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BARRELLEDNESS OF GENERALIZED SUMS OF NORMED SPACES

A. Fernández, M. Florencio and J. Oliveros, Sevilla

(Received January 13, 1997)

Abstract. Let (Ei)i∈I be a family of normed spaces and λ a space of scalar generalized
sequences. The λ-sum of the family (Ei)i∈I of spaces is

λ{(Ei)i∈I} := {(xi)i∈I , xi ∈ Ei, and (‖xi‖)i∈I ∈ λ}.

Starting from the topology on λ and the norm topology on each Ei, a natural topology
on λ{(Ei)i∈I} can be defined. We give conditions for λ{(Ei)i∈I} to be quasi-barrelled,
barrelled or locally complete.
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1. Introduction and preliminary results

The barrelledness, and related topics, of spaces of vector-valued sequences and

functions have been studied in several papers [1]–[6], [8] and [10]. In particular,
Florencio, Paúl and Sáez, extending the work of Lurje [10] where the barrelledness of

�p{En} had been studied, characterized the barrelledness of the λ-sum of a sequence
of normed spaces in [6]. More recently, Kakol and Roelcke in [8] have studied the

barrelledness of �p-direct sums of a family of seminormed spaces for 1 � p � ∞.
Drewnowski, Florencio and Paúl have studied the barrelledness of bounded vector

functions defined on a set with certain restrictions on its cardinal in [5].

In this paper we continue this investigations using techniques similar to those used
in [1]–[6], to obtain more general results in the setting of the locally convex sum of

a family of normed spaces.

This research has been partially supported by La Consejería de Educación y Ciencia de
la Junta de Andalucía and the DGICYT project no. PB94-1460.
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Let us recall at this point some definitions and notation. In what follows we will

consider a fixed index set I and a space λ of scalar families, or generalized sequences,
on I, i.e., a linear subspace of the space of all real or complex functions defined on I.

We say that λ is solid (see [9, §30]) if whenever it contains β = (βi)i it also

contains all families α = (αi)i with |αi| � |βi| for all i ∈ I. The Köthe-dual λ×

of the space λ is defined as for sequences spaces, i.e., λ× consists of all generalized

sequences (ηi)i such that
∑ |αiηi| < ∞ for every (αi)i in λ. We always consider on

λ a normal locally convex Hausdorff topology in the sense of Rosier (see [12]). Such

a topology can be given by a system Q of seminorms with the following properties:

(a) If α � β (i.e. |αi| � |βi| for all i ∈ I ), then q(α) � q(β) for all q ∈ Q.

(b) For every η in the Köthe-dual space λ× there exists a seminorm q ∈ Q such
that |〈γ, η〉| � q(γ) for all γ ∈ λ.

If (Ei)i∈I is a family of real or complex normed spaces, we define the λ-sum of
(Ei)i∈I as

λ{(Ei)i∈I} := {(xi)i∈I : xi ∈ Ei and (‖xi‖)i∈I ∈ λ}.

To ensure that λ{(Ei)} is a linear space we must assume that λ be solid. Starting
from the topology of λ and the norm topology on each Ei, we consider the locally

convex topology on λ{(Ei)} determined by the seminorms:

σq : x = (xi)i ∈ λ{(Ei)} −→ σq(x) := q
(
(‖xi‖)i

)
∈ �,

as q runs through Q.

In this paper we study the barrelledness of λ{(Ei)}. Recall that a locally convex
space E is barrelled if and only if it is quasi-barrelled (every β(E′, E)-bounded set

in the dual of E is equicontinuous) and has the Banach-Mackey property (every
σ(E′, E)-bounded set in its dual is β(E′, E)-bounded). We refer the reader to the

monographs [7], [9] and [11] for the terminology in local convexity and barrelledness
used here.

We start by lifting the property of quasi-barrelledness from the space λ to the
space λ{(Ei)}.
Following a way similar to the proofs of [4, Theorem 1] or [6, Theorem 4] we can

show the following

Theorem 1. If λ is quasi-barrelled, then λ{(Ei)} is quasi-barrelled.

The next step will be to analyze when the space λ{(Ei)} has the Banach-Mackey
property. We will do this in two cases.

First, in Section 2, when the space λ is defined on an index set I that has nonmea-
surable cardinal. Recall that a set I has nonmeasurable cardinal if there exists no
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countable additive measure µ : P(I) −→ {0, 1} such that µ(I) = 1 and µ({i}) = 0
for all i ∈ I [11, Def. 6.2.21]. As we shall see, this concept will be strongly connected
to the assumption that the space λ{(Ei)} is not barrelled.
Secondly, in Section 3, we will deal with a space λ which has the property of

convergence of sections without any restrictions on the cardinal of I.

Before to do this we need to prove a result about the local completeness of the

space λ{(Ei)}. Its proof is standard but we include it for the sake of convenience.

Theorem 2. If λ is locally complete and every Ei is a Banach space, then λ{(Ei)}
is locally complete.

�����. Taking into account [11, Prop. 5.1.6 and Prop. 3.2.3] we shall show that
if B is a closed disc in λ{(Ei)} and (x(n))n is a sequence of elements of B, then the
series

∞∑
n=1
2−nx(n) converges to an element of B.

LetM = {(‖zi‖)i : z = (zi)i ∈ B}. Note thatM is bounded in λ. Since λ is locally

complete it follows that D = acx(M) is a Banach disc. Now
(
(‖x(n)i ‖)i

)
n
⊂ D

so that the series
∞∑

n=1
2−n

(
‖x(n)i ‖

)
i
converges in λ to an element, say α = (αi)i.

Coordinatewise we have that
∞∑

n=1
2−n‖x(n)i ‖ = αi for every i ∈ I.

From the boundedness of (x(n)i )n and the completeness of each Ei it follows that
∞∑

n=1
2−nx

(n)
i converges to an element xi ∈ Ei. Observe that x = (xi)i is an element

of λ{(Ei)} since ‖xi‖ � αi for every i ∈ I.

We complete the proof by proving that x is the sum of the series
∞∑

n=1
2−nx(n) and

x ∈ B. Given an arbitrary seminorm q on λ we have

σq

(
x−

k∑

n=1

2−nx(n)
)
= q

(
(‖xi −

k∑

n=1

2−nx
(n)
i ‖)i

)

� q

( ∑

n�k+1

2−n(‖x(n)i ‖)i
)

−→
n→∞

0,

since
∞∑

n=1
2−n(‖xi‖)i is convergent in λ. Finally, note that x ∈ B because B is a closed

disc. �
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2. When I has nonmeasurable cardinal

We start this section by studing when the space λ{(Ei)} has the Banach-Mackey
property. In the next theorem we will use the following notation about projections.

If J is a subset of I and x is an element of λ{(Ei)}, then PJ (x) is the generalized
sequence that agrees with x on J and is null on I \ J.

Theorem 3. If I has nonmeasurable cardinal, the space λ is locally complete and

the normed spaces (Ei)i are all barrelled, then the space λ{(Ei)} has the Banach-
Mackey property.

�����. Suppose, on the contrary, that there exists G in the dual space λ{(Ei)}′
that is σ(λ{(Ei)}′, λ{(Ei)})-bounded but is not a bounded set in β(λ{(Ei)}′, λ{(Ei)}).
Then there exists a bounded set A in λ{(Ei)} such that

sup{|〈a, u〉| : u ∈ G, a ∈ A} = +∞.

The set B :=
⋃

J⊆I

PJ(A) is bounded because A is bounded and the set of projections

{PJ : J ⊆ I} is equicontinuous.
From the sets G and B let us consider the filter given on I by

F = {J ⊆ I : G◦ absorbs PI\J(B)},

and let U be the ultrafilter generated by the filter F . Denote by µ the standard
finitely additive measure on P(I) associated with the ultrafilter U . Since I has

nonmeasurable cardinal, we have that µ is noncountable additive, hence there exists
a sequence (Jk)k of pairwise disjoint subsets of I with µ(Jk) = 0 for all k and

µ
( ∞⋃

k=1
Jk

)
= 1.

If we put In =
⋃

k�n

Jk for all n = 1, 2, . . ., we have a decreasing sequence of subsets

of I with empty intersection such that µ(In) = 1 for all n = 1, 2, . . . because

1 = µ

( ∞⋃

k=1

Jk

)
= µ

(
J1 ∪ . . . ∪ Jn−1 ∪

∞⋃

k=n

Jk

)

= µ(J1) + . . .+ µ(Jn−1) + µ

( ∞⋃

k=n

Jk

)

= µ(In).

It follows that each In is in U and therefore G◦ does not absorb PIn(B), so there

exist z(n) ∈ B, supported in In (PIn(z
(n)) = z(n)), and u(n) ∈ G such that

(1) |〈z(n), u(n)〉| > n, for all n = 1, 2, . . . .
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From the bounded sequence (z(n))n we consider the set

D =

{ ∞∑

n=1

αnz(n) : (αn)n in the unit ball of �1
}

.

Let us observe that for all (αn)n in �1 (the space of absolutely summable sequences)

the series
∞∑

n=1
αnz(n) converges in λ{(Êi)i∈I} to an element which we will denote by

z = (zi)i∈I . This follows by applying Theorem 2 above to the space λ and the Banach

spaces (Êi)i. Moreover, as we shall see in a moment, each zi is in Ei, so
∞∑

n=1
αnz(n)

really converges in λ{(Ei)}. Indeed, since (In)n is a decreasing sequence of subsets

of I with empty intersection, for each i ∈ I there are two possibilities:

1) If i /∈ I1, then P{i}(z(n)) = 0 for all n = 1, 2, . . ., so zi = 0.

2) There exists a natural number pi such that i ∈ Ipi but i /∈ Ik for all k > pi. In
this case we have

zi = P{i}(z) = P{i}

( ∞∑

n=1

αnz(n)
)
=

∞∑

n=1

αnP{i}(z
(n))

=
pi∑

n=1

αnP{i}(z
(n)) ∈ Ei.

Now, it follows from [1, Prop. p. 74] that D is a Banach disc in λ{(Ei)}. As barrels
absorb every Banach disc [7, 8.3.3], we have that there exists a number � > 0
such that D ⊂ �G◦. On the other hand, from (1), z(n) /∈ nG◦ for all n � 1. This
contradiction completes the proof of the theorem. �

Our main result is the next

Theorem 4. If λ is a locally complete and barrelled space of generalized sequences
on a set I which has nonmeasurable cardinal, then λ{(Ei)} is barrelled if and only
if every Ei is barrelled.

�����. The direct implication follows from Theorems 1 and 3, and the inverse

one follows from the fact that every Ei is complemented in λ{(Ei)}. �

Remark 1. This theorem implies, as important particular cases, the barrelled-
ness of spaces �p

I{(Ei)i∈I} with 1 � p � ∞, where I is a nonmeasurable set. Compare

our Theorem 4 with the results of Kakol and Roelcke in [8] and Drewnowski, Flo-
rencio and Paúl in [5].
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3. Spaces λ with the property of convergence of sections

Let us introduce some more notation in order to establish the barrelledness of
λ{(Ei)} in the setting of a space λ with the property of convergence of sections. The

sections of an element of λ are defined to be its projections over finite subsets of I.

This property allows us to represent the dual of λ{(Ei)} as the space λ×{(E′
i)i∈I}.

With similar arguments to those used in [6, Theorem 1] we can prove the equality

λ{(Ei)i∈I}′ = λ×{(E′
i)i∈I}(2)

=

{
(ui)i, ui ∈ E′

i,
∑

i∈I

|〈xi, ui〉| < ∞, for all (xi)i ∈ λ{(Ei)}
}

.

Lemma 5. If the space λ has the property of convergence of sections and (Ei)i
is a family of normed spaces such that every E′

i is σ(E′
i, Ei)-sequentially complete,

then λ{(Ei)}′ is σ(λ{(Ei)}′, λ{(Ei)})-sequentially complete. In particular, the space
λ{(Ei)} has the Banach-Mackey property.

�����. According to (2) let (u(n))n be a σ(λ{(Ei)}′, λ{(Ei)})-Cauchy sequence
in λ{(Ei)}′. By using the natural inclusion of Ei in λ{(Ei)} we see that for every
i ∈ I the sequence (u(n)i )n is σ(E′

i, Ei)-Cauchy in E′
i. Since every E′

i is σ(E′
i, Ei)-

sequentially complete, (u(n)i )n is actually convergent to an element ui ∈ E′
i. Put

u = (ui)i∈I .We complete the proof by proving that u is in λ{(Ei)}′ and that (u(n))n
converges to u in the σ(λ{(Ei)}′, λ{(Ei)})-topology.
If x = (xi)i is in λ{(Ei)}, then α(n) = (〈u(n)i , xi〉)i is in �1I for all n � 1. Further-

more, (α(n))n is a Cauchy sequence in σ(�1I , �
∞
I ) since (u

(n))n is a Cauchy sequence

in the topology σ(λ{(Ei)}′, λ{(Ei)}) and λ{(Ei)} is solid. Now the Schur lemma [7,
§10.5 Cor. 4] ensures that (α(n))n is norm convergent to an element α = (αi)i of �1I .

Coordinatewise we have that

αi = lim
n
〈xi, u

(n)
i 〉 = 〈xi, ui〉

for every i ∈ I. This yields that (〈xi, ui〉)i is in �1I , since u ∈ λ{(Ei)}′.
Now

|〈x, u(n) − u〉| �
∑

i∈I

|〈xi, u
(n)
i 〉 − 〈xi, ui〉|

=
∑

i∈I

|α(n)i − αi|

and taking into account that α(n) → α in (�1I , ‖ · ‖1), it follows that u = lim
n

u(n) and

the proof is complete. �
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Theorem 6. If λ has the property of convergence of sections and is barrelled,

then λ{(Ei)} is barrelled if and only if each Ei is barrelled.

�����. If every Ei is barrelled, then it follows from [9, §23.6 (4)] that E′
i is

σ(E′
i, Ei)-sequentially complete. The barrelledness of λ{(Ei)} follows from Theo-

rem 1 and Lemma 5. The inverse implication follows from the fact that every Ei is

complemented in λ{(Ei)}. �

Remark 2. As spaces �p
I (1 � p < ∞) and c0I have the property of conver-

gence of sections, the spaces �p
I{(Ei)i∈I} and c0I{(Ei)i∈I} are barrelled if each Ei is

barrelled.
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