G from the members of D in the usual way, we see that

Gα is TEP in Gα+1 for each α < λ and an application of [BB; Proposition 2.2]

completes the proof of this part.

Proceeding to B2-groups the implications (i) implies (ii) and (iii) implies (iv) follow

from the above part, every B2-group being a B1-group, while the implications (ii)
implies (iii) and (iv) implies (v) are trivial. To prove the remaining implication (v)

implies (i) note that G is a B1-group by the first part and so Corollary 10 completes
the proof. �
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Now we proceed to a result on TEP subgroups which is closely related to [BR;

Proposition 5.1] and which enables us to prove a stronger version of the implication
(ii) =⇒ (i) in the preceding theorem.

13. Proposition. Let G be a torsion-free group which is expressible as a smooth
ascending union of pure subgroups G =

⋃
α<λ

Gα, where λ is a limit ordinal. Then

there is a cub C in λ such that for each α ∈ C either Gα is not TEP in Gα′ where

α′ is the successor of α in C or it is TEP in Gβ whenever α < β and β ∈ C.

�����. Note that if K � H � G are pure subgroups of G, then if K is TEP

in G, it is obviously TEP in H . Thus, if the set {β < λ | Gα is TEP in Gβ} is
unbounded, then Gα is TEP in Gβ whenever α < β < λ. Set t(0) = 0 and assume

that t(β) < λ have been already selected for some α < λ and all β < α. For α limit
we simply set t(α) =

⋃
β<α

t(β), while for α = β + 1 we put t(α) = t(β) + 1 if Gt(β)

is TEP in each Gγ , t(β) < γ < λ, and otherwise we take t(α) to be the first ordinal
γ < λ such that Gt(β) is not TEP in Gγ . Obviously, C = {t(α) | α < λ} is the cub
in λ having the required property. �

14. Proposition. Let G be a smooth ascending union G =
⋃

α<λ

Gα of pure B∗-

subgroups, where λ is a limit ordinal. Then there is a cub C in λ such that for each

α ∈ C the group Gα is TEP in Gβ for each β ∈ C, α < β, whenever it is TEP in Gα′ ,

where α′ is the successor of α in C. If the set E = {α ∈ C | Gα is not TEP in Gα′}
is not stationary in λ then G is a B∗-group.

�����. The first part follows immediately from Proposition 13. Now if E is
not stationary, then there is a cub D in λ such that D ∩ E = ∅. The intersection
C ∩ D is a cub in λ disjoint to E, hence Gα is TEP in Gα′ for each α ∈ C ∩ D

and its successor α′ in C ∩D. By [BB; Proposition 2.2] G is a B1-group and in the
case of B2-groups G has a preseparative chain by Lemma 7 and [F3; Theorem 4.1]

applies. �

For the sake of completeness we shall include the following result on B2-groups

(for the free group due independently to J. Gregory, D.W. Kueker, A. Mekler and
S. Shelah) which has been proved in fact in [BR]. Moreover, we shall extend it to a

similar result for almost B1-groups. The definition of a weakly compact cardinal was
repeated in [BR]. The only fact we will need in the sequel is the following property

satisfied by weakly compact cardinals.

Property (P). A regular cardinal λ is said to have the property (P) if for any
stationary set E ⊆ λ there is a regular cardinal κ < λ such that E ∩ κ is stationary
in κ.
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15. Theorem. If G =
⋃

α<λ

Gα is a smooth ascending union of pure B∗-subgroups

such that |Gα| = |α|·ℵ0 for each α < λ and λ is a regular cardinal having the property

(P), then G is a B∗-group.

�����. Assume first that Gα’s are B1-groups. By Proposition 13 there is a cub

C in λ such that for each α ∈ C the subgroup Gα is TEP in every Gβ , α < β < λ,
whenever it is TEP in Gα′ , α′ being the successor of α in C. In view of Proposition 14

it suffices to show that the set E = {α ∈ C | Gα is not TEP in Gα′} is not stationary.
Assume, by way of contradiction, that E is a stationary subset of λ. By Prop-

erty (P), there is a regular cardinal κ < λ such that E ∩ κ is stationary in κ. Now
Gκ =

⋃
α<κ

Gα is a κ-filtration of the B1-group Gκ consisting of B1-subgroups and

so Theorem 12 yields that the set Eκ = {α < κ | Gα is not TEP in some Gβ} is
not stationary in κ. Thus, there is a cub D in κ such that Eκ ∩ D = ∅. Hence
E ∩ κ ∩ D �= ∅, E ∩ κ being stationary in κ, and so for α ∈ E ∩ κ ∩ D we have

α ∈ E ∩ κ showing that Gα is not TEP in Gα′ , where α′ is the successor of α in C.
On the other hand, α ∈ D means that α /∈ Eκ and consequently Gα is TEP in every

Gβ , α < β < κ. If Gα’s are B2-groups, G has a preseparative chain by Lemma 7
and it suffices to use [F3; Theorem 4.1]. �

16. Corollary. An almost B∗-group G of a weakly compact cardinality λ is a

B∗-group.

�����. If C is a weak λ-cover of G consisting of B∗-subgroups, then we can

construct, in the natural way, a λ-filtration G =
⋃

α<λ

Gα of G such that |Gα| = |α| ·ℵ0
for each α < λ and Theorem 15 applies. �

17. Corollary ([BR; Theorem 5.3]). Let λ be a regular cardinal with the

Property (P) and let G =
⋃

α<λ

Gα be a λ-filtration of G consisting of B2-subgroups.

Then G is a B2-group.

�����. Without loss of generality we may assume that G0 = 0 and we can

construct a refinement of the given λ-filtration to G =
⋃

α<λ

Hα in such a way that

Hα is a B2-group and |Hα| = |α| · ℵ0 for each α < λ. Set H0 = 0 and assume that
for some α < λ we have constructed Hβ = Gα with the required properties. Let C

be an axiom-3 family of decent and B2-subgroups of Gα+1 and let {gγ | γ < |Gα+1|}
be any list of elements of Gα+1. Assuming that for some β � γ the subgroup Hγ has

been already constructed in such a way that Hγ � Gα+1 and |Hγ | = |γ| · ℵ0, we can
take Hγ+1 to be a member of C containing Hγ and the element gδ with the smallest

δ such that gδ /∈ Hγ . Taking simply unions for limit ordinals, we see that after an
appropriate number of steps we reach Gα+1. Now it suffices to use Theorem 15. �
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Again, we will leave open the question whether B1-groups are in general almost

B1-groups or not, and we will conclude this note by presenting some criteria under
which an almost B1-group is a B2-group.

18. Theorem. A B1-group G of uncountable cardinality λ is a B2-group if and

only if it is a hereditary almost B1-group.

�����. If G is a B2-group then by [AH] it has an axiom-3 family D of decent
and TEP B2-subgroups determined by the so called closed subsets of the ordinal λ.

It is easy to verify (see e.g. [B2; Theorem 6]) that the set C of all members of D of
cardinality strictly less than λ is obviously the desired hereditary weak λ-cover of

the group G.

To prove the converse let C be a hereditary weak λ-cover of G and let λ be the

smallest (uncountable) cardinal for which there exists a B1-group G of cardinality
λ satisfying the stated conditions which is not a B2-group. By [BS] and [DR] any

B1-group of cardinality at most ℵ1 is a B2-group and so λ � ℵ2. Assuming λ regular
we can construct a λ-filtration G =

⋃
α<λ

Gα of G consisting of members of C. The

choice of λ yields that all Gα’s are B2-groups, C being hereditary. Now G is a B1-
group and so by Theorem 12 the set E = {α < λ | Gα is not TEP in some Gβ}
is not stationary and an application of Theorem 12 yields that G is a B2-group,
contradicting the hypothesis. Thus λ is necessarily singular. Again, the choice of

λ yields that all the members of C are B2-groups and Theorem 4 yields the final
contradiction completing the proof. �

19. Corollary. An almost B1-group G of uncountable cardinality λ is a B2-

group if and only if it has a hereditary weak λ-cover C of B1-groups such that the

set E = {H ∈ C | H is not TEP in some K ∈ C} is not C-stationary.

�����. We start with the sufficiency of the condition. Let λ be the smallest
cardinal for which there is an almost B1-group G satisfying the stated conditions

which is not a B2-group. As in the preceding proof we have λ � ℵ2. For λ regular
G is a B1-group by Theorem 12 and Theorem 18 applies. The case of λ singular, as

well as the converse implication, have been solved in the preceding proof. �
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