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CONVEXITIES OF NORMAL VALUED

LATTICE ORDERED GROUPS

Ján Jakubík, Košice

(Received July 10, 1998)

Convexities of lattice ordered groups were investigated in [5]. Earlier, convexities
of lattices and of d-groups had been dealt with in [3] or [4], respectively. Let us recall

that the notation of convexity of lattices was introduced by Fried ([7], p. 225).

We denote by

G—the class of all lattice ordered groups;

A—the class of all abelian lattice ordered groups;

N —the class of all normal valued lattice ordered groups;

X0—the class of all one-element lattice ordered groups.

For G ∈ G we denote by C(G) the convexity of lattice ordered groups which is

generated by G. Let Z, Q and R be the additive group of all integers, rationals and
reals, respectively, with the natural linear order.

If we consider a result on varieties of lattice ordered groups, torsion classes or
radical classes, then we can ask whether a similar result holds for convexities.

The following result is well-known (cf., e.g., [1]):

(A) There exists a variety X1 (namely, X1 = A ) such that, whenever Y is a

variety with Y �= X0, then X1 ⊆ Y .

A result analogous to (A) holds neither for torsion classes nor for radical classes.

In the present paper we prove:

(B) There exists a convexity Z1 �= X0 (namely, Z1 = C(R)) such that, whenever
Z is a convexity with X0 �= Z ⊆ N , then Z1 ⊆ Z.

Some further results are also proved.

Let us remark that the class N is large in the sense that whenever V is a variety
with V �= G , then V ⊆ N (cf., e.g., [1]).
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1. The partially ordered classes C and Cnv

For X ⊆ G we denote by

HX—the class of all homomorphic images of elements of X ;

CX—the class of all isomorphic images of convex �-subgroups of elements of X ;

PX—the class of all direct products of elements of X .

1.1. Definition. A nonempty subclass of X of G is called a convexity if

HX ⊆ X , CX ⊆ X and PX ⊆ X .

The class of all convexities of lattice ordered groups will be denoted by C ; it is
partially ordered by the class-theoretical inclusion. Also, each nonempty subclass of

C is partially ordered by the induced partial order.

1.2. Lemma. (Cf. [5].) Let ∅ �= X ⊆ G . Then

(i) HCPX ∈ C ;

(ii) for each Y ∈ C with X ⊆ Y the relation HCPX ⊆ Y is valid.

In view of 1.2, the convexityHCPX will be said to be generated byX . IfX = {G}
is a one-element set, then we put HCPX = C(G).

For direct products of lattice ordered groups we apply the same notation and

conventions as in [5], Section 1.

From 1.2 we immediately obtain

1.3. Lemma. Let {Xi}i∈I be a nonempty subclass of C . Then
⋂
i∈I

Xi ∈ C .

Let X0 be as above. It is obvious that X0 is the least element of C and that G is
the greatest element of C . From this and from 1.3 we obtain

1.4. Lemma. Let {Xi}i∈I be a nonempty subclass of C . Then there exist Y1
and Y2 in C such that the relations Y1 = inf{Xi}i∈I and Y2 = sup{Xi}i∈I are valid

in the partially ordered collection C . Moreover, Y1 =
⋂
i∈I

Xi.

In [5] it was proved that the collection C is large in the sense that there exists an
injective mapping of the class of all infinite cardinals into C .

Nevertheless, in view of 1.4 we can apply for C the usual lattice-theoretical ter-
minology and notation. Thus, if Y1 and Y2 are in 1.4, then we write

Y1 =
∧

i∈I

Xi, Y2 =
∨

i∈I

Xi.
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1.5. Lemma. Let {Xi}i∈I be a nonempty subclass of C . Then

∨

i∈I

Xi = HCP

(⋃

i∈I

Xi

)
.

�����. This is a consequence of 1.2. �

1.6. Proposition. Let X1, X2 ∈ C . Next, let Y be the set of all G ∈ G such

that there exist G1 ∈ X1 and G2 ∈ X2 with G = G1 ×G2. Then X1 ∨X2 = Y .

�����. Let G ∈ Y . Then (under the notation as above) we have G1, G2 ∈
X1 ∨X2, whence G ∈ X1 ∨X2.
Conversely, let G ∈ X1 ∨X2. In view of 1.5 there exists a set {Gj}j∈J ⊆ X1 ∪X2

such that
G ∈ HCP{Gj}j∈J .

Hence there are A1, A2 ∈ G with

A1 ∈ P{Gj}j∈J , A2 ∈ C{A1}, G ∈ H{A2}.

Therefore

A1 =

( ∏

j∈J(1)

Gj

)
×

( ∏

j∈J(2)

Gj

)
,

where
{Gj}j∈J(1) ⊆ X1, {Gj}j∈J(2) ⊆ X2.

Put ∏

j∈J(1)

Gj = G11,
∏

j∈J(2)

Gj = G12.

Hence G11 ∈ X1 and G12 ∈ X2.
From the relation A1 = G11 ×G12 and from Lemma 1.2 in [5] we obtain

A2 = (A2 ∩G11)× (A2 ∩G12).

Since A2 ∩G1i is a convex �-subgroup of G1i we get A2 ∩G1i ∈ Xi (i = 1, 2). Now it
suffices to apply Lemma 1.3 from [5] to verify that G ∈ Y . �

1.7. Theorem. The lattice C is distributive.

�����. Let X1, X2, X3 ∈ C . We have to verify that the relation

X1 ∧ (X2 ∨X3) = (X1 ∧X2) ∨ (X1 ∧X3)
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is valid. Clearly (X1 ∧X2)∨ (X1 ∧X3) ⊆ X1 ∧ (X2 ∨X3). Let G ∈ X1 ∧ (X2 ∨X3).

Thus G ∈ X1 and G ∈ X2 ∨X3. According to 1.6 there are G2 ∈ X2 and G3 ∈ X3
such that G = G2 ×G3. Hence G2, G3 ∈ C{G} and therefore G2, G3 ∈ X1. We get

Gi ∈ X1 ∧Xi (i = 2, 3)

and hence G ∈ (X1 ∧X2) ∨ (X1 ∧X3), completing the proof. �

A complete lattice is said to be infinitely distributive if it satisfies the identities

x ∨
(∧

i∈I

yi

)
=

∧

i∈I

(x ∨ yi),(1)

x ∧
(∨

i∈I

yi

)
=

∨

i∈I

(x ∧ yi).(2)

The collection of all radical classes of lattice ordered groups satisfies identically the

relation (2). The question whether C satisfies (1) or (2) remains open.

Let G ∈ G and 0 �= g ∈ G. The convex �-subgroup of G generated by g will be
denoted by [g]. Next, let C1(g) be the set of all convex �-subgroups of [g] which do

not contain the element g, and let C2(g) be the set of all maximal elements of C1(G).

A lattice ordered group G is said to be normal valued if, whenever 0 �= g ∈ G and
G′ ∈ C2(g), then G′ is a normal subgroup of [g].

Let N be as above. From the fact that N is a variety (cf., e.g., [1]) we infer

that N belongs to C . Hence the class Cnv of all convexities X with X ⊆ N is the
interval [X0, N ] of C . Therefore 1.7 yields

1.8. Corollary. Cnv is a distributive lattice.

The following result is well-known.

1.9. Lemma. Let G ∈ N , 0 �= g ∈ G, G′ ∈ C2(G). Then there exists an
isomorphism ϕ of the lattice ordered group [g]/G′ into R.
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2. Convexities generated by �-subgroups of R

We start by investigating the convexity C(Z).
Let � be the set of all positive integers and for each n ∈ � let Gn = Z. Denote

G1 =
∏

n∈�
Gn. For g ∈ G1 we denote by gn the n-th component of g. If there

exists a positive integer m such that |g(n)| � m for each n ∈ �, then g will be said
to be bounded. (In an analogous sense we apply the notion of boundedness also

when dealing with any direct product of �-subgroups of R.) The set of all bounded
elements of G1 will be denoted by G2.

The set G2 is an �-ideal of G1, thus we can construct the factor lattice ordered
group G1 = G1/G2 and we have G1 ∈ C(Z). For g ∈ G1 we put g = g +G2.

2.1. Lemma. The lattice ordered group G1 is divisible.

�����. It suffices to verify that for each positive integer m and for each strictly

positive element g = g +G2 of G1 there exists g′ ∈ G1 such that mg′ = g.
If g > 0, then without loss of generality we can suppose that gn � 0 for each

m ∈ �, and that the sequence (gn)n∈� is not bounded.
Let m, n ∈ �. There is a real xn such that mxn = gn. Next, there is a real zn

such that 0 � zn < 1 and xn + zn ∈ Z. Put xn + zn = yn.
There are g′, z′ ∈ G′ such that

g′n = yn, z′n = 1 for each n ∈ � .

Hence

gn = mxn � myn = mxn +mzn < gn +m.

Thus g � mg′ < g + z′ and therefore

g � mg′ � g +mz′.

Clearly z′ ∈ G2, whence z′ = 0. We conclude that g = mg′. �

2.2. Lemma. There exists {0} �= G3 ∈ C(Z) such that

(i) G3 is an �-subgroup of R;

(ii) G3 is divisible.

�����. Let G1 be as in 2.1. Then G1 belongs to C(Z). There exists g ∈ G1

with g �= 0. Let G′ ∈ C2(g) and denote

G30 = [g]/G′
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(with respect to the lattice ordered group G1). Then G30 is a nonzero lattice ordered

group. We have [g] ∈ C(Z) and hence G30 ∈ C(Z). In view of 2.1, [g] is divisible and
thus G30 is divisible as well. Now it suffices to apply 1.9. �

Let us consider the following condition for a convexity X :

(∗) There exists G3 in X satisfying the conditions (i) and (ii) from 2.2.

Suppose that (∗) is valid. Put Hn = G3 for each n ∈ � and

G4 =
∏

n∈�
Hn.

For g ∈ G4 let gn be the component of g in Hn. Next, let K be the set of all bounded

elements of G4. We investigate the factor lattice ordered group G4/K; we denote
g = g+K. Since G3 is divisible, so are G4 and G4/K. Hence for each q ∈ Q we can

construct qg ∈ G4 and qg ∈ G4/K.
Let 0 < r ∈ R. Put

Q1 = {g ∈ Q : 0 < q < r}, Q2 = {q ∈ Q : r < q}.

There exists a sequence {q(n)}n∈� of elements of Q1 such that q(n) < q(n+1) for each

n ∈ �, and sup{q(n)}n∈� = r.
Under the above notation we have

2.3. Lemma. Let 0 < g ∈ G4 with g > 0 and let 0 < r ∈ R. There exists

g′ ∈ G4 such that q1g � g′ � q2g for each q1 ∈ Q1 and each q2 ∈ Q2.

�����. There is g′ ∈ G4 such that

g′n = q(n)gn

for each n ∈ �. Thus g′n < q2gn for each n ∈ � and each q2 ∈ Q2. Hence

(1) g′ � q2g for each q2 ∈ Q2.

Let q1 ∈ Q1. There exists m ∈ � such that q1 < q(m). Further, there are elements
g(1,m) and g(2,m) in G4 such that

(g(1,m))n = gn if n < m, and (g(1,m))n = 0 otherwise;
(g(2,m))n = gn if n � m, and (g(2,m))n = 0 otherwise.

Similarly we construct g′(1,m) and g′(2,m) (with g replaced by g′). Thus

g = g(1,m) + g(2,m),(2)

g′ = g′(1,m) + g′(2,m).(3)
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Clearly g(1,m), g
′
(1,m) ∈ K, whence

(4) g = g(2,m), g′ = g′(2,m).

We have also

q1g(2,m) < g′(2,m),

whence

(5) q1g(2,m) � g′(2,m).

The relations (2)–(5) yield that q1g � g′ for each q1 ∈ Q1. Hence, by virtue of (1),

the proof is complete. �

2.4. Lemma. Let X be a convexity satisfying the condition (∗). Then R ∈ X .

�����. Let G4, g and r be as in 2.3. Then G4 ∈ X . Also, G4/K belongs to
X . Let G′ ∈ C2(g). We construct the lattice ordered group [g]/G′ (with respect to

G4/K). For x ∈ [g] we denote x = x+G′.
According to 1.9 there exists an isomorphism ϕ of [g]/G′ into R. Denote ϕ(g) = r0.

Then r0 > 0. From this we infer that there exists an isomorphism ϕ1 of [g]/G′ into
R such that ϕ1(g) = 1.

Let g′ be as in 2.3. Put ϕ1(g′) = r′. In view of 2.3 we have

q1ϕ1(g) � ϕ1(g′) � q2ϕ1(g),

hence q1 � r′ � q2 whenever q1 < r < q2. Thus r = r′ and therefore r ∈ ϕ1([g]/G′).

Then, clearly, ϕ1 is an epimorphism. Since [g]/G′ belongs toX we get that R belongs
to X as well. �

2.5. Lemma. R ∈ C(Z).

�����. This is a consequence of 2.1−2.4. �

Now let G be an �-subgroup of R such that G �= {0} and G fails to be isomorphic
to Z. By an elementary argument we obtain

2.6. Lemma. Let 0 < x ∈ R. Then there exists g0 ∈ G such that 0 < g0 < x.

For each n ∈ � let Gn = G. Put G10 =
∏

n∈�
Gn. Next, let G2 be the �-subgroup of

G10 consisting of all bounded elements of G
1
0. We denote G10 = G10/G2, g = g + G2,

where g ∈ G10.
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2.7. Lemma. The lattice ordered group G10 is divisible.

�����. We proceed in the same way as in the proof of 2.1 with the distinction
that instead of

yn = xn + zn ∈ Z

we now consider the relation

yn = xn + zn ∈ G

and apply 2.6. �

2.8. Lemma. R ∈ C(G).

�����. This is a consequence of 2.7, 2.3 and 2.4. �

2.9. Theorem. Let X be a convexity of normal valued lattice ordered groups

and let X �= X0. Then C(R) ⊆ X .

�����. There is G1 ∈ X with G1 �= {0}. Hence in view of 1.9 there exists
G ∈ X such that G �= {0} and G is an �-subgroup of R. According to 2.5 and 2.8, R

belongs to X . Thus C(R) ⊆ X . �

In other words, we have proved that the interval [X0, N ] of C has a unique atom.

2.10. Corollary. C(R) ⊂ C(Z).

�����. In view of 1.2, C(R) is divisible. Hence Z /∈ C(R) and thus, according

to 2.9, C(R) ⊂ C(Z). �

We denote by Xv� the class of all lattice ordered groups G which satisfy the
following condition:

(v�) We can define a multiplication of elements of G by reals such that G turns

out to be a vector lattice.

It is obvious that

(i) Xv� is closed with respect to H, C and P ; hence Xv� is a convexity;

(ii) if G1 is an �-subgroup of R with {0} �= G1 ∈ Xv�, then G1 = R.

The following result generalizes 2.10.

2.11. Proposition. Let G1 be an �-subgroup of R such that {0} �= G1 �= R.

Then C(R) ⊂ C(G1).

�����. In view of 2.9 we have C(R) ⊆ C(G1). By way of contradiction, suppose

that C(R) = C(G1). Hence G1 ∈ C(R). But X ∈ Xv� and thus according to (i), G1
belongs to Xv� as well. This contradicts (ii). �
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In particular, C(R) ⊂ C(Q). An open question: what are the relations between

C(Q) and C(Z)?
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