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Abstract. We denote by Fa the class of all abelian lattice ordered groups H such that
each disjoint subset of H is finite. In this paper we prove that if G ∈ Fa, then the cut
completion of G coincides with the Dedekind completion of G.
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The notion of the cut completion of a lattice ordered group was introduced by
Ball [1].

Let G be a lattice ordered group. We denote by Gc and G∧ the cut completion
and the Dedekind completion of G, respectively.

If G is a lexico extension of a lattice ordered group A, then we express this fact
by writing G = 〈A〉.
Lattice ordered groups with a finite number of disjoint elements were investigated

by Conrad [4].

Let Fa be the class of all abelian lattice ordered groups having only a finite number

of disjoint elements.

In the present paper we prove the following result:

(A) Let G be an abelian lattice ordered group and let A �= {0} be an �-subgroup
of G such that G = 〈A〉. Then
(i) Gc = 〈Ac〉,
(ii) the linearly ordered groups G/A and Gc/Ac are isomorphic.

Supported by grant SAV No. 5125/98.
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By applying (A) we obtain

(B) Let G ∈ Fa. Then

(i) Gc ∈ Fa,

(ii) Gc = G∧.

A result analogous to the relation given in (ii) of (B) concerning distinguished

extensions of linearly ordered groups was proved by Ball [3].

The question whether (A) and (B) are valid also for the non-abelian case remains

open.

1. Preliminaries

For lattice ordered groups we apply the notation as in Conrad [5]. In particular,

the group operation in a lattice ordered group is written additively.

We recall some relevant definitions.

A lattice ordered group G is said to be a lexico extension of its �-subgroup A if
the following conditions are satisfied:

(i) A is a convex �-subgroup of G;

(ii) if 0 < g ∈ G and g /∈ A, then g > a for each a ∈ A.
Under these conditions we write G = 〈A〉. It is well-known that then we have
(i1) A is an �-ideal of G;

(ii1) the factor �-group G/A is linearly ordered.

A subset X of a lattice ordered group G is called a (Dedekind) cut in G if X is an

order closed lattice ideal (X is the set of all lower bounds of its upper bounds) such
that g +X �= X �= X + g for each g ∈ G with g > 0.
G is said to be cut complete (Dedekind complete) if every (Dedekind) cut of G has

a supremum in G. (Cf. [1], [3].)

An �-subgroup G1 of a lattice ordered group G2 is said to be order dense in G2 if

for each 0 < g2 ∈ G there exists 0 < g1 ∈ G1 with g1 � g2.

For each lattice ordered group G there exist lattice ordered groups Gc and G∧

such that

(i) Gc is cut complete and G∧ is Dedekind complete;

(ii) both Gc and G∧ contain G as an order dense �-subgroup;
(iii) if G � K < Gc (G � K < G∧), then K fails to be cut complete (Dedekind

complete).

Gc and G∧ are called the cut completion or the Dedekind completion of G, respec-
tively.
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Gc and G∧ are uniquely determined up to isomorphisms leaving all the elements

of G fixed.

2. Lexico extensions

Let us suppose that G and B are abelian lattice ordered groups which satisfy the

following conditions:

(i) G = 〈A〉;
(ii) A is a convex �-subgroup of B;
(iii) G ∩B = A.
We denote by H0 the set of all pairs (g, b) with g ∈ G and b ∈ B. For (gi, bi) ∈ H

(i = 1, 2) we put
(g1, b1) ≡ (g2, b2)

if both g1 − g2, b2 − b1 belong to A and if these elements are equal.

The relation ≡ on H0 is reflexive, symmetric and transitive. Denote

(g, b) = {(g1, b1) ∈ H0 : (g, b) ≡ (g1, b1)},
H = {(g, b): (g, b) ∈ H0}.

For (g1, b1), (g2, b2) ∈ H put

(g1, b1) + (g2, b2) = (g3, b3),

where g3 = g1+ g2 and b3 = b1+ b2. It is easy to verify that + is a correctly defined

binary operation on H which is associative and commutative. Further, (0, 0) is the
neutral element of (H,+). Moreover,

(g, b) + (−g,−b) = (0, 0).

Thus we have

2.1. Lemma. (H,+) is an abelian group.

We define a binary relation � on H as follows. Let (g1, b1), (g2, b2) ∈ H. We put

(g1, b1) � (g2, b2)

if either

(α) g1 < g2 and g1 − g2 /∈ A
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or

g1 − g2 ∈ A and the relation(β)

g1 − g2 � b2 − b1

is valid in B.
Then in view of the definition of ≡, � is a correctly defined binary relation on the

set H .

2.2. Lemma. � is a partial order on H .

�����. a) Reflexivity: Let (g1, b1) = (g2, b2). Then

g1 − g2 = b2 − b1.

Hence g1 − g2 ∈ B ∩ G and thus in view of (iii), g1 − g2 ∈ A. Further, according to
(β), we obtain (g1, b1) � (g2, b2).
b) Transitivity: Let (g1, b1) � (g2, b2) and (g2, b2) � (g3, b3). We distinguish the

following cases:
(α1) Suppose that

g1 < g2, g1 − g2 /∈ A, g2 < g3, g2 − g3 /∈ A.

Thus g1 < g3. If g1 − g3 ∈ A, then g1 + A = g3 + A. Since g1 + A is a convex
subset of G we get g2 ∈ g1 +A, whence g1 − g2 ∈ A, which is a contradiction. Thus
g1 − g3 /∈ A and then (g1, b1) � (g3, b3).
(α2) Suppose that

g1 − g2 ∈ A, g1 − g2 � b2 − b1;

g2 − g3 ∈ A, g2 − g3 � b3 − b2.

Then g1 − g3 ∈ A and

g1 − g3 = (g1 − g2) + (g2 − g3) � (b2 − b1) + (b3 − b2) = b3 − b1,

whence (g1, b1) � (g2, b2).
(α3) Suppose that

g1 < g2, g1 − g2 /∈ A,
g2 − g3 ∈ A, g2 − g3 � b3 − b2.
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Then we have

g1 < g3, g1 − g3 /∈ A,

thus (g1, b1) � (g3, b3).
(α4) If the relations

g1 − g2 ∈ A, g1 − g2 � b2 − b1,

g2 < g3 and g2 − g3 /∈ A

are valid, then we can proceed analogously as in the case (α3).

c) Antisymmetry: Let (ai, bi) (i = 1, 2, 3) be as in b) and suppose that (a1, b1) =
(a3, b3). Without loss of generality we can assume that g1 = g3 and b1 = b3. Again,

we can distinguish the cases (α1)-(α4).
The case (α1) cannot hold, since we would have g1 < g3, which is a contradiction.

Analogously, neither (α3) nor (α4) can be valid.
Suppose that (α2) is satisfied. Hence g1− g2 ∈ A. Thus we have also g2− g1 ∈ A.

Then the relations
(g1, b1) � (g2, b2), (g2, b2) � (g1, g2)

yield

g1 − g2 � b2 − b1,

g2 − g1 � b1 − b2,

whence g1 − g2 = b2 − b1. Therefore (g1, b1) = (g2, b2). �

2.3. Lemma. With respect to the operation + and to the relation �, H is a
partially ordered group.

�����. Let (gi, bi) ∈ H (i = 1, 2, 3),

(g1, b1) � (g2, b2).

Denote

g′1 = g1 + g3, b′1 = b1 + b3,

g′2 = g2 + g3, b′2 = b2 + b3.

Suppose that (α) holds. Then

g′1 < g′2 and g′1 − g′2 ∈ A,
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whence (g′1, b
′
1) � (g′2, b′2).

Further suppose that (β) is valid. Thus

g′1 − g′2 ∈ A, g′1 − g′2 � b′2 − b′1.

Again, we obtain (g′1, b
′
1) � (g′2, b′2). �

2.4. Lemma. H is a lattice ordered group.

�����. In view of 2.3 it suffices to verify that for each (g, b) ∈ H there exists

sup{(g, b), (0, 0)}

in H .
Let (g, b) be an arbitrary element of H . If g /∈ A, then we have either g > 0 or

g < 0. In the first case
(0, 0) < (g, b),

and in the other,

(0, 0) > (g, b).

It remains to consider the situation when g ∈ A. Hence g + b ∈ B and thus there
exists b1 ∈ B such that the relation

b1 = sup{0, g + b}

is valid in B. Then we clearly have

(0, 0) � (0, b1), (g, b) � (0, b1).

Let (g′, b′) ∈ H , (0, 0) � (g′, b′), (g, b) � (g′, b′).
If g′ /∈ A, then g′ > 0 and then (g′, b′) � (g, b). Suppose that g′ ∈ A. We have

(g′, b′) = (0, g′ + b′), (g, b) = (0, g + b),

hence
g′ + b′ � 0, g′ + b′ � g + b.

This yields that g′ + b′ � b1 and therefore

(g′, b′) � (0, b1).

Thus we obtain that the relation

(0, b1) = sup{(g, b), (0, 0)}

is valid in H . �

592



For each g ∈ G we put
ϕ(g) = (g, 0).

Then ϕ is an isomorphism of the lattice ordered group G into the lattice ordered
group H . Hence, if g and ϕ(g) are identified, then we can view G as an �-subgroup

of H .

Further, for each b ∈ B we set

ψ(b) = (0, b).

The mapping ψ is an isomorphism of the lattice ordered groupB intoH . If b ∈ B∩G,
then ψ(b) = ϕ(b). We can identify b and ψ(b) for each b ∈ B. Thus B turns out to
be an �-subgroup of H .

Under the above mentioned identification we have

2.5. Lemma. H = 〈B〉.

�����. Let (g, b) ∈ H be such that (g, b) � (0, 0) and (g, b) /∈ B. Then g /∈ A

and thus 0 < g. Further let b1 ∈ B. Hence b1 is identified with (0, b1). We get

(0, b1) < (g, b). Therefore H = 〈B〉. �

In view of (i), G/A is a linearly ordered group. Also, according to 2.5, H/B is
a linearly ordered group. Let g + A ∈ G/A. If g1 ∈ G and g1 + A = g + A, then

g − g1 ∈ A, whence g − g1 ∈ B, thus g +B = g1 +B. Hence the correspondence

χ : G/A→ H/B

defined by

χ(g +A) = g +B

is a correctly defined mapping of G/A into H/B.

2.6. Lemma. χ is an isomorphism of G/A into H/B.

�����. Let (g, b)+B be an arbitrary element of H/B. Then (g, 0) ∈ (g, b)+B,
whence (g, b) +B = g +B and thus χ is an epimorphism.

Next, since

(g1 +A) + (g2 +A) = (g1 + g2) +A,

the mapping χ is a homomorphism with respect to the group operation.

If χ(g + A) = B, then g ∈ B, whence g ∈ G ∩ B = A, yielding that g + A = A.
Hence χ is an isomorphism with respect to the group operation.
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We have already remarked that both B/A and G/B are linearly ordered. Let

g1 +A, g2 +A ∈ G/A. Then the relation

g1 +A � g2 +A

is equivalent to

(g1 ∧ g2) +A = g1 +A

and this is equivalent to

(g1 ∧ g2) +B = g1 +B.

The last relation holds if and only if

g1 +B � g2 +B.

This completes the proof. �

Summarizing, we have

2.7. Proposition. Let A,B and G be abelian lattice ordered groups which

satisfy the conditions (i), (ii) and (iii) above. Then there exists a lattice ordered

group H such that

(a) H = 〈B〉;
(b) G is an �-subgroup of H ;
(c) the mapping defined by

g +A→ g +B

(where g runs over G) is an isomorphism of G/A onto H/B.

3. Proof of (A)

In order to prove (A) we apply the result of the previous section.

3.1. Lemma. Let H be an abelian lattice ordered group, H = 〈B〉, B �= {0}.
Suppose that B is cut complete. Then H is cut complete.

�����. Let X be a cut in H . Hence h +X �= X for each h ∈ H with h > 0.
Denote

G1 = {g +B ∈ H/B : (g +B) ∩X �= ∅}.
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Then the set G1 is nonempty and it is linearly ordered (by the linear order induced

from that of H/B).

a) First suppose that if g +B ∈ G1, then g +B ⊆ X . Since B �= {0}, there exists
0 < g1 ∈ B. Thus for each g +B ∈ G1 we have

g1 + (g +B) = g + (g1 +B) = B,

whence g1 +X = X , which is a contradiction.

b) In view of a), there exists g +B ∈ G1 such that

(g +B) ∩X �= g +B.

Then g +B is the greatest element of the set G1.

There exists g1 ∈ (g +B) ∩X . Denote

X − g1 = Y, Y ∩B = Z.

Then Y is an order closed lattice ideal in H and

(1) h+ Y �= Y for each 0 < h ∈ B.

Further we have

∅ �= Z �= B,

Z being an order closed lattice ideal in B; moreover, (1) yields that

b+ Z �= Z for each 0 < b ∈ B.

Thus Z is a cut in B. Since B is cut complete, there exists b1 ∈ B such that the

relation

b1 = supZ

is valid in B. From this we conclude that

b1 = supY

is valid in H and therefore

b1 + g1 = supX

holds in H . Thus H is cut complete. �
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3.2. Lemma. Let A,B,G and H be as in 2.7. Suppose that B = Ac. Further

suppose that H ′ is an �-subgroup of H such that G ⊆ H ′ ⊂ H . Then H ′ is not cut

complete.

�����. SinceH ′ ⊂ H we infer that (H ′)+ ⊂ H+. Hence there exists (g, b) ∈ H+
such that (g, b) does not belong to H ′.

Under the embeddings considered in Section 2, the element (g, b) can be identified
with g + b. Since G ⊆ H ′ we obtain g ∈ H ′, thus b cannot belong to H ′.

Denote B1 = H ′∩B. Then A ⊆ B1 ⊂ B. Thus B1 fails to be cut complete. Hence
there exists a cut Z in B1 such that Z has no supremum in B1. We have

(2) b1 + Z �= Z

for each 0 < b1 ∈ B1.
Let Z1 be the order closed lattice ideal in H ′ which is generated by the set Z.

Then Z1 is a cut in H ′. Moreover, from (2) we obtain that

h′ + Z ′ �= Z ′

for each 0 < h′ ∈ H ′. The fact that Z has no supremum in B1 implies that Z ′ has
no supremum in H ′. Therefore H ′ is not cut complete. �

����� �� (A). Suppose that the assumption of (A) is satisfied. Put B = Ac

and let H be as in 2.7. In view of 2.7 we have H = 〈B〉. Then A is order dense in
B and B is order dense in H , whence A is order dense in H . This yields that G is

order dense in H . From this and from 3.1 and 3.2 we conclude that H = Gc. �

3.3. Lemma. Let A,B,G and H be as in 2.7. Suppose that B = A∧. Let H ′

be an �-subgroup of H such that G ⊆ H ′ ⊂ H . Then H ′ is not Dedekind complete.

�����. We apply the same method as in the proof of 3.2 with the distinction
that instead of cuts we now deal with Dedekind cuts. �

3.4. Proposition. Let G be an abelian lattice ordered group, G = 〈A〉. Suppose
that Ac = A∧. Then Gc = G∧.

�����. In view of the proof of (A) we have Gc = H , where H is as in 2.7

and B = Ac. Each cut complete lattice ordered group is Dedekind complete, hence
H is Dedekind complete. In view of 3.3 we then conclude that H is a Dedekind

completion of G. �
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4. Auxiliary results

For a lattice ordered group G we denote by Gdist the distinguished completion of
G (cf. Ball [3]).

From the definitions of Gc, G∧ and Gdist we obtain (cf. also Ball [2])

4.1. Lemma. For each lattice ordered group G we have

G ⊆ G∧ ⊆ Gc ⊆ Gdist.

4.2. Lemma. Let G be a linearly ordered group. Then

(i) Gdist is linearly ordered;

(ii) Gdist = Gc = G∧.

�����. According to 4.3 in [3], Gdist is linearly ordered and Gdist = G∧. Then
in view of 4.1, Gc = G∧. �

In the remaining part of this section we suppose that a lattice ordered group G is

represented as a direct product
G =

∏

i∈I

Gi.

For g ∈ G we denote by gi or by g(Gi) the component of g in Gi. If Y ⊆ G, then we
put

Y (Gi) = {y(Gi) : y ∈ Y }.
From the definition of the direct product we immediately obtain

4.3. Lemma. Let Y ⊆ G. Then the following conditions are equivalent:

(i) Y is an order closed lattice ideal in G;
(ii) for each i ∈ I, Y (Gi) is an order closed lattice ideal in Gi.

4.4. Lemma. Let Y be an order closed lattice ideal in G. Then the following
conditions are equivalent:

(i) Y is a cut in G;

(ii) for each i ∈ I, Y (Gi) is a cut in Gi.

�����. Let (i) be valid and let i ∈ I. Further let gi ∈ Gi, gi > 0. There exists
g ∈ G such that gi = gi and gj = 0 whenever j ∈ I and j �= i. Then g > 0. Put

g + Y = Z. Thus

Zi = gi + Yi,

Zj = Yj for j ∈ I \ {i}
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(where Yi = Y (Gi) and similarly for the other symbols applied above). Since Z �= Y ,
we must have Zi �= Yi, i.e., gi + Yi �= Yi. Analogously we obtain Yi + gi �= Yi. Hence
(ii) holds.

Conversely, suppose that (ii) is valid. Let 0 < g ∈ G. Then there is i ∈ I such
that gi > 0. We have (under analogous notation as above)

(g + Y )(Gi) = gi + Yi �= Yi,

whence g + Y �= Y . Similarly, Y + g �= Y . Thus (i) holds. �

4.5. Lemma. G is cut closed if and only if all Gi are cut closed.

�����. Assume that G is cut closed. Let i ∈ I and let Y i be a cut in Gi.
Denote

Y
i
= {g ∈ G : gi ∈ Y i and gj � 0 for each j ∈ I \ {i}}.

Then for each j ∈ I, Y i
(Gj) is a cut in Gj , whence in view of 4.4, Y

i
is a cut in G.

Thus there exists g ∈ G such that

g = supY
i

is valid in G. Further we have Y
i
(Gi) = Y i. Hence

gi = supY i

holds in Gi. Therefore Gi is cut complete.

Conversely, assume that all Gi’s are cut complete. Let Y be a cut in G. For each

i ∈ I we denote Yi = Y (Gi). In view of 4.4, Yi is a cut in Gi, hence there is zi ∈ Gi

such that the relation

zi = supYi

is valid in Gi. There exists g ∈ G such that

gi = zi for each i ∈ I.

Then g = supY in G; therefore G is cut closed. �

4.6. Corollary. The lattice ordered group
∏
i∈I

Gc
i is cut closed.

The following result was proved in [6] under the assumption that G is abelian, but
the proof remains valid also without this assumption.
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4.7. Proposition. (Cf. [6], Theorem 2.7.) Let G =
∏
i∈I

Gi. Then G∧ =
∏
i∈I

G∧
i .

Denote H =
∏
i∈I

Gc
i .

4.8. Lemma. Let K be an �-subgroup of H such that G ⊆ K ⊂ H . Assume

that G∧
i = G

c
i for each i ∈ I. Then K is not cut closed.

�����. By way of contradiction, assume that K is cut closed. Then K is
Dedekind complete. Thus G ⊆ K yields G∧ ⊆ K. By applying 4.7 we obtain

K ⊇
∏

i∈I

G∧
i =

∏

i∈I

Gc
i = H,

which is a contradiction. �

4.9. Proposition. Let G be a lattice ordered group which can be represented
as a direct product G =

∏
i∈I

Gi. Suppose that Gc
i = G∧

i for each i ∈ I. Then

Gc =
∏
i∈I

Gc
i .

�����. It is easy to verify that G is order dense in
∏
i∈I

Gc
i . Hence it suffices to

apply 4.6 and 4.8. �

5. Proof of (B)

We recall that a subset D of a lattice ordered group G is called disjoint if d � 0
for each d ∈ D, and d1 ∧ d2 = 0 whenever d1 and d2 are distinct elements of D.
Let F be the class of all lattice ordered groups such that each disjoint subset of G

is finite.
According to [4] the structure of a lattice ordered group G �= {0} belonging to F

can be described as follows.
There exist a positive integer n0 and finite nonempty systems S1, S2, . . . , Sn0 of

convex �-subgroups of G such that the following conditions are satisfied:

1) All lattice ordered groups belonging to S1 are nonzero and linearly ordered.
2) Let 1 < n � n0. Then there is a positive integer k(n) such that

Sn = {Gn
1 , G

n
2 , . . . , G

n
k(n)}

and for each j ∈ {1, 2, . . . , k(n)} there is a subset T n−1
j of Sn−1 with

Gn
j = 〈Xn−1

j 〉,
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where Xn−1
j is a direct product of lattice ordered groups belonging to T n−1

j . More-

over,

Sn−1 =
⋃
T n−1

j (j = 1, 2, . . . , k(n))

and

T n−1
j(1) ∩ T n−1

j(2) = ∅

whenever j(1), j(2) are distinct elements of the set {1, 2, . . . , k(n)}.
3) Sn0 = {G}.
Conversely, we obviously have

5.1. Lemma. Let S1 = {G11, G12, . . . , G1k(1)} be a finite system of nonzero linearly
ordered groups. Suppose that we consecutively construct systems S2, S3, . . . , Sn0

such that the conditions (2) and (3) are satisfied. Then G belongs to F ; namely, if
D is a disjoint set of strictly positive elements of G, then cardD ⊆ k(1).

In the remaining part of this section we assume that G is a lattice ordered group
belonging to Fa. The case G = {0} being trivial we suppose that G �= {0}. Hence
there are systems S1, S2, . . . , Sn0 of convex �-subgroups of G satisfying the conditions
1), 2) and 3).

For each n ∈ {1, 2, . . . , n0} and each j ∈ {1, 2, . . . , k(n)} we put

Hn
j = (G

n
j )

c.

Further, if n ∈ {2, 3, . . . , n0} and j ∈ {1, 2, . . . , k(n)}, then we set

Y n−1
j = (Xn−1

j )c.

Also, for n ∈ {1, 2, . . . , n0} we denote

S′n = {Hn
j : j = 1, 2, . . . , k(n)}.

5.2. Lemma. Let H1j ∈ S′1. Then H1j is linearly ordered.

�����. It suffices to apply 4.2. �

5.3. Lemma. Let G1j ∈ S1. Then (G1j )c = (G1j)∧.

�����. In view of the assumption, G1j is linearly ordered. Then the assertion
is a consequence of 4.2. �
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5.4. Lemma. Let j ∈ {1, 2, . . . , k(2)}. Then

(X2j )
c = (X2j )

∧.

�����. X2j is the direct product of a finite number of elements of S1. Thus the

assertion follows from 5.3, 4.7 and 4.9. �

5.5. Lemma. Let j ∈ {1, 2, . . . , k(2)}. Then

(G2j )
c = (G2j )

∧.

�����. It suffices to apply 3.4 and 5.4. �

5.6. Lemma. Let j ∈ {1, 2, . . . , k(2)}. Then H2j ∈ Fa.

�����. We have

H2j = (G
2
j )

c = (〈X1j 〉)c.

Hence in view of (A),

H2j = 〈(X1j )c〉 = 〈Y 1j 〉.

In view of 4.9 and 5.3, Y 1j is the direct product of a finite number of elements of S
′
1.

Thus we have H2j ∈ Fa (cf. also 5.1). �

����� of (B). From 5.6 and 5.2, by applying the obvious induction we obtain

that (B) holds. �

We conclude by remarking that if n ∈ {2, 3, . . . , n0} and j ∈ {1, 2, . . . , k(n)}, then
according to 2.7, the linearly ordered groups

Gn
j /X

n−1
n and Hn

j /Y
n−1
j

are isomorphic. This and 5.2 (together with the definition of H1j for j ∈ {1, 2, . . . ,
k(1)}) yield that the structure of Gc is very near to the structure of G; roughly
speaking, constructing Gc we proceed in the same way as when constructing G with

the distriction that for j ∈ {1, 2, . . . , k(1)} we replace G1j by (G1j )c.
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