Czechoslovak Mathematical Journal

Jong Yeoul Park; Jeong Ja Be
 On solutions of quasilinear wave equations with nonlinear damping terms

Czechoslovak Mathematical Journal, Vol. 50 (2000), No. 3, 565-585

Persistent URL: http://dml.cz/dmlcz/127594

Terms of use:

© Institute of Mathematics AS CR, 2000

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON SOLUTIONS OF QUASILINEAR WAVE EQUATIONS WITH NONLINEAR DAMPING TERMS

Jong Yeoul Park and Jeong Ja Bae, Pusan

(Received April 4, 1998)

Abstract. In this paper we consider the existence and asymptotic behavior of solutions of the following problem:

$$
\begin{aligned}
& u_{t t}(t, x)-\left(\alpha+\beta\|\nabla u(t, x)\|_{2}^{2}+\beta\|\nabla v(t, x)\|_{2}^{2}\right) \Delta u(t, x)+\delta\left|u_{t}(t, x)\right|^{p-1} u_{t}(t, x) \\
& \quad=\mu|u(t, x)|^{q-1} u(t, x), \quad x \in \Omega, \quad t \geqslant 0, \\
& v_{t t}(t, x)-\left(\alpha+\beta\|\nabla u(t, x)\|_{2}^{2}+\beta\|\nabla v(t, x)\|_{2}^{2}\right) \Delta v(t, x)+\delta\left|v_{t}(t, x)\right|^{p-1} v_{t}(t, x) \\
& \quad=\mu|v(t, x)|^{q-1} v(t, x), \quad x \in \Omega, \quad t \geqslant 0, \\
& u(0, x)=u_{0}(x), \quad u_{t}(0, x)=u_{1}(x), \quad x \in \Omega, \\
& v(0, x)=v_{0}(x), \quad v_{t}(0, x)=v_{1}(x), \quad x \in \Omega, \\
& \left.u\right|_{\partial \Omega}=\left.v\right|_{\partial \Omega}=0
\end{aligned}
$$

where $q>1, p \geqslant 1, \delta>0, \alpha>0, \beta \geqslant 0, \mu \in \mathbb{R}$ and Δ is the Laplacian in \mathbb{R}^{N}.

Keywords: quasilinear wave equation, existence and uniqueness, asymptotic behavior, Galerkin method

MSC 2000: 35L70, 35L15, 65M60

[^0]
1. Introduction

Let Ω be a bounded domain in \mathbb{R}^{N} with smooth boundary $\partial \Omega$. In this paper we consider the existence of solutions of the problem

$$
\begin{align*}
& u_{t t}(t, x)-\left(\alpha+\beta\|\nabla u(t, x)\|_{2}^{2}+\beta\|\nabla v(t, x)\|_{2}^{2}\right) \Delta u(t, x)+\delta\left|u_{t}(t, x)\right|^{p-1} u_{t}(t, x) \tag{1.1}\\
& \quad=\mu|u(t, x)|^{q-1} u(t, x), \quad x \in \Omega, \quad t \geqslant 0 \\
& v_{t t}(t, x)-\left(\alpha+\beta\|\nabla u(t, x)\|_{2}^{2}+\beta\|\nabla v(t, x)\|_{2}^{2}\right) \Delta v(t, x)+\delta\left|v_{t}(t, x)\right|^{p-1} v_{t}(t, x) \\
& \quad=\mu|v(t, x)|^{q-1} v(t, x), \quad x \in \Omega, \quad t \geqslant 0, \\
& u(0, x)=u_{0}(x), \quad u_{t}(0, x)=u_{1}(x), \quad x \in \Omega, \\
& v(0, x)=v_{0}(x), \quad v_{t}(0, x)=v_{1}(x), \quad x \in \Omega, \\
& \left.u\right|_{\partial \Omega}=\left.v\right|_{\partial \Omega}=0
\end{align*}
$$

where $q>1, p \geqslant 1, \delta>0, \mu \in \mathbb{R}, \alpha>0, \beta \geqslant 0$ and Δ is the Laplacian in \mathbb{R}^{N}.
Here $\|u\|_{2}^{2}=\int_{\Omega}|u(t, x)|^{2} \mathrm{~d} x, \quad u_{t}=\frac{\partial u}{\partial t}$ and $\Delta u=\sum_{i=1}^{N} \frac{\partial^{2} u}{\partial x_{i}^{2}}$.
Equation (1.1) has its origin in the nonlinear vibrations of an elastic string (cf. R. Narasimha [6]). Many authors have studied the existence and uniqueness of solutions of (1.1) by using various methods.

When $\delta>0$ and $\mu=0$, for the degenerate case, Nishihara and Yamada [7] have proved the global existence of a unique solution under the assumptions that the initial data $\left\{u_{0}, u_{1}\right\}$ are sufficiently small and $u_{0} \neq 0$. For the problem with linear damping δu_{t}, there are works of Brito [1], Ikehata [3], Ono [8] and the references therein. In the present paper we will study the existence and uniqueness of solutions of the unilateral problem (1.1) by using the Galerkin method and we will also investigate its asymptotic behavior.

The content of this paper is as follows: In Section 2, we present the preliminaries and some lemmas. In Section 3, we give the statement of the main theorem. In Section 4, we deal with a priori estimates for solutions of (1.1) and prove our main theorem, while Section 5 deals with the asymptotic behavior of the solutions obtained in Section 4.

2. Preliminaries

We first present the following well known lemmas which will be needed later.
Lemma 2.1 (Sobolev-Poincaré [4]). If either $1 \leqslant q<+\infty \quad(N=1,2)$ or $1 \leqslant q \leqslant \frac{N+2}{N-2} \quad(N \geqslant 3)$, then there is a constant $C(\Omega, q+1)$ such that

$$
\|u\|_{q+1} \leqslant C(\Omega, q+1)\|\nabla u\|_{2} \quad \text { for } \quad u \in H_{0}^{1}(\Omega)
$$

In other words, $C(\Omega, q+1)=\sup \left\{\left.\frac{\|u\|_{q+1}}{\|\nabla u\|_{2}} \right\rvert\,, u \in H_{0}^{1}(\Omega), u \neq 0\right\}$ is positive and finite.
Lemma 2.2 (Gagliardo-Nirenberg [4]). Let $1 \leqslant r<q \leqslant+\infty$ and $p \leqslant q$. Then the inequality

$$
\|u\|_{W^{k, q}} \leqslant C\|u\|_{W^{m, p}}^{\theta}\|u\|_{r}^{1-\theta} \quad \text { for } u \in W^{m, p}(\Omega) \cap L^{r}(\Omega)
$$

holds with some $C>0$ and $\theta=\left(\frac{k}{N}+\frac{1}{r}-\frac{1}{q}\right)\left(\frac{m}{N}+\frac{1}{r}-\frac{1}{p}\right)^{-1}$ provided that $0<\theta \leqslant 1$ (we assume $0<\theta<1$ if $q=+\infty$).

We conclude this section by stating a lemma concerning a difference inequality which will be used later.

Lemma 2.3 (Nakao [5]). Let $\varphi(t)$ be a nonincreasing and nonnegative function on $[0, T], T>1$, such that

$$
\varphi(t)^{1+r} \leqslant k_{0}(\varphi(t)-\varphi(t+1)) \quad \text { on } \quad[0, T]
$$

where k_{0} is a positive constant and r a nonnegative constant. Then we have
(i) if $r>0$, then

$$
\varphi(t) \leqslant\left(\varphi(0)^{-r}+k_{0}^{-1} r[t-1]^{+}\right)^{-\frac{1}{r}}, \quad \text { where } \quad[t-1]^{+}=\max \{t-1,0\}
$$

(ii) if $r=0$, then

$$
\varphi(t) \leqslant \varphi(0) \mathrm{e}^{-k_{1}[t-1]^{+}} \quad \text { on } \quad[0, T], \quad \text { where } \quad k_{1}=\log \frac{k_{0}}{k_{0}-1}
$$

3. Statement of the Result

We consider the initial value problem

$$
\begin{align*}
& u_{t t}(t)-\left(\alpha+\beta\|\nabla u(t)\|_{2}^{2}+\beta\|\nabla v(t)\|_{2}^{2}\right) \Delta u(t)+\delta\left|u_{t}(t)\right|^{p-1} u_{t}(t) \tag{3.1}\\
& \quad=\mu|u(t)|^{q-1} u(t), \quad t \geqslant 0 \\
& v_{t t}(t)-\left(\alpha+\beta\|\nabla u(t)\|_{2}^{2}+\beta\|\nabla v(t)\|_{2}^{2}\right) \Delta v(t)+\delta\left|v_{t}(t)\right|^{p-1} v_{t}(t) \\
& \quad=\mu|v(t)|^{q-1} v(t), \quad t \geqslant 0, \\
& u(0)=u_{0}, \quad u_{t}(0)=u_{1}, \\
& v(0)=v_{0}, \quad v_{t}(0)=v_{1}, \quad \text { where } \quad \alpha>0 \quad \text { and } \quad \beta \geqslant 0 .
\end{align*}
$$

Now we set

$$
\begin{aligned}
& J(u, v)=\frac{\alpha}{2}\left(\|\nabla u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right)+\frac{\beta}{4}\left(\|\nabla u\|_{2}^{4}+\|\nabla v\|_{2}^{4}\right)-\frac{\mu}{q+1}\left(\|u\|_{q+1}^{q+1}+\|v\|_{q+1}^{q+1}\right), \\
& I(u, v)=\alpha\left(\|\nabla u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right)-\mu\left(\|u\|_{q+1}^{q+1}+\|v\|_{q+1}^{q+1}\right)
\end{aligned}
$$

and define the potential as

$$
W=\left\{(u, v) \in H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega) \mid I(u, v)>0\right\} \cup\{0\}
$$

Next, by setting

$$
E(u(t), v(t))=\frac{1}{2}\left\|u_{t}(t)\right\|_{2}^{2}+\frac{1}{2}\left\|v_{t}(t)\right\|^{2}+J(u(t), v(t))+\frac{\beta}{2}\|\nabla u(t)\|_{2}^{2}\|\nabla v(t)\|_{2}^{2}
$$

we can state our main theorem.

Theorem 3.1. Let N be a positive integer. Suppose that $\delta>0$ and $\mu>0$ and $p<\min \left\{q, \frac{N+4 q-N q}{2}\right\}$ is such that
(i) $1 \leqslant p<+\infty(N=1,2)$,
(ii) $1 \leqslant p \leqslant 3,1<q \leqslant 5(N=3)$,
(iii) $1 \leqslant p \leqslant \frac{N}{N-2}, \frac{N}{N-2} \leqslant q \leqslant \min \left\{\frac{N+2}{N-2}, \frac{N-2}{[N-4]^{+}}\right\}(N \geqslant 4)$.

If $u_{0}, v_{0} \in W \cap H^{2}(\Omega), u_{1}, v_{1} \in H_{0}^{1}(\Omega)$ and

$$
\frac{\mu}{\alpha}[C(\Omega, q+1)]^{q+1}\left(\frac{2(q+1)}{\alpha(q-1)} E\left(u_{0}, v_{0}\right)\right)^{\frac{q-1}{2}}<1
$$

then the problem (3.1) has solution $(u, v)=(u(t, x), v(t, x))$ satisfying

$$
\begin{aligned}
& u, v \in L^{\infty}\left(0, \infty ; H_{0}^{1}(\Omega) \cap H^{2}(\Omega)\right) \\
& u^{\prime}, v^{\prime} \in L^{\infty}\left(0, \infty ; H_{0}^{1}(\Omega)\right) \\
& u^{\prime \prime}, v^{\prime \prime} \in L^{\infty}\left(0, \infty ; L^{2}(\Omega)\right)
\end{aligned}
$$

4. Proof of Theorem 3.1

Throughout this section we always assume that $u_{0}, v_{0} \in W \cap H^{2}(\Omega)$ and $u_{1}, v_{1} \in$ $H_{0}^{1}(\Omega)$. We employ the Galerkin method to construct a solution. Let $\left\{\lambda_{j}\right\}_{j=1}^{\infty}$ be a sequence of eigenvalues for $-\Delta w=\lambda w$ in Ω. Let $w_{j} \in H_{0}^{1}(\Omega) \cap H^{2}(\Omega)$ be the corresponding eigenfunction to λ_{j} and take $\left\{w_{j}\right\}_{j=1}^{\infty}$ as a complete orthonormal system in $L^{2}(\Omega)$. We construct approximate solutions $u_{m}, v_{m} \quad(m=1,2, \ldots)$ in the form

$$
u_{m}(t)=\sum_{j=1}^{m} g_{j m}(t) w_{j}, \quad v_{m}(t)=\sum_{j=1}^{m} h_{j m}(t) w_{j}
$$

which are determined by the ordinary differential equations

$$
\begin{align*}
& \left(u_{m}^{\prime \prime}(t), w\right)-\left(\left(\alpha+\beta\left\|\nabla u_{m}(t)\right\|_{2}^{2}+\beta\left\|\nabla v_{m}(t)\right\|_{2}^{2}\right) \Delta u_{m}(t), w\right) \tag{4.1}\\
& \quad+\delta\left|u_{m}^{\prime}(t)\right|^{p-1}\left(u_{m}^{\prime}(t), w\right)=\mu\left|u_{m}(t)\right|^{q-1}\left(u_{m}(t), w\right) \\
& \left(v_{m}^{\prime \prime}(t), w\right)-\left(\left(\alpha+\beta\left\|\nabla u_{m}(t)\right\|_{2}^{2}+\beta\left\|\nabla v_{m}(t)\right\|_{2}^{2}\right) \Delta v_{m}(t), w\right) \tag{4.2}\\
& \quad+\delta\left|v_{m}^{\prime}(t)\right|^{p-1}\left(v_{m}^{\prime}(t), w\right)=\mu\left|v_{m}(t)\right|^{q-1}\left(v_{m}(t), w\right)
\end{align*}
$$

$\left(^{\prime}=\frac{\partial}{\partial t}\right.$ and $\left.{ }^{\prime \prime}=\frac{\partial^{2}}{\partial t^{2}}\right)$ with the initial conditions

$$
\begin{align*}
& u_{m}(0)=u_{0 m}=\sum_{j=1}^{m}\left(u_{0}, w_{j}\right) w_{j} \rightarrow u_{0} \quad \text { in } H_{0}^{1}(\Omega) \cap H^{2}(\Omega), \tag{4.3}\\
& v_{m}(0)=v_{0 m}=\sum_{j=1}^{m}\left(v_{0}, w_{j}\right) w_{j} \rightarrow v_{0} \quad \text { in } H_{0}^{1}(\Omega) \cap H^{2}(\Omega), \\
& u_{m}^{\prime}(0)=u_{1 m}=\sum_{j=1}^{m}\left(u_{1}, w_{j}\right) w_{j} \rightarrow u_{1} \quad \text { strongly in } H_{0}^{1}(\Omega), \\
& v_{m}^{\prime}(0)=v_{1 m}=\sum_{j=1}^{m}\left(v_{1}, w_{j}\right) w_{j} \rightarrow v_{1} \quad \text { strongly in } H_{0}^{1}(\Omega) .
\end{align*}
$$

Therefore we can solve the system (4.1)-(4.4) by Picard's iteration method. Hence the system (4.1)-(4.4) has a unique solution on some interval $\left[0, T_{m}\right)$ with $0<T_{m} \leqslant$ $+\infty$. Note that $u_{m}(t)$ is in the C^{2}-class. We will see that $u_{m}(t)$ and $v_{m}(t)$ can be extended to $[0, \infty)$. We can utilize a standard compactness argument for the limiting procedure and it suffices to derive some a priori estimates for u_{m} and v_{m}. But this procedure allows us to employ the energy method for smooth solution $(u(t), v(t))$ to the problem (4.1)-(4.4) (the results should be in fact applied to the approximate solutions).

A Priori Estimates I

Multiplying the equation (4.1) by $u_{m}^{\prime}(t)$ and multiplying the equation (4.2) by $v_{m}^{\prime}(t)$ yields

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{1}{2}\left\|u_{m}^{\prime}(t)\right\|_{2}^{2}+\frac{\alpha}{2}\left\|\nabla u_{m}(t)\right\|_{2}^{2}+\frac{\beta}{4}\left\|\nabla u_{m}(t)\right\|_{2}^{4}-\frac{\mu}{q+1}\left\|u_{m}(t)\right\|_{q+1}^{q+1}\right) \tag{4.5}\\
& \quad+\frac{\beta}{2}\left\|\nabla v_{m}(t)\right\|_{2}^{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left\|\nabla u_{m}(t)\right\|_{2}^{2}+\delta\left\|u_{m}^{\prime}(t)\right\|_{p+1}^{p+1}=0
\end{align*}
$$

and

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{1}{2}\left\|v_{m}^{\prime}(t)\right\|_{2}^{2}+\frac{\alpha}{2}\left\|\nabla v_{m}(t)\right\|_{2}^{2}+\frac{\beta}{4}\left\|\nabla v_{m}(t)\right\|_{2}^{4}-\frac{\mu}{q+1}\left\|v_{m}(t)\right\|_{q+1}^{q+1}\right) \tag{4.6}\\
& \quad+\frac{\beta}{2}\left\|\nabla u_{m}(t)\right\|_{2}^{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left\|\nabla v_{m}(t)\right\|_{2}^{2}+\delta\left\|v_{m}^{\prime}(t)\right\|_{p+1}^{p+1}=0 .
\end{align*}
$$

Adding (4.5) and (4.6) and then integrating from 0 to t yields the energy identity

$$
\begin{equation*}
E\left(u_{m}(t), v_{m}(t)\right)+\delta \int_{0}^{t}\left(\left\|u_{m}^{\prime}(s)\right\|_{p+1}^{p+1}+\left\|v_{m}^{\prime}(s)\right\|_{p+1}^{p+1}\right) \mathrm{d} s=E\left(u_{0}, v_{0}\right) \tag{4.7}
\end{equation*}
$$

where

$$
\begin{aligned}
E\left(u_{m}(t), v_{m}(t)\right)= & \frac{1}{2}\left\|u_{m}^{\prime}(t)\right\|_{2}^{2}+\frac{1}{2}\left\|v_{m}^{\prime}(t)\right\|_{2}^{2}+\frac{\alpha}{2}\left\|\nabla u_{m}(t)\right\|_{2}^{2} \\
& +\frac{\alpha}{2}\left\|\nabla v_{m}(t)\right\|_{2}^{2}+\frac{\beta}{4}\left\|\nabla u_{m}(t)\right\|_{2}^{4}+\frac{\beta}{4}\left\|\nabla v_{m}(t)\right\|_{2}^{4} \\
& +\frac{\beta}{2}\left\|\nabla u_{m}(t)\right\|_{2}^{2}\left\|\nabla v_{m}(t)\right\|_{2}^{2}-\frac{\mu}{q+1}\left\|u_{m}(t)\right\|_{q+1}^{q+1} \\
& -\frac{\mu}{q+1}\left\|v_{m}(t)\right\|_{q+1}^{q+1} .
\end{aligned}
$$

In particular, $E\left(u_{m}(t), v_{m}(t)\right)$ is nonincreasing on $[0, \infty)$ and

$$
\begin{equation*}
E\left(u_{m}(t), v_{m}(t)\right) \leqslant E\left(u_{0}, v_{0}\right) \tag{4.8}
\end{equation*}
$$

Now, to obtain a priori estimates, we need the following result.

Lemma 4.1. Assume that either

$$
1 \leqslant q<+\infty(N=1,2) \quad \text { or } \quad 1 \leqslant q \leqslant \frac{N+3}{N-2}(N \geqslant 3) .
$$

Let $\left(u_{m}(t), v_{m}(t)\right)$ be the solution of (4.1)-(4.4) with $\left(u_{0}, v_{0}\right) \in W$ and $u_{1}, v_{1} \in$ $H_{0}^{1}(\Omega)$. If

$$
\begin{equation*}
\frac{\mu}{\alpha}[C(\Omega, q+1)]^{q+1}\left(\frac{2(q+1)}{\alpha(q-1)} E\left(u_{0}, v_{0}\right)\right)^{\frac{q-1}{2}}<1 \tag{4.9}
\end{equation*}
$$

then $\left(u_{m}(t), v_{m}(t)\right) \in W$ on $[0,+\infty)$, that is,

$$
\alpha\left(\left\|\nabla u_{m}\right\|_{2}^{2}+\left\|\nabla v_{m}\right\|_{2}^{2}\right)-\mu\left(\left\|u_{m}\right\|_{q+1}^{q+1}+\left\|v_{m}\right\|_{q+1}^{q+1}\right)>0 \quad \text { on } \quad[0,+\infty)
$$

Proof. Since $I\left(u_{0}, v_{0}\right)>0$, it follows from the continuity of $u_{m}(t)$ and $v_{m}(t)$ that

$$
\begin{equation*}
I\left(u_{m}(t), v_{m}(t)\right) \geqslant 0 \quad \text { for some interval near } \quad t=0 \tag{4.10}
\end{equation*}
$$

Let $t_{\max }$ be a maximal time (possibly $t_{\max }=T_{m}$) such that (4.10) holds on $\left[0, t_{\max }\right.$). Note that

$$
\begin{align*}
J\left(u_{m}(t), v_{m}(t)\right)= & \frac{\alpha}{2}\left(\left\|\nabla u_{m}(t)\right\|_{2}^{2}+\left\|\nabla v_{m}(t)\right\|_{2}^{2}\right)+\frac{\beta}{4}\left(\left\|\nabla u_{m}(t)\right\|_{2}^{4}+\left\|\nabla v_{m}(t)\right\|_{2}^{4}\right) \tag{4.11}\\
& -\frac{\mu}{q+1}\left(\left\|u_{m}(t)\right\|_{q+1}^{q+1}+\left\|v_{m}(t)\right\|_{q+1}^{q+1}\right), \\
= & \frac{1}{q+1} I\left(u_{m}(t), v_{m}(t)\right)+\frac{\alpha(q-1)}{2(q+1)}\left(\left\|\nabla u_{m}(t)\right\|_{2}^{2}+\left\|\nabla v_{m}(t)\right\|_{2}^{2}\right) \\
& +\frac{\beta}{4}\left(\left\|\nabla u_{m}(t)\right\|_{2}^{4}+\left\|\nabla v_{m}(t)\right\|_{2}^{4}\right) \\
\geqslant & \frac{\alpha(q-1)}{2(q+1)}\left(\left\|\nabla u_{m}(t)\right\|_{2}^{2}+\left\|\nabla v_{m}(t)\right\|_{2}^{2}\right) \quad \text { on } \quad\left[0, t_{\max }\right) .
\end{align*}
$$

By the energy identity (4.7), (4.8) and (4.11), we have

$$
\begin{align*}
\left\|\nabla u_{m}(t)\right\|_{2}^{2}+\left\|\nabla v_{m}(t)\right\|_{2}^{2} & \leqslant \frac{2(q+1)}{\alpha(q-1)} J\left(u_{m}(t), v_{m}(t)\right) \tag{4.12}\\
& \leqslant \frac{2(q+1)}{\alpha(q-1)} E\left(u_{m}(t), v_{m}(t)\right) \\
& \leqslant \frac{2(q+1)}{\alpha(q-1)} E\left(u_{0}, v_{0}\right) \quad \text { on } \quad\left[0, t_{\max }\right)
\end{align*}
$$

It follows from the Sobolev-Poincaré inequality, (4.9) and (4.12) that

$$
\begin{align*}
\mu\left\|u_{m}(t)\right\|_{q+1}^{q+1} & \leqslant \mu C(\Omega, q+1)^{q+1}\left\|\nabla u_{m}(t)\right\|_{2}^{q+1} \tag{4.13}\\
& =\frac{\mu}{\alpha} C(\Omega, q+1)^{q+1}\left\|\nabla u_{m}(t)\right\|_{2}^{q-1} \cdot \alpha\left\|\nabla u_{m}(t)\right\|_{2}^{2} \\
& \leqslant \frac{\mu}{\alpha} C(\Omega, q+1)^{q+1}\left(\frac{2(q+1)}{\alpha(q-1)} E\left(u_{0}, v_{0}\right)\right)^{\frac{q-1}{2}} \alpha\left\|\nabla u_{m}(t)\right\|_{2}^{2} \\
& \leqslant \alpha\left\|\nabla u_{m}(t)\right\|_{2}^{2} \quad \text { on } \quad\left[0, t_{\max }\right) .
\end{align*}
$$

Similarly,

$$
\begin{equation*}
\mu\left\|v_{m}(t)\right\|_{q+1}^{q+1} \leqslant \alpha\left\|\nabla v_{m}(t)\right\|_{2}^{2} \quad \text { on } \quad\left[0, t_{\max }\right) \tag{4.14}
\end{equation*}
$$

Thus from (4.13) and (4.14) we obtain

$$
\begin{align*}
& \mu\left(\left\|u_{m}(t)\right\|_{q+1}^{q+1}+\left\|v_{m}(t)\right\|_{q+1}^{q+1}\right) \tag{4.15}\\
& \leqslant \alpha\left(\left\|\nabla u_{m}(t)\right\|_{2}^{2}+\left\|\nabla v_{m}(t)\right\|_{2}^{2}\right) \quad \text { on } \quad\left[0, t_{\max }\right)
\end{align*}
$$

Therefore we get $I(u(t), v(t))>0$ on $\left[0, t_{\max }\right)$. This implies that we can take $t_{\max }=$ T_{m}. This completes the proof of Lemma 4.1.

Using Lemma 4.1, we can deduce a priori estimates for u_{m} and v_{m}. Lemma 4.1 implies that

$$
\begin{align*}
E\left(u_{m}(t), v_{m}(t)\right) \geqslant & \frac{1}{2}\left\|u_{m}^{\prime}(t)\right\|_{2}^{2}+\frac{1}{2}\left\|v_{m}^{\prime}(t)\right\|_{2}^{2}+\frac{1}{q+1} I\left(u_{m}(t), v_{m}(t)\right) \tag{4.16}\\
& +\frac{\alpha(q-1)}{2(q+1)}\left(\left\|\nabla u_{m}(t)\right\|_{2}^{2}+\left\|\nabla v_{m}(t)\right\|_{2}^{2}\right) \\
\geqslant & \frac{1}{2}\left\|u_{m}^{\prime}(t)\right\|_{2}^{2}+\frac{1}{2}\left\|v_{m}^{\prime}(t)\right\|_{2}^{2} \\
& +\frac{\alpha(q-1)}{2(q+1)}\left(\left\|\nabla u_{m}(t)\right\|_{2}^{2}+\left\|\nabla v_{m}(t)\right\|_{2}^{2}\right)
\end{align*}
$$

Thus,

$$
\begin{align*}
& \frac{1}{2}\left(\left\|u_{m}^{\prime}(t)\right\|_{2}^{2}+\left\|v_{m}^{\prime}(t)\right\|_{2}^{2}\right)+\frac{\alpha(q-1)}{2(q+1)}\left(\left\|\nabla u_{m}(t)\right\|_{2}^{2}+\left\|\nabla v_{m}(t)\right\|_{2}^{2}\right) \tag{4.17}\\
& \quad+\delta \int_{0}^{t}\left(\left\|u_{m}^{\prime}(s)\right\|_{p+1}^{p+1}+\left\|v_{m}^{\prime}(s)\right\|_{p+1}^{p+1}\right) \mathrm{d} s \\
& \leqslant E\left(u_{0}, v_{0}\right)
\end{align*}
$$

A Priori Estimates II

Multiplying the equation (4.1) by $-\Delta u_{m}^{\prime}(t)$, multiplying the equation (4.2) by $-\Delta v_{m}^{\prime}(t)$ and adding these two equations we obtain

$$
\begin{align*}
\frac{1}{2} & \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\left\|\nabla u_{m}^{\prime}(t)\right\|_{2}^{2}+\left\|\nabla v_{m}^{\prime}(t)\right\|_{2}^{2}+\alpha\left(\left\|\Delta u_{m}(t)\right\|_{2}^{2}+\left\|\Delta v_{m}(t)\right\|_{2}^{2}\right)\right. \tag{4.18}\\
& \left.+\frac{\beta}{2}\left(\left\|\nabla u_{m}(t)\right\|_{2}^{2}+\left\|\nabla v_{m}(t)\right\|_{2}^{2}\right)\left(\left\|\Delta u_{m}(t)\right\|_{2}^{2}+\left\|\Delta v_{m}(t)\right\|_{2}^{2}\right)\right) \\
& +p \delta\left(\left|u_{m}^{\prime}(t)\right|^{p-1} \nabla u_{m}^{\prime}(t), \nabla u_{m}^{\prime}(t)\right)+p \delta\left(\left|v_{m}^{\prime}(t)\right|^{p-1} \nabla v_{m}^{\prime}(t), \nabla v_{m}^{\prime}(t)\right) \\
= & \mu\left(\left(\nabla\left[\left|u_{m}(t)\right|^{q-1} u_{m}(t)\right], \nabla u_{m}^{\prime}(t)\right)+\left(\nabla\left[\left|v_{m}(t)\right|^{q-1} v_{m}(t)\right], \nabla v_{m}^{\prime}(t)\right)\right) \\
& +\beta\left(\left\|\Delta u_{m}(t)\right\|_{2}^{2}+\left\|\Delta v_{m}(t)\right\|_{2}^{2}\right)\left(\left(\nabla u_{m}(t), \nabla u_{m}^{\prime}(t)\right)+\left(\nabla v_{m}(t), \nabla v_{m}^{\prime}(t)\right)\right)
\end{align*}
$$

Now we shall compute the first term on the right hand side of (4.18). In the case $\frac{N}{N-2} \leqslant q \leqslant \min \left\{\frac{N+2}{N-2}, \frac{N-2}{[N-4]^{+}}\right\}(N \geqslant 3)$, we also see that

$$
\begin{align*}
\left|\left(\nabla\left[\left|u_{m}(t)\right|^{q-1} u_{m}(t)\right], \nabla u_{m}^{\prime}(t)\right)\right| & \leqslant q\left\|\left|u_{m}(t)\right|^{q-1} \nabla u_{m}(t)\right\|_{2}\left\|\nabla u_{m}^{\prime}(t)\right\|_{2} \tag{4.19}\\
& \leqslant q\left\|u_{m}(t)\right\|_{(q-1) N}^{q-1}\left\|\nabla u_{m}(t)\right\|_{\frac{2 N}{N-2}}\left\|\nabla u_{m}^{\prime}(t)\right\|_{2} \\
& \leqslant q C\left\|u_{m}(t)\right\|_{(q-1) N}^{q-1}\left\|\Delta u_{m}(t)\right\|_{2}\left\|\nabla u_{m}^{\prime}(t)\right\|_{2}
\end{align*}
$$

where we have used Hölder's inequality and Sobolev-Poincaré's inequality. We observe from the Gagliardo-Nirenberg inequality and Sobolev-Pointcaré's inequality that

$$
\begin{align*}
\left\|u_{m}(t)\right\|_{(q-1) N}^{q-1} & \leqslant C\left\|u_{m}(t)\right\|_{\frac{2 N}{N-2}}^{(q-1)(1-\theta)}\left\|\Delta u_{m}(t)\right\|_{2}^{(q-1) \theta} \tag{4.20}\\
\leqslant & C\left\|\nabla u_{m}(t)\right\|_{2}^{(q-1)(1-\theta)}\left\|\Delta u_{m}(t)\right\|_{2}^{(q-1) \theta} \\
& \text { with } \quad \theta=\frac{N-2}{2}-\frac{1}{q-1}(<1)
\end{align*}
$$

Thus, (4.17), (4.19) and (4.20) imply

$$
\begin{align*}
& \left|\mu\left(\nabla\left[\left|u_{m}(t)\right|^{q-1} u_{m}(t)\right], \nabla u_{m}^{\prime}(t)\right)\right| \tag{4.21}\\
& \leqslant q \mu C\left\|\nabla u_{m}(t)\right\|_{2}^{(q-1)(1-\theta)}\left\|\Delta u_{m}(t)\right\|_{2}^{1+(q-1) \theta}\left\|\nabla u_{m}^{\prime}(t)\right\|_{2} \\
& \leqslant q \mu C\left(\frac{2(q+1)}{\alpha(q-1)} E\left(u_{0}, v_{0}\right)\right)^{\frac{1}{2}(q-1)(1-\theta)}\left\|\Delta u_{m}(t)\right\|_{2}^{1+(q-1) \theta}\left\|\nabla u_{m}^{\prime}(t)\right\|_{2}
\end{align*}
$$

Similarly

$$
\begin{align*}
& \left|\mu\left(\nabla\left[\left|v_{m}(t)\right|^{q-1} v_{m}(t)\right], \nabla v_{m}^{\prime}(t)\right)\right| \tag{4.22}\\
& \leqslant q \mu C\left(\frac{2(q+1)}{\alpha(q-1)} E\left(u_{0}, v_{0}\right)\right)^{\frac{1}{2}(q-1)(1-\theta)}\left\|\Delta v_{m}(t)\right\|_{2}^{1+(q-1) \theta}\left\|\nabla v_{m}^{\prime}(t)\right\|_{2}
\end{align*}
$$

Next, we shall compute the second term on the right hand side of (4.18):

$$
\begin{aligned}
& \beta\left|\left(\left\|\Delta u_{m}(t)\right\|_{2}^{2}+\left\|\Delta v_{m}(t)\right\|_{2}^{2}\right)\left(\left(\nabla u_{m}(t), \nabla u_{m}^{\prime}(t)\right)+\left(\nabla v_{m}(t), \nabla v_{m}^{\prime}(t)\right)\right)\right| \\
& \leqslant \beta\left(\left\|\Delta u_{m}(t)\right\|_{2}^{2}+\left\|\Delta v_{m}(t)\right\|_{2}^{2}\right)\left(\left\|\nabla u_{m}(t)\right\|_{2}\left\|\nabla u_{m}^{\prime}(t)\right\|_{2}+\left\|\nabla v_{m}(t)\right\|_{2}\left\|\nabla v_{m}^{\prime}(t)\right\|_{2}\right) \\
& \leqslant \beta\left(\frac{2(q+1)}{\alpha(q-1)} E\left(u_{0}, v_{0}\right)\right)^{\frac{1}{2}}\left(\left\|\Delta u_{m}(t)\right\|_{2}^{2}+\left\|\Delta u_{m}(t)\right\|_{2}^{2}\right)\left(\left\|\nabla u_{m}^{\prime}(t)\right\|_{2}+\left\|\nabla v_{m}^{\prime}(t)\right\|_{2}\right) .
\end{aligned}
$$

Consequently, we have

$$
\begin{align*}
& \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\left\|\nabla u_{m}^{\prime}(t)\right\|_{2}^{2}+\left\|\nabla v_{m}^{\prime}(t)\right\|_{2}^{2}+\alpha\left(\left\|\Delta u_{m}(t)\right\|_{2}^{2}+\left\|\Delta v_{m}(t)\right\|_{2}^{2}\right)\right. \tag{4.23}\\
& \left.\quad+\frac{\beta}{2}\left(\left\|\nabla u_{m}(t)\right\|_{2}^{2}+\left\|\nabla v_{m}(t)\right\|_{2}^{2}\right)\left(\left\|\Delta u_{m}(t)\right\|_{2}^{2}+\left\|\Delta v_{m}(t)\right\|_{2}^{2}\right)\right) \\
& \leqslant q \mu C\left(\left\|\Delta u_{m}(t)\right\|_{2}^{1+(q-1) \theta}\left\|\nabla u_{m}^{\prime}(t)\right\|_{2}+\left\|\Delta v_{m}(t)\right\|_{2}^{1+(q-1) \theta}\left\|\nabla v_{m}^{\prime}(t)\right\|_{2}\right) \\
& \quad \times\left(\frac{2(q+1)}{\alpha(q-1)} E\left(u_{0}, v_{0}\right)\right)^{\frac{1}{2}(q-1)(1-\theta)} \\
& \quad+\beta\left(\left\|\Delta u_{m}(t)\right\|_{2}^{2}+\left\|\Delta u_{m}(t)\right\|_{2}^{2}\right)\left(\left\|\nabla u_{m}^{\prime}(t)\right\|_{2}+\left\|\nabla v_{m}^{\prime}(t)\right\|_{2}\right) \\
& \quad \times\left(\frac{2(q+1)}{\alpha(q-1)} E\left(u_{0}, v_{0}\right)\right)^{\frac{1}{2}} .
\end{align*}
$$

Integrating (4.23) from 0 to t, we obtain

$$
\begin{align*}
& \frac{1}{2}\left(\left\|\nabla u_{m}^{\prime}(t)\right\|_{2}^{2}+\left\|\nabla v_{m}^{\prime}(t)\right\|_{2}^{2}\right)+\frac{\alpha}{2}\left(\left\|\Delta u_{m}(t)\right\|_{2}^{2}+\left\|\Delta v_{m}(t)\right\|_{2}^{2}\right) \tag{4.24}\\
& \quad+\frac{\beta}{2}\left(\left\|\Delta u_{m}(t)\right\|_{2}^{2}+\left\|\Delta v_{m}(t)\right\|_{2}^{2}\right)\left(\left\|\nabla u_{m}(t)\right\|_{2}^{2}+\left\|\nabla v_{m}(t)\right\|_{2}^{2}\right) \\
& \leqslant \\
& \frac{1}{2}\left(\left\|\nabla u_{1}\right\|_{2}^{2}+\left\|\nabla v_{1}\right\|_{2}^{2}\right)+\frac{\alpha}{2}\left(\left\|\Delta u_{0}\right\|_{2}^{2}+\left\|\Delta v_{0}\right\|_{2}^{2}\right) \\
& \quad+\frac{\beta}{2}\left(\left\|\Delta u_{0}\right\|_{2}^{2}+\left\|\Delta v_{0}\right\|_{2}^{2}\right)\left(\left\|\nabla u_{0}\right\|_{2}^{2}+\left\|\nabla v_{0}\right\|_{2}^{2}\right) \\
& \quad+q \mu C\left(\frac{2(q+1)}{\alpha(q-1)} E\left(u_{0}, v_{0}\right)\right)^{\frac{1}{2}(q-1)(1-\theta)} \\
& \quad \times \int_{0}^{t}\left(\left\|\Delta u_{m}(s)\right\|_{2}^{1+(q-1) \theta}\left\|\nabla u_{m}^{\prime}(s)\right\|_{2}+\left\|\Delta v_{m}(s)\right\|_{2}^{1+(q-1) \theta}\left\|\nabla v_{m}^{\prime}(s)\right\|_{2}\right) \mathrm{d} s \\
& \quad+\beta\left(\frac{2(q+1)}{\alpha(q-1)} E\left(u_{0}, v_{0}\right)\right)^{\frac{1}{2}} \\
& \quad \times \int_{0}^{t}\left(\left\|\Delta u_{m}(s)\right\|_{2}^{2}+\left\|\Delta v_{m}(s)\right\|_{2}^{2}\right)\left(\left\|\nabla u_{m}^{\prime}(s)\right\|_{2}+\left\|\nabla v_{m}^{\prime}(s)\right\|_{2}\right) \mathrm{d} s
\end{align*}
$$

where we have used the inequality

$$
p \delta \int_{0}^{t}\left(\left(\left|u_{m}^{\prime}(s)\right|^{p-1} \nabla u_{m}^{\prime}(s), \nabla u_{m}^{\prime}(s)\right)+\left(\left|v_{m}^{\prime}(s)\right|^{p-1} \nabla v_{m}^{\prime}(s), \nabla v_{m}^{\prime}(s)\right)\right) \mathrm{d} s \geqslant 0
$$

Thus

$$
\begin{align*}
& E^{*}\left(u_{m}(t), v_{m}(t)\right) \leqslant C\left(E^{*}\left(u_{0}, v_{0}\right)\right) \tag{4.25}\\
& +C^{*}\left(u_{0}, v_{0}, q\right) \int_{0}^{t}\left(E^{*}\left(u_{m}(s), v_{m}(s)\right)+E^{*}\left(u_{m}(s), v_{m}(s)\right)^{1+(q-1) \theta}\right. \\
& \left.\quad+E^{*}\left(u_{m}(s), v_{m}(s)\right)^{2}\right) \mathrm{d} s
\end{align*}
$$

where $C\left(E^{*}\left(u_{0}, v_{0}\right)\right), C^{*}\left(u_{0}, v_{0}, q\right)$ are some constants depending on u_{0}, v_{0} and q and

$$
E^{*}\left(u_{m}(t), v_{m}(t)\right)=\frac{1}{2}\left(\left\|\nabla u_{m}^{\prime}(t)\right\|_{2}^{2}+\left\|\nabla v_{m}^{\prime}(t)\right\|_{2}^{2}\right)+\frac{\alpha}{2}\left(\left\|\Delta u_{m}(t)\right\|_{2}^{2}+\left\|\Delta v_{m}(t)\right\|_{2}^{2}\right)
$$

We set $g(s)=s+s^{1+(q-1) \theta}+s^{2}$ on $s \geqslant 0$. Then we have

$$
\begin{equation*}
E^{*}\left(u_{m}(t), v_{m}(t)\right) \leqslant C\left(E^{*}\left(u_{0}, v_{0}\right)\right)+C^{*}\left(u_{0}, v_{0}, q\right) \int_{0}^{t} g\left(E^{*}\left(u_{m}(s), v_{m}(s)\right) \mathrm{d} s\right. \tag{4.26}
\end{equation*}
$$

Note that $g(s)$ is continuous and nondecreasing on $s \geqslant 0$. By applying BihariLangenhop's inequality (see [2]), we get

$$
\begin{equation*}
E^{*}\left(u_{m}(t), v_{m}(t)\right) \leqslant M_{1} \quad \text { for some constant } \quad M_{1}>0 \tag{4.27}
\end{equation*}
$$

Hence

$$
\begin{array}{r}
\left\|\nabla u_{m}^{\prime}(t)\right\|_{2}^{2}+\left\|\Delta u_{m}(t)\right\|_{2}^{2}+\left\|\nabla v_{m}^{\prime}(t)\right\|_{2}^{2}+\left\|\Delta v_{m}(t)\right\|_{2}^{2} \leqslant M_{2} \tag{4.28}\\
\text { for some constant } \quad M_{2}>0
\end{array}
$$

A Priori Estimates III

Finally, by multiplying the equation (4.1) by $u_{m}^{\prime \prime}(t)$ we have

$$
\begin{aligned}
\left\|u_{m}^{\prime \prime}(t)\right\|_{2}^{2} \leqslant & \left(\alpha\left\|\Delta u_{m}(t)\right\|_{2}+\beta\left(\left\|\nabla u_{m}(t)\right\|_{2}^{2}+\left\|\nabla v_{m}(t)\right\|_{2}^{2}\right)\left\|\Delta u_{m}(t)\right\|_{2}\right)\left\|u_{m}^{\prime \prime}(t)\right\|_{2} \\
& +\left.|\delta| u_{m}^{\prime}(t)\right|^{p-1}\left(u_{m}^{\prime}(t), u_{m}^{\prime \prime}(t)\right)\left|+|\mu| u_{m}(t)\right|^{q-1}\left(u_{m}(t), u_{m}^{\prime \prime}(t)\right) \mid
\end{aligned}
$$

Note that

$$
\begin{aligned}
\left.\delta\left|u_{m}^{\prime}(t)\right|^{p-1}\left(u_{m}^{\prime}(t)\right), u_{m}^{\prime \prime}(t)\right) & \leqslant \delta \int_{\Omega}\left|u_{m}^{\prime}(t)\right|^{p}| | u_{m}^{\prime \prime}(t) \mid \mathrm{d} x \\
& \leqslant \delta\left(\int_{\Omega}\left|u_{m}^{\prime}(t)\right|^{2 p} \mathrm{~d} x\right)^{\frac{1}{2}}\left(\int_{\Omega}\left|u_{m}^{\prime \prime}(t)\right|^{2} \mathrm{~d} x\right)^{\frac{1}{2}} \\
& =\delta\left\|u_{m}^{\prime}(t)\right\|_{2 p}^{p}\left\|u_{m}^{\prime \prime}(t)\right\|_{2}
\end{aligned}
$$

and similarly

$$
\left.\mu\left|u_{m}(t)\right|^{q-1}\left(u_{m}(t)\right), u_{m}^{\prime \prime}(t)\right) \leqslant \mu\left\|u_{m}(t)\right\|_{2 q}^{q}\left\|u_{m}^{\prime \prime}(t)\right\|_{2}
$$

Thus, we get

$$
\begin{aligned}
\left\|u_{m}^{\prime \prime}(t)\right\|_{2} \leqslant & \alpha\left\|\Delta u_{m}(t)\right\|_{2}+\beta\left(\left\|\nabla u_{m}(t)\right\|_{2}^{2}+\left\|\nabla v_{m}(t)\right\|_{2}^{2}\right)\left\|\Delta u_{m}(t)\right\|_{2} \\
& +\delta\left\|u_{m}^{\prime}(t)\right\|_{2 p}^{p}+\mu\left\|u_{m}(t)\right\|_{2 q}^{q} .
\end{aligned}
$$

Now it follows from the Gagliardo-Nirenberg inequality that

$$
\begin{aligned}
\left\|u_{m}^{\prime}(t)\right\|_{2 p}^{p} & \leqslant C_{1}\left\|\nabla u_{m}^{\prime}(t)\right\|_{2}^{p \theta_{1}}\left\|u_{m}^{\prime}(t)\right\|_{2}^{p\left(1-\theta_{1}\right)} \\
& \leqslant C_{2}\left\|\nabla u_{m}^{\prime}(t)\right\|_{2}^{p \theta_{1}} \quad \text { with } \quad \theta_{1}=\frac{(p-1) N}{2 p} \\
\left\|u_{m}(t)\right\|_{2 q}^{q} & \leqslant C_{3}\left\|\nabla u_{m}(t)\right\|_{2}^{q \theta_{2}}\left\|u_{m}(t)\right\|_{2}^{q\left(1-\theta_{2}\right)} \\
& \leqslant C_{4}\left\|\nabla u_{m}(t)\right\|_{2}^{q \theta_{2}} \quad \text { with } \quad \theta_{2}=\frac{(q-1) N}{2 q} .
\end{aligned}
$$

Thus,

$$
\begin{align*}
\left\|u_{m}^{\prime \prime}(t)\right\|_{2} \leqslant & \alpha\left\|\Delta u_{m}(t)\right\|_{2}+\beta\left(\left\|\nabla u_{m}(t)\right\|_{2}^{2}+\left\|\nabla v_{m}(t)\right\|_{2}^{2}\right)\left\|\Delta u_{m}(t)\right\|_{2} \tag{4.29}\\
& +C_{2}\left\|\nabla u_{m}^{\prime}(t)\right\|_{2}^{p \theta_{1}}+C_{4}\left\|\nabla u_{m}(t)\right\|_{2}^{q \theta_{2}} \\
\leqslant & M_{3} \quad \text { for some constant } \quad M_{3}>0
\end{align*}
$$

By applying similar method as that used for u_{m}, we get

$$
\begin{equation*}
\left\|v_{m}^{\prime \prime}(t)\right\|_{2} \leqslant M_{4} \quad \text { for some constant } \quad M_{4}>0 \tag{4.30}
\end{equation*}
$$

Limiting Process

By the above estimates (4.17), (4.28), (4.29) and (4.30), $\left\{u_{m}\right\},\left\{v_{m}\right\}$ have subsequences still denoted by $\left\{u_{m}\right\},\left\{v_{m}\right\}$ such that
(4.35) $-\Delta u_{m} \rightarrow-\Delta u, \quad-\Delta v_{m} \rightarrow-\Delta v \quad$ in $\quad L^{\infty}\left(0, T ; H^{-1}(\Omega)\right) \quad$ weak ${ }^{*}$.

Using Aubin-Lions's compactness lemma, we can extract from $\left\{u_{m}\right\},\left\{v_{m}\right\}$ subsequences still denoted by $\left\{u_{m}\right\},\left\{v_{m}\right\}$ such that

$$
\begin{equation*}
u_{m} \rightarrow u, \quad v_{m} \rightarrow v \quad \text { strongly in } \quad L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) . \tag{4.36}
\end{equation*}
$$

It follows from (4.36) that for each $t \in[0, T]$,

$$
\begin{equation*}
u_{m}(t) \rightarrow u(t), \quad v_{m}(t) \rightarrow v(t) \quad \text { strongly in } \quad H_{0}^{1}(\Omega) \tag{4.37}
\end{equation*}
$$

By letting $m \rightarrow \infty$ in (4.1) and (4.2), we can find that u and v satisfy the equations

$$
\begin{align*}
& \left(u^{\prime \prime}(t), w\right)-\left(\left(\alpha+\beta\|\nabla u(t)\|_{2}^{2}+\beta\|\nabla v(t)\|_{2}^{2}\right) \Delta u(t), w\right) \tag{4.38}\\
& \quad+\delta\left|u^{\prime}(t)\right|^{p-1}\left(u^{\prime}(t), w\right)=\mu|u(t)|^{q-1}(u(t), w) \quad \text { for all } \quad w \in H_{0}^{1}(\Omega) \\
& \left(v^{\prime \prime}(t), w\right)-\left(\left(\alpha+\beta\|\nabla u(t)\|_{2}^{2}+\beta\|\nabla v(t)\|_{2}^{2}\right) \Delta v(t), w\right) \tag{4.39}\\
& \quad+\delta\left|v^{\prime}(t)\right|^{p-1}\left(v^{\prime}(t), w\right)=\mu|v(t)|^{q-1}(v(t), w) \quad \text { for all } \quad w \in H_{0}^{1}(\Omega) .
\end{align*}
$$

Now, (4.37) implies

$$
\begin{equation*}
u_{m}(0)=u_{0 m} \rightarrow u_{0} \quad \text { strongly in } \quad H_{0}^{1}(\Omega) \tag{4.40}
\end{equation*}
$$

Thus, from (4.3) and (4.40), we conclude $u(0)=u_{0}$. Also, from (4.34) we obtain

$$
\begin{equation*}
\left(u_{m}^{\prime}(0)-u^{\prime}(0), w\right) \rightarrow 0 \quad \text { as } \quad m \rightarrow \infty \quad \text { for each } \quad w \in H_{0}^{1}(\Omega) \tag{4.41}
\end{equation*}
$$

Thus, (4.4) and (4.41) imply

$$
u^{\prime}(0)=u_{1} .
$$

Similarly, we obtain $v(0)=v_{0}$ and $v^{\prime}(0)=v_{1}$. This completes the proof of Theorem 3.1.

5. Asymptotic behavior of solutions

Theorem 5.1. Let $u(t), v(t)$ and q be as in Theorem 3.1. Assume that either $1 \leqslant p<\infty \quad(N=1,2)$ or $1 \leqslant p \leqslant \frac{N}{N-2} \quad(N \geqslant 3)$ holds. Then we have the decay estimates if $p=1$, then

$$
E(u(t), v(t)) \leqslant C_{0} \mathrm{e}^{-k t} \quad \text { on } \quad[0, \infty)
$$

and if $p>1$, then

$$
E(u(t), v(t)) \leqslant C_{1}(1+t)^{-\frac{2}{p-1}} \quad \text { on } \quad[0,+\infty)
$$

where k, C_{0} and C_{1} are certain positive constants depending on $\left\|\nabla u_{0}\right\|_{2}$ and $\left\|u_{1}\right\|_{2}$.
To prove our theorem, we need the following lemma.

Lemma 5.2. Let $u(t)$ and q be as in Lemma 4.1. Then there is a certain number η_{0} with $0<\eta_{0}<1$ such that

$$
\mu\left(\|u(t)\|_{q+1}^{q+1}+\|v(t)\|_{q+1}^{q+1}\right) \leqslant\left(1-\eta_{0}\right) \alpha\left(\|\nabla u(t)\|_{2}^{2}+\|\nabla v(t)\|_{2}^{2}\right) \quad \text { on } \quad[0, \infty)
$$

where

$$
\eta_{0} \equiv 1-\frac{\mu}{\alpha} C(\Omega, q+1)^{q+1}\left(\frac{2(q+1)}{\alpha(q-1)} E\left(u_{0}, v_{0}\right)\right)^{\frac{q-1}{2}}
$$

Proof. It follows from the Sobolev-Poincaré's inequality and (4.17) that

$$
\begin{aligned}
\mu\|u(t)\|_{q+1}^{q+1} & \leqslant \mu C(\Omega, q+1)^{q+1}\|\nabla u(t)\|_{2}^{q+1} \\
& =\frac{\mu}{\alpha} C(\Omega, q+1)^{q+1}\|\nabla u(t)\|_{2}^{q-1} \alpha\|\nabla u(t)\|_{2}^{2} \\
& \leqslant \frac{\mu}{\alpha} C(\Omega, q+1)^{q+1}\left(\frac{2(q+1)}{\alpha(q-1)} E\left(u_{0}, v_{0}\right)\right)^{\frac{q-1}{2}} \alpha\|\nabla u(t)\|_{2}^{2} \\
& =\left(1-\eta_{0}\right) \alpha\|\nabla u(t)\|_{2}^{2} \quad \text { on } \quad[0, \infty)
\end{aligned}
$$

and

$$
\mu\|v(t)\|_{q+1}^{q+1} \leqslant\left(1-\eta_{0}\right) \alpha\|\nabla v(t)\|_{2}^{2} \quad \text { on } \quad[0, \infty)
$$

Thus

$$
\mu\left(\|u(t)\|_{q+1}^{q+1}+\|v(t)\|_{q+1}^{q+1}\right) \leqslant\left(1-\eta_{0}\right) \alpha\left(\|\nabla u(t)\|_{2}^{2}+\|\nabla v(t)\|_{2}^{2}\right) \quad \text { on } \quad[0, \infty)
$$

This completes the proof of Lemma 5.2.

Proof of Theorem 5.1. We denote $E(u(t), v(t))$ by $E(t)$ and $E\left(u_{0}, v_{0}\right)$ by $E(0)$. Let $(u(t), v(t))$ be solutions of the problems

$$
\begin{align*}
& u^{\prime \prime}(t)-\left(\alpha+\beta\left(\|\nabla u(t)\|_{2}^{2}+\|\nabla v(t)\|_{2}^{2}\right)\right) \Delta u(t)+\delta\left|u^{\prime}(t)\right|^{p-1} u^{\prime}(t) \tag{5.1}\\
& =\mu|u(t)|^{q-1} u(t) \\
& v^{\prime \prime}(t)-\left(\alpha+\beta\left(\|\nabla u(t)\|_{2}^{2}+\|\nabla v(t)\|_{2}^{2}\right)\right) \Delta v(t)+\delta\left|v^{\prime}(t)\right|^{p-1} v^{\prime}(t) \tag{5.2}\\
& =\mu|v(t)|^{q-1} v(t)
\end{align*}
$$

adding these two equations and then integrating over $[t, t+1] \times \Omega$, we get

$$
\begin{align*}
\delta \int_{t}^{t+1}\left(\left\|u^{\prime}(s)\right\|_{p+1}^{p+1}+\left\|v^{\prime}(s)\right\|_{p+1}^{p+1}\right) \mathrm{d} s & =E(t)-E(t+1) \tag{5.4}\\
& \equiv \delta F(t)^{p+1}
\end{align*}
$$

where

$$
E(t)=\frac{1}{2}\left\|u^{\prime}(t)\right\|_{2}^{2}+\frac{1}{2}\left\|v^{\prime}(t)\right\|_{2}^{2}+J(u(t), v(t))+\frac{\beta}{2}\|\nabla u(t)\|_{2}^{2}\|\nabla v(t)\|_{2}^{2}
$$

It follows from Hölder's inequality and (5.4) that

$$
\begin{align*}
\int_{t}^{t+1}\left\|u^{\prime}(s)\right\|_{2}^{2} \mathrm{~d} s & =\int_{t}^{t+1} \int_{\Omega}\left|u^{\prime}(s)\right|^{2} \mathrm{~d} x \mathrm{~d} s \tag{5.5}\\
& \leqslant m(\Omega)^{\frac{p-1}{p+1}} \int_{t}^{t+1}\left(\int_{\Omega}\left|u^{\prime}(s)\right|^{p+1} \mathrm{~d} x\right)^{\frac{2}{p+1}} \mathrm{~d} s \\
& \leqslant m(\Omega)^{\frac{p-1}{p+1}} \int_{t}^{t+1}\left\|u^{\prime}(s)\right\|_{p+1}^{2} \mathrm{~d} s \\
& \leqslant m(\Omega)^{\frac{p-1}{p+1}}\left(\int_{t}^{t+1}\left\|u^{\prime}(s)\right\|_{p+1}^{p+1} \mathrm{~d} s\right)^{\frac{2}{p+1}}\left(\int_{t}^{t+1} \mathrm{~d} s\right)^{\frac{p-1}{p+1}} \\
& \leqslant m(\Omega)^{\frac{p-1}{p+1}} F(t)^{2} .
\end{align*}
$$

Similarly, we obtain

$$
\begin{equation*}
\int_{t}^{t+1}\left\|v^{\prime}(s)\right\|_{2}^{2} \mathrm{~d} s \leqslant m(\Omega)^{\frac{p-1}{p+1}} F(t)^{2} . \tag{5.6}
\end{equation*}
$$

Applying the mean value theorem to the left hand sides of (5.5)-(5.6), we find two points $t_{1} \in\left[t, t+\frac{1}{4}\right]$ and $t_{2} \in\left[t+\frac{3}{4}, t+1\right]$ such that

$$
\begin{array}{ll}
\left\|u^{\prime}\left(t_{i}\right)\right\|_{2} \leqslant 2 m(\Omega)^{\frac{p-1}{2(p+1)}} F(t) & i=1,2 \\
\left\|v^{\prime}\left(t_{i}\right)\right\|_{2} \leqslant 2 m(\Omega)^{\frac{p-1}{2(p+1)}} F(t) & i=1,2 . \tag{5.8}
\end{array}
$$

Next, multiplying (5.1) by $u(t)$, multiplying (5.2) by $v(t)$, adding these two equations and integrating over $\left[t_{1}, t_{2}\right] \times \Omega$ we obtain (cf. (5.7), (5.8))

$$
\begin{align*}
& \int_{t_{1}}^{t_{2}} I(u(s), v(s)) \mathrm{d} s \tag{5.9}\\
& =\int_{t_{1}}^{t_{2}}\left(\alpha\left(\|\nabla u(s)\|_{2}^{2}+\|\nabla v(s)\|_{2}^{2}\right)-\mu\left(\|u(s)\|_{q+1}^{q+1}+\|v(s)\|_{q+1}^{q+1}\right)\right) \mathrm{d} s \\
& \leqslant \\
& \left\|u^{\prime}\left(t_{1}\right)\right\|_{2}\left\|u\left(t_{1}\right)\right\|_{2}+\left\|u^{\prime}\left(t_{2}\right)\right\|_{2}\left\|u\left(t_{2}\right)\right\|_{2}+\left\|v^{\prime}\left(t_{1}\right)\right\|_{2}\left\|v\left(t_{1}\right)\right\|_{2} \\
& \quad+\left\|v^{\prime}\left(t_{2}\right)\right\|_{2}\left\|v\left(t_{2}\right)\right\|_{2}+\int_{t_{1}}^{t_{2}}\left(\left\|u^{\prime}(s)\right\|_{2}^{2}+\left\|v^{\prime}(s)\right\|_{2}^{2}\right) \mathrm{d} s \\
& \quad+\left.\delta\left|\int_{t_{1}}^{t_{2}}\right| u^{\prime}(s)\right|^{p-1}\left(u^{\prime}(s), u(s)\right) \mathrm{d} s|+\delta| \int_{t_{1}}^{t_{2}}\left|v^{\prime}(s)\right|^{p-1}\left(v^{\prime}(s), v(s)\right) \mathrm{d} s \mid \\
& \leqslant \\
& 4 m(\Omega)^{\frac{p-1}{2(p+1)}} F(t)\left(\max _{t_{1} \leqslant s \leqslant t_{2}}\|u(s)\|_{2}+\max _{t_{1} \leqslant s \leqslant t_{2}}\|v(s)\|_{2}\right)+2 m(\Omega)^{\frac{p-1}{(p+1)}} F(t)^{2} \\
& \quad+\delta \int_{t_{1}}^{t_{2}} \int_{\Omega}\left|u^{\prime}(s)\right|^{p}|u(s)| \mathrm{d} x \mathrm{~d} s+\left.\delta\left|\int_{t_{1}}^{t_{2}} \int_{\Omega}\right| v^{\prime}(s)\right|^{p}|v(s)| \mathrm{d} x \mathrm{~d} s \mid \\
& \leqslant \\
& 8 m(\Omega)^{\frac{p-1}{2(p+1)}} F(t) \max _{t_{1} \leqslant s \leqslant t_{2}} E(s)^{\frac{1}{2}}+2 m_{(\Omega)}^{\frac{p-1}{(p+1)}} F(t)^{2} \\
& \quad+\delta \int_{t_{1}}^{t_{2}} \int_{\Omega}\left|u^{\prime}(s)\right|^{p}|u(s)| \mathrm{d} x \mathrm{~d} s+\left.\delta\left|\int_{t_{1}}^{t_{2}} \int_{\Omega}\right| v^{\prime}(s)\right|^{p}|v(s)| \mathrm{d} x \mathrm{~d} s \mid .
\end{align*}
$$

Here we note that

$$
\begin{align*}
& \delta \int_{t_{1}}^{t_{2}} \int_{\Omega}\left|u^{\prime}(s)\right|^{p}|u(s)| \mathrm{d} x \mathrm{~d} s \tag{5.10}\\
& \leqslant \delta \int_{t_{1}}^{t_{2}}\left(\int_{\Omega}\left|u^{\prime}(s)\right|^{p+1} \mathrm{~d} x\right)^{\frac{p}{p+1}}\left(\int_{\Omega}|u(s)|^{p+1} \mathrm{~d} x\right)^{\frac{1}{p+1}} \mathrm{~d} s \\
& =\delta \int_{t_{1}}^{t_{2}}\left\|u^{\prime}(s)\right\|_{p+1}^{p}\|u(s)\|_{p+1} \mathrm{~d} s \\
& \leqslant \delta C(\Omega, p+1) \int_{t_{1}}^{t_{2}}\left\|u^{\prime}(s)\right\|_{p+1}^{p}\|\nabla u(s)\|_{2} \mathrm{~d} s
\end{align*}
$$

where we have used Hölder's inequality and Sobolev-Poincaré's inequality. Since $I(u(t), v(t)) \geqslant 0$ on $[0, \infty)$, we see that

$$
\begin{align*}
E(t) \geqslant & J(u(t), v(t)) \tag{5.11}\\
= & \frac{1}{q+1} I(u(t), v(t))+\frac{\alpha(q-1)}{2(q+1)}\left(\|\nabla u(t)\|_{2}^{2}+\|\nabla v(t)\|_{2}^{2}\right) \\
& +\frac{\beta}{4}\left(\|\nabla u(t)\|_{2}^{4}+\|\nabla v(t)\|_{2}^{4}\right)+\frac{\beta}{2}\|\nabla u(t)\|_{2}^{2}\|\nabla v(t)\|_{2}^{2} \\
\geqslant & \frac{\alpha(q-1)}{2(q+1)}\left(\|\nabla u(t)\|_{2}^{2}+\|\nabla v(t)\|_{2}^{2}\right) .
\end{align*}
$$

From (5.4), (5.10) and (5.11) we get

$$
\begin{align*}
& \delta \int_{t_{1}}^{t_{2}} \int_{\Omega}\left|u^{\prime}(s)\right|^{p}|u(s)| \mathrm{d} x \mathrm{~d} s \tag{5.12}\\
& \leqslant \delta C(\Omega, p+1)\left(\int_{t_{1}}^{t_{2}}\left\|u^{\prime}(s)\right\|_{p+1}^{p+1} \mathrm{~d} s\right)^{\frac{p}{p+1}}\left(\int_{t_{1}}^{t_{2}} \mathrm{~d} s\right)^{\frac{1}{p+1}} \\
& \quad \times\left(\frac{2(q+1)}{\alpha(q-1)}\right)^{\frac{1}{2}} \sup _{t_{1} \leqslant s \leqslant t_{2}} E(s)^{\frac{1}{2}} \\
& \leqslant \delta C(\Omega, p+1)\left(\frac{2(q+1)}{\alpha(q-1)}\right)^{\frac{1}{2}} F(t)^{p} \sup _{t_{1} \leqslant s \leqslant t_{2}} E(s)^{\frac{1}{2}}
\end{align*}
$$

Similary,

$$
\begin{align*}
& \delta \int_{t_{1}}^{t_{2}} \int_{\Omega}\left|v^{\prime}(s)\right|^{p}|v(s)| \mathrm{d} x \mathrm{~d} s \tag{5.13}\\
& \leqslant \delta C(\Omega, p+1)\left(\frac{2(q+1)}{\alpha(q-1)}\right)^{\frac{1}{2}} F(t)^{p} \sup _{t_{1} \leqslant s \leqslant t_{2}} E(s)^{\frac{1}{2}}
\end{align*}
$$

From (5.9), (5.12) and (5.13) we have

$$
\begin{align*}
& \int_{t_{1}}^{t_{2}} I(u(s), v(s)) \mathrm{d} s \tag{5.14}\\
& \leqslant 8 m(\Omega)^{\frac{p-1}{2(p+1)}} F(t) \max _{t_{1} \leqslant s \leqslant t_{2}} E(s)^{\frac{1}{2}}+2 m(\Omega)^{\frac{p-1}{p+1}} F(t)^{2} \\
& \quad+2 \delta C(\Omega, p+1)\left(\frac{2(q+1)}{\alpha(q-1)}\right)^{\frac{1}{2}} F(t)^{p} \sup _{t_{1} \leqslant s \leqslant t_{2}} E(s)^{\frac{1}{2}} .
\end{align*}
$$

From Lemma 5.2 and the definition of $I(u(t), v(t))$ we have

$$
\begin{equation*}
\alpha \eta_{0}\left(\|\nabla u(t)\|_{2}^{2}+\|\nabla u(t)\|_{2}^{2}\right) \leqslant I(u(t), v(t)) \tag{5.15}
\end{equation*}
$$

From (5.15) we have
(5.17)

$$
\begin{aligned}
\int_{t_{1}}^{t_{2}} E(s) \mathrm{d} s= & \frac{1}{2} \int_{t_{1}}^{t_{2}}\left(\left\|u^{\prime}(s)\right\|_{2}^{2}+\left\|v^{\prime}(s)\right\|_{2}^{2}\right) \mathrm{d} s+\int_{t_{1}}^{t_{2}}(J(u(s), v(s))) \mathrm{d} s \\
& +\frac{\beta}{2} \int_{t_{1}}^{t_{2}}\|\nabla u(s)\|_{2}^{2}\|\nabla v(s)\|_{2}^{2} \mathrm{~d} s \\
= & \frac{1}{2} \int_{t_{1}}^{t_{2}}\left(\left\|u^{\prime}(s)\right\|_{2}^{2}+\left\|v^{\prime}(s)\right\|_{2}^{2}\right) \mathrm{d} s+\frac{1}{q+1} \int_{t_{1}}^{t_{2}} I(u(s), v(s)) \mathrm{d} s \\
& +\frac{\alpha(q-1)}{2(q+1)} \int_{t_{1}}^{t_{2}}\left(\|\nabla u(s)\|_{2}^{2}+\|\nabla v(s)\|_{2}^{2}\right) \mathrm{d} s \\
& +\frac{\beta}{4} \int_{t_{1}}^{t_{2}}\left(\|\nabla u(s)\|_{2}^{4}+\|\nabla v(s)\|_{2}^{4}\right) \mathrm{d} s+\frac{\beta}{2} \int_{t_{1}}^{t_{2}}\|\nabla u(s)\|_{2}^{2}\|\nabla v(s)\|_{2}^{2} \mathrm{~d} s \\
\leqslant & m(\Omega)^{\frac{p-1}{p+1}} F(t)^{2} \\
& +\frac{2 \eta_{0} \alpha+\alpha(q-1)}{2 \eta_{0} \alpha(q+1)} \int_{t_{1}}^{t_{2}} I(u(s), v(s)) \mathrm{d} s \\
& +\frac{\beta}{4} \int_{t_{1}}^{t_{2}}\left(\|\nabla u(s)\|_{2}^{4}+\|\nabla v(s)\|_{2}^{4}\right) \mathrm{d} s+\frac{\beta}{2} \int_{t_{1}}^{t_{2}}\|\nabla u(s)\|_{2}^{2}\|\nabla v(s)\|_{2}^{2} \mathrm{~d} s .
\end{aligned}
$$

Note that
(5.18) $\frac{\beta}{2} \int_{t_{1}}^{t_{2}}\|\nabla u(s)\|_{2}^{2}\|\nabla v(s)\|_{2}^{2} \mathrm{~d} s \leqslant \beta \int_{t_{1}}^{t_{2}}\|\nabla u(s)\|_{2}^{4} \mathrm{~d} s+\beta \int_{t_{1}}^{t_{2}}\|\nabla v(s)\|_{2}^{4} \mathrm{~d} s$

$$
\begin{aligned}
& \leqslant \frac{2 \beta(q+1)}{\alpha(q-1)} \int_{t_{1}}^{t_{2}}\left(\|\nabla u(s)\|_{2}^{2}+\|\nabla v(s)\|_{2}^{2}\right) \mathrm{d} s \\
& \leqslant \frac{2 \beta(q+1)}{\alpha^{2} \eta_{0}(q-1)} \int_{t_{1}}^{t_{2}} I(u(s), v(s)) \mathrm{d} s
\end{aligned}
$$

and

$$
\begin{align*}
& \frac{\beta}{4} \int_{t_{1}}^{t_{2}}\left(\|\nabla u(s)\|_{2}^{4}+\|\nabla v(s)\|_{2}^{4}\right) \mathrm{d} s \tag{5.19}\\
& \leqslant \frac{\beta(q+1)}{2 \alpha^{2} \eta_{0}(q-1)} \int_{t_{1}}^{t_{2}} I(u(s), v(s)) \mathrm{d} s .
\end{align*}
$$

Thus, (5.18)-(5.19) imply

$$
\begin{align*}
\int_{t_{1}}^{t_{2}} E(s) \mathrm{d} s \leqslant & m(\Omega)^{\frac{p-1}{p+1}} F(t)^{2}+C\left(\alpha, \beta, \eta_{0}, q\right) \int_{t_{1}}^{t_{2}} I(u(s), v(s)) \mathrm{d} s \tag{5.20}\\
& \text { where } C\left(\alpha, \beta, \eta_{0}, q\right)=\frac{2 \eta_{0}+q-1}{2 \eta_{0}(q+1)}+\frac{5 \beta(q+1)}{2 \alpha^{2} \eta_{0}(q-1)}
\end{align*}
$$

From (5.13), (5.14) and (5.20) we have

$$
\begin{align*}
\int_{t_{1}}^{t_{2}} E(s) \mathrm{d} s \leqslant & C_{1}\left(F(t) \sup _{t_{1} \leqslant s \leqslant t_{2}} E(s)^{\frac{1}{2}}+F(t)^{2}+F(t)^{p} \sup _{t_{1} \leqslant s \leqslant t_{2}} E(s)^{\frac{1}{2}}\right) \tag{5.21}\\
& \text { for some constant } C_{1}>0
\end{align*}
$$

Hence

$$
\begin{equation*}
\int_{t_{1}}^{t_{2}} E(s) \mathrm{d} s \leqslant C_{2}\left(E(t)^{\frac{1}{2}} F(t)+F(t)^{2}+E(t)^{\frac{1}{2}} F(t)^{p}\right) \tag{5.22}
\end{equation*}
$$

Again multiplying (5.1) by $u^{\prime}(t)$, multiplying (5.2) by $v^{\prime}(t)$, adding these two equations and integrating over $\left[t, t_{2}\right] \times \Omega$ we obtain

$$
E(t)=E\left(t_{2}\right)+\delta \int_{t}^{t_{2}}\left(\left\|u^{\prime}(s)\right\|_{p+1}^{p+1}+\left\|v^{\prime}(s)\right\|_{p+1}^{p+1}\right) \mathrm{d} s
$$

Since $t_{2}-t_{1} \geqslant \frac{1}{2}$, we get

$$
\begin{aligned}
\int_{t_{1}}^{t_{2}} E(s) \mathrm{d} s & \geqslant \int_{t_{1}}^{t_{2}} E\left(t_{2}\right) \mathrm{d} s=\left(t_{2}-t_{1}\right) E\left(t_{2}\right) \\
& \geqslant \frac{1}{2} E\left(t_{2}\right)
\end{aligned}
$$

that is,

$$
E\left(t_{2}\right) \leqslant 2 \int_{t_{1}}^{t_{2}} E(s) \mathrm{d} s
$$

From (5.4) and (5.22) we have

$$
\begin{aligned}
E(t) & =E\left(t_{2}\right)+\delta \int_{t}^{t_{2}}\left(\left\|u^{\prime}(s)\right\|_{p+1}^{p+1}+\left\|v^{\prime}(s)\right\|_{p+1}^{p+1}\right) \mathrm{d} s \\
& \leqslant 2 \int_{t_{1}}^{t_{2}} E(s) \mathrm{d} s+\delta \int_{t}^{t_{2}}\left(\left\|u^{\prime}(s)\right\|_{p+1}^{p+1}+\left\|v^{\prime}(s)\right\|_{p+1}^{p+1}\right) \mathrm{d} s \\
& \leqslant 2 C_{2}\left(E(t)^{\frac{1}{2}} F(t)+F(t)^{2}+E(t)^{\frac{1}{2}} F(t)^{p}\right)+\delta F(t)^{p+1} \\
& \leqslant C_{3}\left(E(t)^{\frac{1}{2}} F(t)+F(t)^{2}+E(t)^{\frac{1}{2}} F(t)^{p}+F(t)^{p+1}\right) \\
& \text { for some constant } \quad C_{3}>0 .
\end{aligned}
$$

Thus, we have

$$
\begin{equation*}
E(t) \leqslant C_{4}\left(F(t)^{2}+F(t)^{2 p}+F(t)^{p+1}\right) \tag{5.23}
\end{equation*}
$$

for some constant $C_{5}>0$. When $p=1$, we have

$$
\begin{equation*}
E(t) \leqslant C_{4}\left(F(t)^{2}\right)=C_{4}(E(t)-E(t+1)) . \tag{5.24}
\end{equation*}
$$

Applying Nakao's inequality (cf. Lemma 2.3) to (5.24) yields

$$
E(t) \leqslant E(0) \mathrm{e}^{-k t} \quad \text { where } \quad k=\log \frac{C_{4}}{C_{4}-1} .
$$

Note that since $E(t)$ is decreasing and $E(t) \geqslant 0$ on $[0, \infty)$, we have

$$
\delta F(t)^{p+1}=E(t)-E(t+1) \leqslant E(0) .
$$

Hence, we get

$$
\begin{equation*}
F(t) \leqslant\left(\frac{1}{\delta} E(0)\right)^{\frac{1}{p+1}} \tag{5.25}
\end{equation*}
$$

On the other hand, when $p>1$, it follows from (5.23) and (5.25) that

$$
\begin{aligned}
E(t) & \leqslant C_{4}\left(1+F(t)^{2 p-2}+F(t)^{p-1}\right) F(t)^{2} \\
& \leqslant C_{5}\left(1+E(0)^{\frac{2 p-2}{p+1}}+E(0)^{\frac{p-1}{p+1}}\right) F(t)^{2} \\
& \equiv C_{6}(E(0)) F(t)^{2}
\end{aligned}
$$

with $\lim _{E(0) \rightarrow 0} C_{6}(E(0))=C_{7}>0$. Thus we have

$$
\begin{align*}
E(t)^{1+\frac{p-1}{2}} & \leqslant C_{6}(E(0))^{\frac{p+1}{2}} F(t)^{p+1} \tag{5.26}\\
& \leqslant \frac{1}{\delta} C_{6}(E(0))^{\frac{p+1}{2}}(E(t)-E(t+1))
\end{align*}
$$

Setting $C(E(0)) \equiv \delta C_{6}(E(0))^{-\frac{p+1}{2}}$, applying Nakao's inequality to (5.26) we conclude that

$$
E(t) \leqslant\left(E(0)^{-\frac{p-1}{2}}+\frac{(p-1) C(E(0))}{2}[t-1]^{+}\right)^{-\frac{2}{p-1}}
$$

This completes the proof of Theorem 5.1.

References

[1] E. H. Brito: Nonlinear Initial Boundary Value Problems. Nonlinear Anal. 11 (1987), 125-137.
[2] C. Corduneanu: Principles of Differential and Integral Equations. Chelsea Publishing Company, The Bronx, New York, 1977.
[3] R. Ikehata: On the Existence of Global Solutions for some Nonlinear Hyperbolic Equations with Neumann Conditions. T R U Math. 24 (1988), 1-17.
[4] T. Matsuyama, R. Ikehata: On Global Solutions and Energy Decay for the Wave Equations of Kirchhoff type with Nonlinear Damping terms. J. Math. Anal. Appl. 204 (1996), 729-753.
[5] M. Nakao: Asymptotic Stability of the Bounded or Almost Periodic Solutions of the Wave Equations with Nonlinear Damping terms. J. Math. Anal. Appl. 58 (1977), 336-343.
[6] K. Narasimha: Nonlinear Vibration of an Elastic String. J. Sound Vibration 8 (1968), 134-146.
[7] K. Nishihara, Y. Yamada: On Global Solutions of some Degenerate Quasilinear Hyperbolic Equation with Dissipative Damping terms. Funkcial. Ekvac. 33 (1990), 151-159.
[8] K. Ono: Global Existence, Decay and Blowup of Solutions for some Mildly Degenerate Nonlinear Kirchhoff Strings. J. Differential Equations 137 (1997), 273-301.
[9] M. D. Silva Alves: Variational Inequality for a Nonlinear Model of the Oscillations of Beams. Nonlinear Anal. 28 (1997), 1101-1108.

Author's address: Department of Mathematics, Pusan National University, Pusan 609735, Korea.

[^0]: This research was supported by KOSEF 1996.

