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Abstract. In this paper we consider the existence and asymptotic behavior of solutions
of the following problem:

utt(t, x)− (α+ β‖∇u(t, x)‖22 + β‖∇v(t, x)‖22)∆u(t, x) + δ|ut(t, x)|p−1ut(t, x)

= µ|u(t, x)|q−1u(t, x), x ∈ Ω, t � 0,
vtt(t, x)− (α+ β‖∇u(t, x)‖22 + β‖∇v(t, x)‖22)∆v(t, x) + δ|vt(t, x)|p−1vt(t, x)

= µ|v(t, x)|q−1v(t, x), x ∈ Ω, t � 0,
u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Ω,

v(0, x) = v0(x), vt(0, x) = v1(x), x ∈ Ω,

u|∂Ω = v|∂Ω = 0

where q > 1, p � 1, δ > 0, α > 0, β � 0, µ ∈ � and ∆ is the Laplacian in �N .

Keywords: quasilinear wave equation, existence and uniqueness, asymptotic behavior,
Galerkin method
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1. Introduction

Let Ω be a bounded domain in �N with smooth boundary ∂Ω. In this paper we
consider the existence of solutions of the problem

(1.1) utt(t, x)− (α+ β‖∇u(t, x)‖22 + β‖∇v(t, x)‖22)∆u(t, x) + δ|ut(t, x)|p−1ut(t, x)

= µ|u(t, x)|q−1u(t, x), x ∈ Ω, t � 0,
vtt(t, x) − (α+ β‖∇u(t, x)‖22 + β‖∇v(t, x)‖22)∆v(t, x) + δ|vt(t, x)|p−1vt(t, x)

= µ|v(t, x)|q−1v(t, x), x ∈ Ω, t � 0,
u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Ω,

v(0, x) = v0(x), vt(0, x) = v1(x), x ∈ Ω,

u|
∂Ω = v|

∂Ω = 0

where q > 1, p � 1, δ > 0, µ ∈ �, α > 0, β � 0 and ∆ is the Laplacian in �N .

Here ‖u‖22 =
∫
Ω |u(t, x)|2 dx, ut = ∂u

∂t and ∆u =
N∑

i=1

∂2u
∂x2i

.

Equation (1.1) has its origin in the nonlinear vibrations of an elastic string

(cf. R. Narasimha [6]). Many authors have studied the existence and uniqueness of
solutions of (1.1) by using various methods.

When δ > 0 and µ = 0, for the degenerate case, Nishihara and Yamada [7] have
proved the global existence of a unique solution under the assumptions that the initial

data {u0, u1} are sufficiently small and u0 �= 0. For the problem with linear damping
δut, there are works of Brito [1], Ikehata [3], Ono [8] and the references therein.
In the present paper we will study the existence and uniqueness of solutions of the

unilateral problem (1.1) by using the Galerkin method and we will also investigate
its asymptotic behavior.

The content of this paper is as follows: In Section 2, we present the preliminaries
and some lemmas. In Section 3, we give the statement of the main theorem. In

Section 4, we deal with a priori estimates for solutions of (1.1) and prove our main
theorem, while Section 5 deals with the asymptotic behavior of the solutions obtained

in Section 4.

2. Preliminaries

We first present the following well known lemmas which will be needed later.

Lemma 2.1 (Sobolev-Poincaré [4]). If either 1 � q < +∞ (N = 1, 2) or

1 � q � N+2
N−2 (N � 3), then there is a constant C(Ω, q + 1) such that

‖u‖q+1 � C(Ω, q + 1)‖∇u‖2 for u ∈ H10 (Ω).
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In other words, C(Ω, q + 1) = sup{ ‖u‖q+1

‖∇u‖2 |, u ∈ H10 (Ω), u �= 0} is positive and finite.

Lemma 2.2 (Gagliardo-Nirenberg [4]). Let 1 � r < q � +∞ and p � q. Then

the inequality

‖u‖W k,q � C‖u‖θ
W m,p‖u‖1−θ

r for u ∈ Wm,p(Ω) ∩ Lr(Ω)

holds with some C > 0 and θ =
(

k
N +

1
r − 1

q

)(
m
N +

1
r − 1

p

)−1
provided that 0 < θ � 1

(we assume 0 < θ < 1 if q = +∞).

We conclude this section by stating a lemma concerning a difference inequality
which will be used later.

Lemma 2.3 (Nakao [5]). Let ϕ(t) be a nonincreasing and nonnegative function
on [0, T ], T > 1, such that

ϕ(t)1+r � k0(ϕ(t) − ϕ(t+ 1)) on [0, T ]

where k0 is a positive constant and r a nonnegative constant. Then we have

(i) if r > 0, then

ϕ(t) � (ϕ(0)−r + k−10 r[t− 1]+)− 1r , where [t− 1]+ = max{t− 1, 0},

(ii) if r = 0, then

ϕ(t) � ϕ(0)e−k1[t−1]+ on [0, T ], where k1 = log
k0

k0 − 1
.

3. Statement of the result

We consider the initial value problem

(3.1) utt(t)− (α+ β‖∇u(t)‖22 + β‖∇v(t)‖22)∆u(t) + δ|ut(t)|p−1ut(t)

= µ|u(t)|q−1u(t), t � 0,
vtt(t)− (α+ β‖∇u(t)‖22 + β‖∇v(t)‖22)∆v(t) + δ|vt(t)|p−1vt(t)

= µ|v(t)|q−1v(t), t � 0,
u(0) = u0, ut(0) = u1,

v(0) = v0, vt(0) = v1, where α > 0 and β � 0.

567



Now we set

J(u, v) =
α

2
(‖∇u‖22 + ‖∇v‖22) +

β

4
(‖∇u‖42 + ‖∇v‖42)−

µ

q + 1
(‖u‖q+1

q+1 + ‖v‖q+1
q+1),

I(u, v) = α(‖∇u‖22 + ‖∇v‖22)− µ(‖u‖q+1
q+1 + ‖v‖q+1

q+1)

and define the potential as

W = {(u, v) ∈ H10 (Ω)×H10 (Ω)|I(u, v) > 0} ∪ {0}.

Next, by setting

E(u(t), v(t)) =
1
2
‖ut(t)‖22 +

1
2
‖vt(t)‖2 + J(u(t), v(t)) +

β

2
‖∇u(t)‖22‖∇v(t)‖22,

we can state our main theorem.

Theorem 3.1. Let N be a positive integer. Suppose that δ > 0 and µ > 0 and

p < min{q, N+4q−Nq
2 } is such that

(i) 1 � p < +∞ (N = 1, 2),
(ii) 1 � p � 3, 1 < q � 5 (N = 3),
(iii) 1 � p � N

N−2 ,
N

N−2 � q � min{N+2
N−2 ,

N−2
[N−4]+ } (N � 4).

If u0, v0 ∈ W ∩H2(Ω), u1, v1 ∈ H10 (Ω) and

µ

α
[C(Ω, q + 1)]q+1

(
2(q + 1)
α(q − 1)E(u0, v0)

) q−1
2

< 1,

then the problem (3.1) has solution (u, v) = (u(t, x), v(t, x)) satisfying

u, v ∈ L∞(0,∞;H10 (Ω) ∩H2(Ω)),

u′, v′ ∈ L∞(0,∞;H10 (Ω)),
u′′, v′′ ∈ L∞(0,∞;L2(Ω)).
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4. Proof of Theorem 3.1

Throughout this section we always assume that u0, v0 ∈ W ∩H2(Ω) and u1, v1 ∈
H10 (Ω). We employ the Galerkin method to construct a solution. Let {λj}∞j=1 be a
sequence of eigenvalues for −∆w = λw in Ω. Let wj ∈ H10 (Ω) ∩H2(Ω) be the cor-

responding eigenfunction to λj and take {wj}∞j=1 as a complete orthonormal system
in L2(Ω). We construct approximate solutions um, vm (m = 1, 2, . . .) in the form

um(t) =
m∑

j=1

gjm(t)wj , vm(t) =
m∑

j=1

hjm(t)wj

which are determined by the ordinary differential equations

(4.1) (u′′m(t), w) − ((α + β‖∇um(t)‖22 + β‖∇vm(t)‖22)∆um(t), w)

+ δ|u′m(t)|p−1(u′m(t), w) = µ|um(t)|q−1(um(t), w),

(4.2) (v′′m(t), w) − ((α + β‖∇um(t)‖22 + β‖∇vm(t)‖22)∆vm(t), w)

+ δ|v′m(t)|p−1(v′m(t), w) = µ|vm(t)|q−1(vm(t), w)

(′= ∂
∂t and

′′ = ∂2

∂t2 ) with the initial conditions

(4.3) um(0) = u0m =
m∑

j=1

(u0, wj)wj → u0 in H10 (Ω) ∩H2(Ω),

vm(0) = v0m =
m∑

j=1

(v0, wj)wj → v0 in H10 (Ω) ∩H2(Ω),

(4.4) u′m(0) = u1m =
m∑

j=1

(u1, wj)wj → u1 strongly in H10 (Ω),

v′m(0) = v1m =
m∑

j=1

(v1, wj)wj → v1 strongly in H10 (Ω).

Therefore we can solve the system (4.1)–(4.4) by Picard’s iteration method. Hence

the system (4.1)–(4.4) has a unique solution on some interval [0, Tm) with 0 < Tm �
+∞. Note that um(t) is in the C2-class. We will see that um(t) and vm(t) can be

extended to [0,∞). We can utilize a standard compactness argument for the limiting
procedure and it suffices to derive some a priori estimates for um and vm. But this

procedure allows us to employ the energy method for smooth solution (u(t), v(t))
to the problem (4.1)–(4.4) (the results should be in fact applied to the approximate

solutions).
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A Priori Estimates I

Multiplying the equation (4.1) by u′m(t) and multiplying the equation (4.2) by

v′m(t) yields

(4.5)
d
dt

(
1
2
‖u′m(t)‖22 +

α

2
‖∇um(t)‖22 +

β

4
‖∇um(t)‖42 −

µ

q + 1
‖um(t)‖q+1

q+1

)

+
β

2
‖∇vm(t)‖22

d
dt
‖∇um(t)‖22 + δ‖u′m(t)‖p+1

p+1 = 0

and

(4.6)
d
dt

(
1
2
‖v′m(t)‖22 +

α

2
‖∇vm(t)‖22 +

β

4
‖∇vm(t)‖42 −

µ

q + 1
‖vm(t)‖q+1

q+1

)

+
β

2
‖∇um(t)‖22

d
dt
‖∇vm(t)‖22 + δ‖v′m(t)‖p+1

p+1 = 0.

Adding (4.5) and (4.6) and then integrating from 0 to t yields the energy identity

(4.7) E(um(t), vm(t)) + δ

∫ t

0
(‖u′m(s)‖p+1

p+1 + ‖v′m(s)‖p+1
p+1) ds = E(u0, v0)

where

E(um(t), vm(t)) =
1
2
‖u′m(t)‖22 +

1
2
‖v′m(t)‖22 +

α

2
‖∇um(t)‖22

+
α

2
‖∇vm(t)‖22 +

β

4
‖∇um(t)‖42 +

β

4
‖∇vm(t)‖42

+
β

2
‖∇um(t)‖22‖∇vm(t)‖22 −

µ

q + 1
‖um(t)‖q+1

q+1

− µ

q + 1
‖vm(t)‖q+1

q+1.

In particular, E(um(t), vm(t)) is nonincreasing on [0,∞) and

(4.8) E(um(t), vm(t)) � E(u0, v0).

Now, to obtain a priori estimates, we need the following result.

Lemma 4.1. Assume that either

1 � q < +∞ (N = 1, 2) or 1 � q � N + 3
N − 2 (N � 3).
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Let (um(t), vm(t)) be the solution of (4.1)–(4.4) with (u0, v0) ∈ W and u1, v1 ∈
H10 (Ω). If

(4.9)
µ

α
[C(Ω, q + 1)]q+1

(
2(q + 1)
α(q − 1)E(u0, v0)

) q−1
2

< 1,

then (um(t), vm(t)) ∈ W on [0,+∞), that is,

α(‖∇um‖22 + ‖∇vm‖22)− µ(‖um‖q+1
q+1 + ‖vm‖q+1

q+1) > 0 on [0,+∞).

�����. Since I(u0, v0) > 0, it follows from the continuity of um(t) and vm(t)

that

(4.10) I(um(t), vm(t)) � 0 for some interval near t = 0.

Let tmax be a maximal time (possibly tmax = Tm) such that (4.10) holds on [0, tmax).
Note that

(4.11)

J(um(t), vm(t)) =
α

2
(‖∇um(t)‖22 + ‖∇vm(t)‖22) +

β

4
(‖∇um(t)‖42 + ‖∇vm(t)‖42)

− µ

q + 1
(‖um(t)‖q+1

q+1 + ‖vm(t)‖q+1
q+1),

=
1

q + 1
I(um(t), vm(t)) +

α(q − 1)
2(q + 1)

(‖∇um(t)‖22 + ‖∇vm(t)‖22)

+
β

4
(‖∇um(t)‖42 + ‖∇vm(t)‖42)

� α(q − 1)
2(q + 1)

(‖∇um(t)‖22 + ‖∇vm(t)‖22) on [0, tmax).

By the energy identity (4.7), (4.8) and (4.11), we have

(4.12) ‖∇um(t)‖22 + ‖∇vm(t)‖22 � 2(q + 1)
α(q − 1)J(um(t), vm(t))

� 2(q + 1)
α(q − 1)E(um(t), vm(t))

� 2(q + 1)
α(q − 1)E(u0, v0) on [0, tmax).
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It follows from the Sobolev-Poincaré inequality, (4.9) and (4.12) that

(4.13) µ‖um(t)‖q+1
q+1 � µC(Ω, q + 1)q+1‖∇um(t)‖q+1

2

=
µ

α
C(Ω, q + 1)q+1‖∇um(t)‖q−1

2 · α‖∇um(t)‖22

� µ

α
C(Ω, q + 1)q+1

(
2(q + 1)
α(q − 1)E(u0, v0)

) q−1
2

α‖∇um(t)‖22

� α‖∇um(t)‖22 on [0, tmax).

Similarly,

(4.14) µ‖vm(t)‖q+1
q+1 � α‖∇vm(t)‖22 on [0, tmax).

Thus from (4.13) and (4.14) we obtain

(4.15) µ(‖um(t)‖q+1
q+1 + ‖vm(t)‖q+1

q+1)

� α(‖∇um(t)‖22 + ‖∇vm(t)‖22) on [0, tmax).

Therefore we get I(u(t), v(t)) > 0 on [0, tmax). This implies that we can take tmax =
Tm. This completes the proof of Lemma 4.1. �

Using Lemma 4.1, we can deduce a priori estimates for um and vm. Lemma 4.1
implies that

(4.16) E(um(t), vm(t)) � 1
2
‖u′m(t)‖22 +

1
2
‖v′m(t)‖22 +

1
q + 1

I(um(t), vm(t))

+
α(q − 1)
2(q + 1)

(‖∇um(t)‖22 + ‖∇vm(t)‖22)

� 1
2
‖u′m(t)‖22 +

1
2
‖v′m(t)‖22

+
α(q − 1)
2(q + 1)

(‖∇um(t)‖22 + ‖∇vm(t)‖22).

Thus,

(4.17)
1
2
(‖u′m(t)‖22 + ‖v′m(t)‖22) +

α(q − 1)
2(q + 1)

(‖∇um(t)‖22 + ‖∇vm(t)‖22)

+ δ

∫ t

0
(‖u′m(s)‖p+1

p+1 + ‖v′m(s)‖p+1
p+1) ds

� E(u0, v0).
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A Priori Estimates II

Multiplying the equation (4.1) by −∆u′m(t), multiplying the equation (4.2) by

−∆v′m(t) and adding these two equations we obtain

(4.18)
1
2
d
dt

(
‖∇u′m(t)‖22 + ‖∇v′m(t)‖22 + α(‖∆um(t)‖22 + ‖∆vm(t)‖22)

+
β

2
(‖∇um(t)‖22 + ‖∇vm(t)‖22)(‖∆um(t)‖22 + ‖∆vm(t)‖22)

)

+ pδ(|u′m(t)|p−1∇u′m(t),∇u′m(t)) + pδ(|v′m(t)|p−1∇v′m(t),∇v′m(t))

= µ
(
(∇[|um(t)|q−1um(t)],∇u′m(t)) + (∇[|vm(t)|q−1vm(t)],∇v′m(t))

)

+ β(‖∆um(t)‖22 + ‖∆vm(t)‖22)
(
(∇um(t),∇u′m(t)) + (∇vm(t),∇v′m(t))

)
.

Now we shall compute the first term on the right hand side of (4.18). In the case
N

N−2 � q � min{N+2
N−2 ,

N−2
[N−4]+ }(N � 3), we also see that

(4.19) |(∇[|um(t)|q−1um(t)],∇u′m(t))| � q‖|um(t)|q−1∇um(t)‖2‖∇u′m(t)‖2
� q‖um(t)‖q−1

(q−1)N‖∇um(t)‖ 2N
N−2

‖∇u′m(t)‖2
� qC‖um(t)‖q−1

(q−1)N‖∆um(t)‖2‖∇u′m(t)‖2

where we have used Hölder’s inequality and Sobolev-Poincaré’s inequality. We ob-
serve from the Gagliardo-Nirenberg inequality and Sobolev-Pointcaré’s inequality

that

(4.20) ‖um(t)‖q−1
(q−1)N � C‖um(t)‖(q−1)(1−θ)

2N
N−2

‖∆um(t)‖(q−1)θ2

� C‖∇um(t)‖(q−1)(1−θ)
2 ‖∆um(t)‖(q−1)θ2

with θ =
N − 2
2

− 1
q − 1 (< 1).

Thus, (4.17), (4.19) and (4.20) imply

(4.21) |µ(∇[|um(t)|q−1um(t)],∇u′m(t))|
� qµC‖∇um(t)‖(q−1)(1−θ)

2 ‖∆um(t)‖1+(q−1)θ2 ‖∇u′m(t)‖2

� qµC

(
2(q + 1)
α(q − 1)E(u0, v0)

) 1
2 (q−1)(1−θ)

‖∆um(t)‖1+(q−1)θ2 ‖∇u′m(t)‖2.

Similarly

(4.22) |µ(∇[|vm(t)|q−1vm(t)],∇v′m(t))|

� qµC

(
2(q + 1)
α(q − 1)E(u0, v0)

) 1
2 (q−1)(1−θ)

‖∆vm(t)‖1+(q−1)θ2 ‖∇v′m(t)‖2.
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Next, we shall compute the second term on the right hand side of (4.18):

β|(‖∆um(t)‖22 + ‖∆vm(t)‖22)
(
(∇um(t),∇u′m(t)) + (∇vm(t),∇v′m(t))

)
|

� β(‖∆um(t)‖22 + ‖∆vm(t)‖22)
(
‖∇um(t)‖2‖∇u′m(t)‖2 + ‖∇vm(t)‖2‖∇v′m(t)‖2

)

� β

(
2(q + 1)
α(q − 1)E(u0, v0)

) 1
2

(‖∆um(t)‖22 + ‖∆um(t)‖22)(‖∇u′m(t)‖2 + ‖∇v′m(t)‖2).

Consequently, we have

(4.23)
1
2
d
dt

(
‖∇u′m(t)‖22 + ‖∇v′m(t)‖22 + α(‖∆um(t)‖22 + ‖∆vm(t)‖22)

+
β

2
(‖∇um(t)‖22 + ‖∇vm(t)‖22)(‖∆um(t)‖22 + ‖∆vm(t)‖22)

)

� qµC(‖∆um(t)‖1+(q−1)θ2 ‖∇u′m(t)‖2 + ‖∆vm(t)‖1+(q−1)θ2 ‖∇v′m(t)‖2)

×
(
2(q + 1)
α(q − 1)E(u0, v0)

) 1
2 (q−1)(1−θ)

+ β(‖∆um(t)‖22 + ‖∆um(t)‖22)(‖∇u′m(t)‖2 + ‖∇v′m(t)‖2)

×
(
2(q + 1)
α(q − 1)E(u0, v0)

) 1
2

.

Integrating (4.23) from 0 to t, we obtain

(4.24)
1
2
(‖∇u′m(t)‖22 + ‖∇v′m(t)‖22) +

α

2
(‖∆um(t)‖22 + ‖∆vm(t)‖22)

+
β

2
(‖∆um(t)‖22 + ‖∆vm(t)‖22)(‖∇um(t)‖22 + ‖∇vm(t)‖22)

� 1
2
(‖∇u1‖22 + ‖∇v1‖22) +

α

2
(‖∆u0‖22 + ‖∆v0‖22)

+
β

2
(‖∆u0‖22 + ‖∆v0‖22)(‖∇u0‖22 + ‖∇v0‖22)

+ qµC

(
2(q + 1)
α(q − 1)E(u0, v0)

) 1
2 (q−1)(1−θ)

×
∫ t

0
(‖∆um(s)‖1+(q−1)θ2 ‖∇u′m(s)‖2 + ‖∆vm(s)‖1+(q−1)θ2 ‖∇v′m(s)‖2) ds

+ β

(
2(q + 1)
α(q − 1)E(u0, v0)

) 1
2

×
∫ t

0
(‖∆um(s)‖22 + ‖∆vm(s)‖22)(‖∇u′m(s)‖2 + ‖∇v′m(s)‖2) ds.
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where we have used the inequality

pδ

∫ t

0
((|u′m(s)|p−1∇u′m(s),∇u′m(s)) + (|v′m(s)|p−1∇v′m(s),∇v′m(s))) ds � 0.

Thus

(4.25) E∗(um(t), vm(t)) � C(E∗(u0, v0))

+ C∗(u0, v0, q)
∫ t

0
(E∗(um(s), vm(s)) +E∗(um(s), vm(s))1+(q−1)θ

+ E∗(um(s), vm(s))
2) ds

where C(E∗(u0, v0)), C∗(u0, v0, q) are some constants depending on u0, v0 and q and

E∗(um(t), vm(t)) =
1
2
(‖∇u′m(t)‖22 + ‖∇v′m(t)‖22) +

α

2
(‖∆um(t)‖22 + ‖∆vm(t)‖22).

We set g(s) = s+ s1+(q−1)θ + s2 on s � 0. Then we have

(4.26) E∗(um(t), vm(t)) � C(E∗(u0, v0)) + C∗(u0, v0, q)
∫ t

0
g(E∗(um(s), vm(s)) ds.

Note that g(s) is continuous and nondecreasing on s � 0. By applying Bihari-
Langenhop’s inequality (see [2]), we get

(4.27) E∗(um(t), vm(t)) � M1 for some constant M1 > 0.

Hence

(4.28) ‖∇u′m(t)‖22 + ‖∆um(t)‖22 + ‖∇v′m(t)‖22 + ‖∆vm(t)‖22 � M2

for some constant M2 > 0.
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A Priori Estimates III

Finally, by multiplying the equation (4.1) by u′′m(t) we have

‖u′′m(t)‖22 �
(

α‖∆um(t)‖2 + β(‖∇um(t)‖22 + ‖∇vm(t)‖22)‖∆um(t)‖2
)
‖u′′m(t)‖2

+ |δ|u′m(t)|p−1(u′m(t), u′′m(t))|+ |µ|um(t)|q−1(um(t), u′′m(t))|.

Note that

δ|u′m(t)|p−1(u′m(t)), u′′m(t)) � δ

∫

Ω
|u′m(t)|p||u′′m(t)| dx

� δ

(∫

Ω
|u′m(t)|2p dx

) 1
2
(∫

Ω
|u′′m(t)|2 dx

) 1
2

= δ‖u′m(t)‖p
2p‖u′′m(t)‖2

and similarly

µ|um(t)|q−1(um(t)), u′′m(t)) � µ‖um(t)‖q
2q‖u′′m(t)‖2.

Thus, we get

‖u′′m(t)‖2 � α‖∆um(t)‖2 + β(‖∇um(t)‖22 + ‖∇vm(t)‖22)‖∆um(t)‖2
+ δ‖u′m(t)‖p

2p + µ‖um(t)‖q
2q.

Now it follows from the Gagliardo-Nirenberg inequality that

‖u′m(t)‖p
2p � C1‖∇u′m(t)‖pθ1

2 ‖u′m(t)‖p(1−θ1)
2

� C2‖∇u′m(t)‖pθ1
2 with θ1 =

(p− 1)N
2p

,

‖um(t)‖q
2q � C3‖∇um(t)‖qθ2

2 ‖um(t)‖q(1−θ2)
2

� C4‖∇um(t)‖qθ2
2 with θ2 =

(q − 1)N
2q

.

Thus,

(4.29) ‖u′′m(t)‖2 � α‖∆um(t)‖2 + β(‖∇um(t)‖22 + ‖∇vm(t)‖22)‖∆um(t)‖2
+ C2‖∇u′m(t)‖pθ1

2 + C4‖∇um(t)‖qθ2
2

� M3 for some constant M3 > 0.

By applying similar method as that used for um, we get

(4.30) ‖v′′m(t)‖2 � M4 for some constant M4 > 0.

576



Limiting process

By the above estimates (4.17), (4.28), (4.29) and (4.30), {um}, {vm} have subse-
quences still denoted by {um}, {vm} such that

um → u, vm → v in L∞(0, T ;H10(Ω) ∩H2(Ω)) weak∗,(4.31)

u′m → u′, v′m → v′ in L∞(0, T ;H10 (Ω)) weak
∗,(4.32)

u′′m → u′′, v′′m → v′′ in L∞(0, T ;L2(Ω)) weak∗,(4.33)

u′m → u′, v′m → v′ in L2(0, T ;H10(Ω)) weak,(4.34)

−∆um → −∆u, −∆vm → −∆v in L∞(0, T ;H−1(Ω)) weak∗.(4.35)

Using Aubin-Lions’s compactness lemma, we can extract from {um}, {vm} subse-
quences still denoted by {um}, {vm} such that

(4.36) um → u, vm → v strongly in L2(0, T ;H10 (Ω)).

It follows from (4.36) that for each t ∈ [0, T ],

(4.37) um(t)→ u(t), vm(t)→ v(t) strongly in H10 (Ω).

By letting m →∞ in (4.1) and (4.2), we can find that u and v satisfy the equations

(4.38) (u′′(t), w) − ((α + β‖∇u(t)‖22 + β‖∇v(t)‖22)∆u(t), w)

+ δ|u′(t)|p−1(u′(t), w) = µ|u(t)|q−1(u(t), w) for all w ∈ H10 (Ω),

(4.39) (v′′(t), w) − ((α+ β‖∇u(t)‖22 + β‖∇v(t)‖22)∆v(t), w)

+ δ|v′(t)|p−1(v′(t), w) = µ|v(t)|q−1(v(t), w) for all w ∈ H10 (Ω).

Now, (4.37) implies

(4.40) um(0) = u0m → u0 strongly in H10 (Ω).

Thus, from (4.3) and (4.40), we conclude u(0) = u0. Also, from (4.34) we obtain

(4.41) (u′m(0)− u′(0), w)→ 0 as m →∞ for each w ∈ H10 (Ω).

Thus, (4.4) and (4.41) imply
u′(0) = u1.

Similarly, we obtain v(0) = v0 and v′(0) = v1. This completes the proof of Theo-
rem 3.1.
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5. Asymptotic behavior of solutions

Theorem 5.1. Let u(t), v(t) and q be as in Theorem 3.1. Assume that either

1 � p < ∞ (N = 1, 2) or 1 � p � N
N−2 (N � 3) holds. Then we have the decay

estimates if p = 1, then

E(u(t), v(t)) � C0e
−kt on [0,∞)

and if p > 1, then

E(u(t), v(t)) � C1(1 + t)−
2

p−1 on [0,+∞)

where k, C0 and C1 are certain positive constants depending on ‖∇u0‖2 and ‖u1‖2.

To prove our theorem, we need the following lemma.

Lemma 5.2. Let u(t) and q be as in Lemma 4.1. Then there is a certain number

η0 with 0 < η0 < 1 such that

µ(‖u(t)‖q+1
q+1 + ‖v(t)‖q+1

q+1) � (1− η0)α(‖∇u(t)‖22 + ‖∇v(t)‖22) on [0,∞)

where

η0 ≡ 1−
µ

α
C(Ω, q + 1)q+1

(
2(q + 1)
α(q − 1)E(u0, v0)

) q−1
2

.

�����. It follows from the Sobolev-Poincaré’s inequality and (4.17) that

µ‖u(t)‖q+1
q+1 � µC(Ω, q + 1)q+1‖∇u(t)‖q+1

2

=
µ

α
C(Ω, q + 1)q+1‖∇u(t)‖q−1

2 α‖∇u(t)‖22

� µ

α
C(Ω, q + 1)q+1

(
2(q + 1)
α(q − 1)E(u0, v0)

) q−1
2

α‖∇u(t)‖22

= (1 − η0)α‖∇u(t)‖22 on [0,∞)

and

µ‖v(t)‖q+1
q+1 � (1− η0)α‖∇v(t)‖22 on [0,∞).

Thus

µ(‖u(t)‖q+1
q+1 + ‖v(t)‖q+1

q+1) � (1− η0)α(‖∇u(t)‖22 + ‖∇v(t)‖22) on [0,∞).

This completes the proof of Lemma 5.2. �
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����� of Theorem 5.1. We denote E(u(t), v(t)) by E(t) and E(u0, v0) by E(0).

Let (u(t), v(t)) be solutions of the problems

u′′(t)−
(
α+ β(‖∇u(t)‖22 + ‖∇v(t)‖22)

)
∆u(t) + δ|u′(t)|p−1u′(t)(5.1)

= µ|u(t)|q−1u(t),
v′′(t)−

(
α+ β(‖∇u(t)‖22 + ‖∇v(t)‖22)

)
∆v(t) + δ|v′(t)|p−1v′(t)(5.2)

= µ|v(t)|q−1v(t),

(5.3) u(0) = u0, u′(0) = u1,

v(0) = v0, v′(0) = v1.

Multiplying the equation (5.1) by u′(t), multiplying the equation (5.2) by v′(t),

adding these two equations and then integrating over [t, t+ 1]× Ω, we get

(5.4) δ

∫ t+1

t

(‖u′(s)‖p+1
p+1 + ‖v′(s)‖p+1

p+1) ds = E(t)− E(t+ 1)

≡ δF (t)p+1

where

E(t) =
1
2
‖u′(t)‖22 +

1
2
‖v′(t)‖22 + J(u(t), v(t)) +

β

2
‖∇u(t)‖22‖∇v(t)‖22.

It follows from Hölder’s inequality and (5.4) that

(5.5)
∫ t+1

t

‖u′(s)‖22 ds =
∫ t+1

t

∫

Ω
|u′(s)|2 dxds

� m(Ω)
p−1
p+1

∫ t+1

t

(∫

Ω
|u′(s)|p+1 dx

) 2
p+1

ds

� m(Ω)
p−1
p+1

∫ t+1

t

‖u′(s)‖2p+1 ds

� m(Ω)
p−1
p+1

(∫ t+1

t

‖u′(s)‖p+1
p+1 ds

) 2
p+1

(∫ t+1

t

ds

) p−1
p+1

� m(Ω)
p−1
p+1F (t)2.

Similarly, we obtain

(5.6)
∫ t+1

t

‖v′(s)‖22 ds � m(Ω)
p−1
p+1F (t)2.
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Applying the mean value theorem to the left hand sides of (5.5)–(5.6), we find two

points t1 ∈ [t, t+ 14 ] and t2 ∈ [t+ 34 , t+ 1] such that

‖u′(ti)‖2 � 2m(Ω)
p−1
2(p+1)F (t) i = 1, 2,(5.7)

‖v′(ti)‖2 � 2m(Ω)
p−1
2(p+1)F (t) i = 1, 2.(5.8)

Next, multiplying (5.1) by u(t), multiplying (5.2) by v(t), adding these two equations
and integrating over [t1, t2]× Ω we obtain (cf. (5.7), (5.8))

∫ t2

t1

I(u(s), v(s)) ds(5.9)

=
∫ t2

t1

(α(‖∇u(s)‖22 + ‖∇v(s)‖22)− µ(‖u(s)‖q+1
q+1 + ‖v(s)‖q+1

q+1)) ds

� ‖u′(t1)‖2‖u(t1)‖2 + ‖u′(t2)‖2‖u(t2)‖2 + ‖v′(t1)‖2‖v(t1)‖2

+ ‖v′(t2)‖2‖v(t2)‖2 +
∫ t2

t1

(‖u′(s)‖22 + ‖v′(s)‖22) ds

+ δ

∣∣∣∣
∫ t2

t1

|u′(s)|p−1(u′(s), u(s)) ds
∣∣∣∣+ δ

∣∣∣∣
∫ t2

t1

|v′(s)|p−1(v′(s), v(s)) ds
∣∣∣∣

� 4m(Ω)
p−1
2(p+1)F (t)

(
max

t1�s�t2
‖u(s)‖2 + max

t1�s�t2
‖v(s)‖2

)
+ 2m(Ω)

p−1
(p+1)F (t)2

+ δ

∫ t2

t1

∫

Ω
|u′(s)|p|u(s)| dxds+ δ

∣∣∣∣
∫ t2

t1

∫

Ω
|v′(s)|p|v(s)| dxds

∣∣∣∣

� 8m(Ω)
p−1
2(p+1)F (t) max

t1�s�t2
E(s)

1
2 + 2m(Ω)

p−1
(p+1)F (t)2

+ δ

∫ t2

t1

∫

Ω
|u′(s)|p|u(s)| dxds+ δ

∣∣∣∣
∫ t2

t1

∫

Ω
|v′(s)|p|v(s)| dxds

∣∣∣∣.

Here we note that

(5.10) δ

∫ t2

t1

∫

Ω
|u′(s)|p|u(s)| dxds

� δ

∫ t2

t1

(∫

Ω
|u′(s)|p+1 dx

) p
p+1

(∫

Ω
|u(s)|p+1 dx

) 1
p+1

ds

= δ

∫ t2

t1

‖u′(s)‖p
p+1‖u(s)‖p+1 ds

� δC(Ω, p+ 1)
∫ t2

t1

‖u′(s)‖p
p+1‖∇u(s)‖2 ds
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where we have used Hölder’s inequality and Sobolev-Poincaré’s inequality. Since

I(u(t), v(t)) � 0 on [0,∞), we see that

(5.11) E(t) � J(u(t), v(t))

=
1

q + 1
I(u(t), v(t)) +

α(q − 1)
2(q + 1)

(‖∇u(t)‖22 + ‖∇v(t)‖22)

+
β

4
(‖∇u(t)‖42 + ‖∇v(t)‖42) +

β

2
‖∇u(t)‖22‖∇v(t)‖22

� α(q − 1)
2(q + 1)

(‖∇u(t)‖22 + ‖∇v(t)‖22).

From (5.4), (5.10) and (5.11) we get

(5.12) δ

∫ t2

t1

∫

Ω
|u′(s)|p|u(s)| dxds

� δC(Ω, p+ 1)

(∫ t2

t1

‖u′(s)‖p+1
p+1 ds

) p
p+1

(∫ t2

t1

ds

) 1
p+1

×
(
2(q + 1)
α(q − 1)

) 1
2

sup
t1�s�t2

E(s)
1
2

� δC(Ω, p+ 1)

(
2(q + 1)
α(q − 1)

) 1
2

F (t)p sup
t1�s�t2

E(s)
1
2 .

Similary,

(5.13) δ

∫ t2

t1

∫

Ω
|v′(s)|p|v(s)| dxds

� δC(Ω, p+ 1)

(
2(q + 1)
α(q − 1)

) 1
2

F (t)p sup
t1�s�t2

E(s)
1
2 .

From (5.9), (5.12) and (5.13) we have

(5.14)
∫ t2

t1

I(u(s), v(s)) ds

� 8m(Ω)
p−1
2(p+1)F (t) max

t1�s�t2
E(s)

1
2 + 2m(Ω)

p−1
p+1F (t)2

+ 2δC(Ω, p+ 1)

(
2(q + 1)
α(q − 1)

) 1
2

F (t)p sup
t1�s�t2

E(s)
1
2 .

From Lemma 5.2 and the definition of I(u(t), v(t)) we have

(5.15) αη0(‖∇u(t)‖22 + ‖∇u(t)‖22) � I(u(t), v(t)).
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From (5.15) we have

(5.17)∫ t2

t1

E(s) ds =
1
2

∫ t2

t1

(‖u′(s)‖22 + ‖v′(s)‖22) ds+
∫ t2

t1

(J(u(s), v(s))) ds

+
β

2

∫ t2

t1

‖∇u(s)‖22‖∇v(s)‖22 ds

=
1
2

∫ t2

t1

(‖u′(s)‖22 + ‖v′(s)‖22) ds+
1

q + 1

∫ t2

t1

I(u(s), v(s)) ds

+
α(q − 1)
2(q + 1)

∫ t2

t1

(‖∇u(s)‖22 + ‖∇v(s)‖22) ds

+
β

4

∫ t2

t1

(‖∇u(s)‖42 + ‖∇v(s)‖42) ds+
β

2

∫ t2

t1

‖∇u(s)‖22‖∇v(s)‖22 ds

� m(Ω)
p−1
p+1F (t)2

+
2η0α+ α(q − 1)
2η0α(q + 1)

∫ t2

t1

I(u(s), v(s)) ds

+
β

4

∫ t2

t1

(‖∇u(s)‖42 + ‖∇v(s)‖42) ds+
β

2

∫ t2

t1

‖∇u(s)‖22‖∇v(s)‖22 ds.

Note that

β

2

∫ t2

t1

‖∇u(s)‖22‖∇v(s)‖22 ds � β

∫ t2

t1

‖∇u(s)‖42 ds+ β

∫ t2

t1

‖∇v(s)‖42 ds(5.18)

� 2β(q + 1)
α(q − 1)

∫ t2

t1

(‖∇u(s)‖22 + ‖∇v(s)‖22) ds

� 2β(q + 1)
α2η0(q − 1)

∫ t2

t1

I(u(s), v(s)) ds

and

β

4

∫ t2

t1

(‖∇u(s)‖42 + ‖∇v(s)‖42) ds(5.19)

� β(q + 1)
2α2η0(q − 1)

∫ t2

t1

I(u(s), v(s)) ds.

Thus, (5.18)–(5.19) imply

(5.20)
∫ t2

t1

E(s) ds � m(Ω)
p−1
p+1F (t)2 + C(α, β, η0, q)

∫ t2

t1

I(u(s), v(s)) ds

where C(α, β, η0, q) =
2η0 + q − 1
2η0(q + 1)

+
5β(q + 1)
2α2η0(q − 1)

.
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From (5.13), (5.14) and (5.20) we have

(5.21)
∫ t2

t1

E(s) ds � C1

(
F (t) sup

t1�s�t2

E(s)
1
2 + F (t)2 + F (t)p sup

t1�s�t2

E(s)
1
2

)

for some constant C1 > 0.

Hence

(5.22)
∫ t2

t1

E(s) ds � C2(E(t)
1
2F (t) + F (t)2 + E(t)

1
2F (t)p).

Again multiplying (5.1) by u′(t), multiplying (5.2) by v′(t), adding these two equa-
tions and integrating over [t, t2]× Ω we obtain

E(t) = E(t2) + δ

∫ t2

t

(‖u′(s)‖p+1
p+1 + ‖v′(s)‖p+1

p+1) ds.

Since t2 − t1 � 1
2 , we get

∫ t2

t1

E(s) ds �
∫ t2

t1

E(t2) ds = (t2 − t1)E(t2)

� 1
2
E(t2),

that is,

E(t2) � 2
∫ t2

t1

E(s) ds.

From (5.4) and (5.22) we have

E(t) = E(t2) + δ

∫ t2

t

(‖u′(s)‖p+1
p+1 + ‖v′(s)‖p+1

p+1) ds

� 2
∫ t2

t1

E(s) ds+ δ

∫ t2

t

(‖u′(s)‖p+1
p+1 + ‖v′(s)‖p+1

p+1) ds

� 2C2(E(t)
1
2F (t) + F (t)2 + E(t)

1
2F (t)p) + δF (t)p+1

� C3(E(t)
1
2F (t) + F (t)2 + E(t)

1
2F (t)p + F (t)p+1)

for some constant C3 > 0.

Thus, we have

(5.23) E(t) � C4(F (t)2 + F (t)2p + F (t)p+1)
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for some constant C5 > 0. When p = 1, we have

(5.24) E(t) � C4(F (t)2) = C4(E(t)− E(t+ 1)).

Applying Nakao’s inequality (cf. Lemma 2.3) to (5.24) yields

E(t) � E(0)e−kt where k = log
C4

C4 − 1
.

Note that since E(t) is decreasing and E(t) � 0 on [0,∞), we have

δF (t)p+1 = E(t)− E(t+ 1) � E(0).

Hence, we get

(5.25) F (t) �
(1

δ
E(0)

) 1
p+1

.

On the other hand, when p > 1, it follows from (5.23) and (5.25) that

E(t) � C4(1 + F (t)2p−2 + F (t)p−1)F (t)2

� C5
(
1 + E(0)

2p−2
p+1 + E(0)

p−1
p+1

)
F (t)2

≡ C6(E(0))F (t)2

with lim
E(0)→0

C6(E(0)) = C7 > 0. Thus we have

(5.26) E(t)1+
p−1
2 � C6(E(0))

p+1
2 F (t)p+1

� 1
δ
C6(E(0))

p+1
2 (E(t) − E(t+ 1)).

Setting C(E(0)) ≡ δC6(E(0))−
p+1
2 , applying Nakao’s inequality to (5.26) we con-

clude that

E(t) �
(

E(0)−
p−1
2 +

(p− 1)C(E(0))
2

[t− 1]+
)− 2

p−1
.

This completes the proof of Theorem 5.1. �
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