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Abstract. In this paper we give a new definition of the classical contact elements of
a smooth manifold M as ideals of its ring of smooth functions: they are the kernels of
Weil’s near points. Ehresmann’s jets of cross-sections of a fibre bundle are obtained as a
particular case. The tangent space at a point of a manifold of contact elements of M is
shown to be a quotient of a space of derivations from the same ring C∞(M) into certain
finite-dimensional local algebras. The prolongation of an ideal of functions from a Weil
bundle to another one is the same ideal, when its functions take values into certain Weil
algebras; following the same idea vector fields are prolonged, without any considerations
about local one-parameter groups. As a consequence, we give an algebraic definition of
Kuranishi’s fundamental identification on Weil bundles, and study their affine structures,
as a generalization of the classical results on spaces of jets of cross-sections.
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Introduction

Jets of smooth mappings between manifolds are usually defined as equivalence
classes of mappings, following Ehresmann [2]. Although the classical formulation of
jets has been a powerful tool in differential geometry for the last thirty years, it has
several inconveniences, such as the need of using very frequently tedious calculations
with local coordinates or changing the ring of functions each time a prolongation is
defined; consequently some aspects of the theory and its applications seem not to be
as clear as they must be. On the other hand, the concept of jets of cross-sections of
a fibre bundle implies that the independent variables are fixed previously, hence it is
more restrictive than the classical idea of the contact element which can be found in
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Lie [9], who used to consider some of the coordinates as independent variables and
the remainder as functions of the former, but in a dynamic way, without fixing them.

In [13], Weil outlines a new theory of jet spaces from a different point of view; his
near points are the natural generalization of the rational points of a smooth manifold,
understood as the real spectrum of its ring of smooth functions. The main idea is: if
M is a smooth manifold and a point ofM is an algebra homomorphism from C∞(M)
onto �, when � is replaced by a local finite dimensional �-algebra A, more general
“points” are obtained (they were called A-points by Weil). For example, when A is
the algebra of dual numbers, the A-points of M are the tangent vectors in M .

Weil claims in [13] that the points he defined include as a particular case the
jets considered by Ehresmann, which are obtained when only algebras isomorphic
to ��

m = �[[x1 . . . xm]]
/
(x1 . . . xm)�+1 are considered. Such a restriction has the

disadvantage that their subalgebras, quotients and tensor products are not in general
of the same type (the last point is a serious obstacle in the theory of prolongations,
as will be shown in this paper).

Weil’s work seems to have been ignored until 1972, when Morimoto [10] summa-
rized some of his ideas; nevertheless, from the method proposed by him to prolong
vector fields to the spaces of near points we can see that he does not use the funda-
mental point of view in Weil’s theory, which is not to replace the ring of functions,
but only the algebra in which they take their values. Nowadays several books and
papers can be found about the so-called Weil bundles and spaces of (n, r)-velocities,
treated as an example of the theory of natural bundles (see [12], [7], [6] or [4]),
even though in general they are still very close to Ehresmann’s theory and therefore
can not use all the power of the language of near points. We did not find in these
references the relationship between near points and contact elements.

The aim of this paper is to continue the work started by Weil and continued
by Morimoto, Kolář and other authors. It is divided into two sections; the first is
devoted to the study of Weil bundles and the construction of the classical contact
elements (which are called jets in this paper for reasons which will be explained
later), and in the second we study the tangent spaces to the manifolds of near points
and jets.

In the first section we develop the theory of near points following the ideas of [13],
whose results are covered in the first and third paragraphs. In §1.4 we introduce the
notion of prolongation of an ideal of C∞(M) to the space of A-points of M without
the assumption that it is the ideal of a submanifold of M ; the main idea is that the
prolongation of the ideal (f) is generated by the same f , considered as a function in
MA with values in A. This definition is intrinsic and avoids using local coordinates.

The remainder of this section is devoted to the study of what we call A-jets ofM ,
which are defined as the kernels of the A-points of M ; the classical contact elements
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are obtained when only the algebras ��
m are considered. These spaces are shown to

be locally jets of cross-sections of a fibre bundle. We also give a characterization of
the points of J �M , �-jets of cross-sections of a fibre bundle � : M → X , as algebra
homomorphisms from C∞(M) onto the different C∞(X)

/
m�+1

x , when x ∈ X ; thus,
they are C∞(X)

/
m�+1

x -points of M . The two possibilities of understanding jets as
ideals and as algebra homomorphisms make this theory more operative. In the last
paragraph of this section we apply our techniques to the prolongation of ideals to jet
spaces; we use the Taylor imbedding, which is defined in a straightforward way.

Section 2 is devoted to the study of the tangent spaces to the manifolds of near
points and jets. The main idea is, the tangent vectors to the manifold of A-points of
M are derivations from C∞(M) into A; we again fix the ring of functions and change
the algebra where they take values. The vertical tangent vectors to the bundle of jets
of cross-sections of a fibre bundle � : M → X are C∞(X)-derivations from C∞(M)
into the different C∞(X)

/
m�+1

x ; this fact allows us to apply to these spaces most
of the results obtained for the manifolds of near points. As an example of what we
have said, if p�, p� ∈ J �M are over the same point of J �−1M , then its difference
p�−p� is a C∞(X)-derivation from C∞(M) with values in m�

x

/
m�+1

x , which makes it
easier to understand the affine structure of jet bundles and Kuranishi’s fundamental
identification [8] (compare the definition given by Kuranishi, based on prolongations
of one-parameter groups, with paragraph 2.5 bellow).

Although we restrict ourselves to the C∞ case, most of the results given in this
paper are algebraic and still hold for analytic or regular algebraic varieties. Some of
our techniques and results were used by R. Alonso in [1] to give a more natural defi-
nition of the Poincaré-Cartan form; in [11] we show how this point of view simplifies
the study of Lie equations, and in further papers we will apply it to other topics such
as differential invariants and formal integrability, for example.

1. Near points and jets of a smooth manifold

1.1. Spaces of near points of a smooth manifold.
By a local algebra (also called Weil algebra in [7]) we shall mean a finite dimen-

sional local commutative �-algebra A with unit.

If A is a local algebra and m its maximal ideal, then there is a nonnegative integer
� such that m� �= 0 and m�+1 = 0; this integer is called the height of A, according to
Weil [13]. The width of A is the dimension of the vector space m/m2.

Let A be a local algebra and � its height; the subalgebras of A containing the
unit and the quotient algebras of A are local algebras whose height is � or less.
Furthermore, if (A,mA) and (B,mB) are local algebras of height � and r, respectively,
thenA⊗�B is a local algebra with height �+r whose maximal ideal ismA⊗B+A⊗mB.
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Let us denote �∞m = �[[X1 , . . . , Xm]] and let m
(
�
∞
m

)
be its maximal ideal; the

quotient ring ��
m = �

∞
m

/
m
(
�
∞
m

)�+1
is a local algebra of height �. In general, if

m1, . . . ,mk, �1, . . . , �k are positive integers, then the tensor product

�
�1 ,...,�k
m1 ,...,mk

= �
�1
m1

⊗ . . .⊗ �
�k
mk

is a local algebra of height �1 + . . . + �k. Each local algebra A is a quotient of �∞m
by an ideal of finite codimension (for a proof see [7]).

Definition 1.1.1. Let M be a smooth manifold and A a local algebra. An A-
point or near point of type A of M is an algebra homomorphism pA : C∞(M)→ A.
For each f ∈ C∞(M) we write f(pA) for the image of f under pA and call it the
value of f at pA. We will denote by MA the set of A-points of M .

Examples. (1) The space of algebra homomorphisms Hom�(C∞(M),�) is well
known to be M , hence the �-points of M are the usual points of M . Thus, if A is
a local algebra, the composition of each A-point pA ∈MA with the homomorphism
A→ A/m ≈ � is a point p ∈ M . Following Weil [13], we say that pA is an A-point
near p and that p is the projection of pA into M . Note that the monomorphism
� → A allows the points of M to be viewed as A-points.
(2) It is easy to show that, if � = �

1
1 , the algebra of dual numbers, thenM

� = TM ,
the tangent bundle to M .
(3) When A = �

�
m , the space of �

�
m -points ofM will be denoted asM

�
m; in general,

if A = �
�1 ,...,�k
m1 ,...,mk

we will write M �1,...,�k
m1,...,mk

=MA.
If p�

m ∈ M �
m, let p be its projection into M . The kernel of p

�
m contains the ideal

m�+1
p of functions on C∞(M) which vanish at p up to the order �; if {y1, . . . , yn} is
a coordinate system at p vanishing at p, then using Taylor’s expansion we can write
C∞(M) = �[y1 , . . . , yn] +m�+1

p , hence p�
m is completely determined by its action on

�[y1 , . . . , yn]. Therefore p�
m can be understood as the �-jet at 0 of a smooth mapping

from a neighbourhood of the origin in �m into M . Thus M �
m = J �

0 (�
m ,M).

Let M and A be as above; each function f ∈ C∞(M) can be prolonged to a
mapping fA : MA → A defined by fA(pA) = pA(f). We will simply write f instead
of fA when no confusion can arise.
Let {a1, . . . , ad} be a basis of A; f(pA) can be written in the form

f(pA) =
d∑

k=1

fk(pA)ak,

f1, . . . , fd being real-valued functions defined on MA, called the real components of
f inMA with respect to the basis {a1, . . . , ad}. Since A is a finite dimensional vector

724



space, it can be endowed with a standard smooth structure, completely determined
by the condition that linear forms on A be smooth. This fact allows us to define a
smooth structure on MA; to be more precise:

Theorem 1.1.2. Let M be a smooth manifold and A a local algebra. The set
MA can be given a smooth structure canonically determined by the condition that
each f ∈ C∞(M) be smooth when considered as a mapping from MA to A.

Remark. Let y1, . . . , yn ∈ C∞(M) be a coordinate system on an open subset U
of M ; set A = �

�
m and take the basis { 1α!xα : |α| � �} of A. If for each p�

m ∈ U �
m we

write

yi(p�
m) =

∑

|α|��

1
α!
yiα(p�

m)x
α i = 1, . . . , n,

the functions yiα (1 � i � n; |α| � �) form a coordinate system in U �
m. The value

at p�
m of each f ∈ C∞(M) is obtained by considering the �-Taylor expansion of

f(y1, . . . , yn) at p = p0m and replacing each yi by yi(p�
m), hence the real components

fα of f are polynomials in the yiβ with coefficients in C∞(U).

Definition 1.1.3. We will say that a near point pA ∈MA is regular if the algebra
homomorphism pA : C∞(M)→ A is onto. If B is a subring of C∞(M), pA is said to
be B-regular or regular over B if its restriction to B is onto.

The set of regular A-points of M will be denoted by M̌A.
The following result is an immediate consequence of the inverse function theorem:

Proposition 1.1.4. Let p�
m ∈ M �

m, where � � 1, and let ϕ : �m → M be a
mapping such that j�

0ϕ = p
�
m. The following statements are equivalent:

1. p�
m is regular.

2. ϕ∗ : T0�m → TpM is injective.

3. ϕ defines a local diffeomorphism between a neighbourhood of the origin of �m

and a locally closed submanifold of M .

4. If y1, . . . , yn are local coordinates at p = p0m in M , then the rank of the matrix

(
∂
(
y1(p�

m), . . . , yn(p�
m)
)

∂ (x1, . . . , xm)

)

x=0

is m.

Corollary 1.1.5. If � � r � 0, then the canonical projection �
r
� : M

�
m → M r

m

maps M̌ �
m onto M̌

r
m. Furthermore, if r � 1 then (�r

�)
−1(M̌ r

m) = M̌
�
m.
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Corollary 1.1.6. M̌ �
m is an open subset of M

�
m. For each � > 0 and m > n =

dimM we have M̌ �
m = ∅. If m � n, then M̌ �

m is a dense subset of M
�
m.

IfM and N are smooth manifolds, then (M×N)A can be identified in a canonical
way with MA ×NA.
If A is a local algebra, then the mapping M � MA is a covariant functor from

the category of finite dimensional smooth manifolds into itself; in fact, each smooth
mapping ϕ : M → N gives a mapping ϕA : MA → NA which associates with each
pA ∈MA the algebra homomorphism

ϕA(pA) : C∞(N) −→ A

f �−→ (ϕ∗(f))(pA) = (pA ◦ ϕ∗)(f).

It follows easily that if ϕ, ψ are smooth maps, then (ψ ◦ ϕ)A = ψA ◦ ϕA. We will
simply write ϕ instead of ϕA when no confusion can arise. As for f ∈ C∞(N) and
pA ∈MA we have

(ϕ∗(f))(pA) = f(ϕA(pA)),

if we fix a basis a1, . . . , ad of A it follows that

(ϕ∗(f))k = fk ◦ ϕA = (ϕA)∗(fk)

for k = 1, . . . , d, hence (ϕA)∗(fk) ∈ C∞
(
MA

)
for each f ∈ C∞(N) and 1 � k � d.

Since the functions fk determine a smooth structure inNA, the mapping ϕA : MA →
NA is smooth.
As a special case, each smooth automorphism ofM gives a smooth automorphism

of MA, and the same is true for each one-parameter group of automorphisms of M .
On the other hand, if M is a smooth manifold, each homomorphism of local

algebras σ : A → B gives a mapping σ : MA → MB such that if ϕ : M → N is
smooth, then the diagram

MA ϕ−−−−→ NA

σ

	
	σ

MB ϕ−−−−→ NB

is commutative.

1.2. The Taylor imbedding.
Now we deal with an important example of what was said at the end of the previous

paragraph, given by what we call Taylor’s homomorphism T �,r : ��+r
m → �

�,r
m,m ,

induced by the homomorphism of local algebras

T : �[[X1 , . . . , Xm]] −→ �[[Y1 , . . . , Ym;Z1, . . . , Zm]]

Xi �−→ Yi + Zi.
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The smooth mapping from M �+r
m to M �,r

m,m induced by T
�,r is called Taylor’s injec-

tion. As the image of T �,r is the set of elements

F (y, z) =
�∑

|α|=0

r∑

|β|=0

1
α!β!

Fαβy
αzβ

which satisfy the equations Fαβ = Fα′β′ whenever α + β = α′ + β′, the following
theorem holds:

Theorem 1.2.1. The Taylor injection representsM �+r
m as the closed submanifold

ofM �,r
m,m whose elements are the points p

�,r
m,m ∈M �,r

m,m which satisfy all the equations
fαβ(p�,r

m,m) = fα′β′(p�,r
m,m), where f ∈ C∞(M) and |α|, |α′| � �, |β|, |β′| � r, α + β =

α′ + β′. If y1, . . . , yn forn a coordinate system on an open subset U of M , then the
subset U �+r

m = U �,r
m,m ∩M �+r

m of U �,r
m,m is defined by the equations

yiαβ = yiα′β′ , (i = 1 . . . , n; |α|, |α′| � �; |β|, |β′| � r;α+ β = α′ + β′).

The following result, whose proof is straightforward, will be useful later:

Proposition 1.2.2. Let m, �, r, s ∈ N ; the diagram

M �+r+s
m −−−−→ M �+r,s

m,m	
	

M �,r+s
m,m −−−−→ M �,r,s

m,m,m

is commutative.

1.3. Transitivity of prolongations.
In this paragraph we state an important theorem due to Weil [13]. We begin

with some properties of the spaces of near points that can be proved without any
difficulties.
If ϕ : M ×M → M is an internal operation in M , its prolongation ϕA to MA is

an internal operation in MA and if ϕ is associative or commutative, then the same
is true for ϕA. In particular, if M is a Lie group, then MA is a Lie group.
If A is a local algebra, then �A is an �-algebra canonically isomorphic to A, and

the prolongations of the sum and product in � are the same operations in A.
If E is a finite dimensional �-vector space, then EA is an A-module canonically

isomorphic to A⊗�E. If B is a commutative �-algebra, then BA is a commutative
A-algebra canonically isomorphic to A⊗�B, and the prolongations of the operations
of B are the respective operations in A⊗�B.
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If we fix a basis {b1, . . . , bs} of B, the prolongation fB : MB → B of each f ∈
C∞(M) can be written as fB =

s∑
k=1

fkbk with fk ∈ C∞(MB). If fA
k denotes the

prolongation of fk to (MB)A, then the prolongation of fB is the mapping (fB)A :

(MB)A → A ⊗ B defined as (fB)A =
s∑

k=1
fA

k ⊗ bk. From the definition of MB it

follows that, if f, g ∈ C∞(M), then (fg)B = fBgB; thus, if gB =
s∑

k=1
gkbk, then

fBgB =
s∑

i,j=1

figjbi · bj =
s∑

i,j,k=1

figjλ
k
ijbk where λk

ij ∈ �

and

(fBgB)A =
s∑

i,j,k=1

fA
i g

A
j λ

k
ij ⊗ bk =

( s∑

i=1

fA
i ⊗ bi

)( s∑

j=1

gA
j ⊗ bj

)
= (fB)A(gB)A ,

that is to say, ((fg)B)A = (fB)A(gB)A; therefore each point PA ∈ (MB)A can be
considered in a natural way as the point pA⊗B ∈ MA⊗B which attaches to each
function f ∈ C∞(M) the value

f(pA⊗B) = (fB)A(PA).

Thus we have defined a map (MB)A → MA⊗B; now we want to prove that it is a
diffeomorphism. As the problem is local in M , we can suppose that M = �

n , hence

(MB)A = (B ⊗M)A = A⊗ (B ⊗M) = (A⊗B)⊗M.

The above discussion enables us to state the main theorem in this paragraph:

Theorem 1.3.1. [Weil] Let M be a smooth manifold, and A,B local algebras.
The manifolds (MB)A and MA⊗B are canonically diffeomorphic.

Remark. From the identification of (MB)A with MA⊗B it follows that the con-
secutive prolongation of a function f ∈ C∞(M) to MB and then to (MB)A agrees
with the prolongation of f to MA⊗B.

1.4. Prolongation of ideals.
The following result is a straightforward consequence of the definitions:

Proposition 1.4.1. Let X be a closed submanifold of M and I(X) its ideal in
C∞(M). Given a local algebra A, the natural imbedding XA ⊆ MA identifies XA

with the set of zeros of the ideal I(X) in MA, where each f ∈ I(X) is understood
as a function from MA into A. The set XA is a submanifold of MA whose ideal is
the set of functions F ∈ C∞

(
MA

)
which agree locally with functions of the ideal of

C∞
(
MA

)
generated by the real components of the functions of I(X).
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Definition 1.4.2. The prolongation of an ideal I of C∞(M) to C∞
(
MA

)
is the

ideal of this ring whose elements are the functions that agree locally with functions
of the ideal generated by the real components of the functions of I, when C∞(M) is
considered as a ring of funtions fromMA into A. The prolongation of a submanifold
X of M to MA is, by definition, the submanifold XA.

Remark. The above definition allows us to rephrase Proposition 1.4.1 as follows:
The prolongation to MA of a closed submanifold X of M is a closed submanifold of
MA whose ideal is the prolongation to C∞

(
MA

)
of the ideal of X in C∞(M).

The following properties are easy consequences of the above definitions:

Proposition 1.4.3.The iterated prolongation of an ideal I of C∞(M) to C∞
(
MB

)

and then to C∞
(
(MB)A

)
agrees with its direct prolongation to C∞

(
MA⊗B

)
.

Proposition 1.4.4. The operations of prolongation and specialization commute,
in the following sense: If X is a closed submanifold of M , I an ideal of C∞(M) and
I the specialization of I to X , then the prolongation of I to C∞

(
XA
)
agrees with

the specialization to XA of the prolongation of I to MA.

Definition 1.4.5. The prolongation of an ideal I of the ring C∞
(
M �

m

)
to

C∞
(
M �+r

m

)
is the specialization to the submanifold M �+r

m of (M �
m)

r
m of the pro-

longation of I to C∞
(
(M �

m)
r
m

)
. The prolongation of a submanifold X of M �

m to
M �+r

m is the intersection of Xr
m with M

�+r
m .

Remark. The prolongation to M �+r
m of a closed submanifold X of M �

m is the
intersection of closed subsets ofM �,r

m,m, hence it is a closed subset, but it need not be
a submanifold. This closed subset agrees with the set of zeros of the specialization
to M �+r

m of the prolongation of the ideal I of X to C∞
(
M �,r

m,m

)
.

Proposition 1.4.6. The prolongation of an ideal I of C∞(M) to C∞
(
M �,r

m,m

)

followed by its specialization to the submanifold M �+r
m of M �,r

m,m agrees with the
direct prolongation of I to C∞

(
M �+r

m

)
.

�����. For each f ∈ C∞(M) the restriction of fα,β to M �+r
m is fα+β. �

Theorem 1.4.7. The consecutive prolongation of an ideal I of C∞
(
M �

m

)

to C∞
(
M �+r

m

)
and then to C∞

(
M �+r+s

m

)
agrees with its direct prolongation to

C∞
(
M �+r+s

m

)
.

�����. It is a consequence of Propositions 1.4.4 and 1.2.2. �

Let y1, . . . , yn be a coordinate system on an open subset U ofM ; then the functions
yiα (1 � i � n; |α| � �) form a coordinate system in the open subset U �

m of M
�
m.
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The prolongation of a function f ∈ C∞
(
U �

m

)
to a function in U �,r

m,m with values in
�

r
m can be obtained by replacing each yiα by the polynomial

Yiα(x1, . . . , xm) =
∑

|β|�r

1
β!
yiαβx

β

and then calculating the r-Taylor expansion of f(. . . , Yiα(x1, . . . , xm), . . .), considered
as a function of {yiαβ , xj}, with respect to the variables xj at x = 0; the coefficient at
xβ is 1β!fβ, where fβ is a function in the variables yiαγ (i = 1, . . . , n; |α| � �; |γ| � r),
the local coordinates in U �,r

m,m. In order to get the specialization to U
�+r
m we replace

yiαγ by yiα+γ ; thus we obtain a set of generators of the prolongation to U �+r
m of the

ideal (f). The prolongation of a finitely generated ideal is obtained by calculating
the prolongations of a system of its generators. On the other hand, Theorem 1.4.7
allows us to prolongate ideals from C∞

(
M �

m

)
to C∞

(
M �+r

m

)
as the result of a chain of

consecutive prolongations from each C∞
(
M �+j

m

)
to C∞

(
M �+j+1

m

)
(j = 0, . . . , r − 1).

If we write εk = (0, . . . , 1, . . . , 0) (1 on the k-th place), then the prolongation of
an ideal (f) from C∞

(
M �

m

)
to C∞

(
M �+1

m

)
is generated by m+ 1 functions

f0 = f, fk = fεk
=

n∑

i=1

∑

|α|��

∂f

∂yiα
yiα+εk

, (1 � k � m).

1.5. Jet spaces.

Definition 1.5.1. Let M be a smooth manifold and A a local algebra. The jet
of pA ∈MA is its kernel as a homomorphism from C∞(M) into A.

The set of jets of A-points of M will be denoted by JA(M). For A = �
�
m we will

write J�
m(M) instead of J

A(M).
There exists a natural projection

ker: MA −→ JA(M)

pA �−→ pA = ker(pA)

which satisfies the following condition: each smooth mapping ϕ : M → N in-
duces a mapping ϕ∗ : JA(M) → JA(N), defined by ϕ∗(pA) = ϕ∗

−1
(pA), where

ϕ∗ : C∞(N) → C∞(M) is the ring homomorphism attached to ϕ, such that the
diagram

MA ϕ−−−−→ NA

ker

	
	ker

JA(M)
ϕ∗−−−−→ JA(N)

is commutative. We will simply write ϕ instead of ϕ∗ when no confusion can arise.
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If pA ∈ MA is regular, its jet pA is said to be regular. The set of jets of regular
A-points of M will be denoted by J A(M). We will use the notation J �

m(M) for the
set of regular jets of points of M �

m.

Examples. (1) Let n = dimM , p�
n ∈ M̌ �

n and p = p0n. Since m�+1
p ⊂ ker p�

n,
p�

n gives rise to an onto �-algebra homomorphism C∞(M)
/
m�+1

p → �
�
n which must

be an isomorphism, because both the vector spaces have equal dimension. Thus,
p�

n = ker p
�
n = m�+1

p and consequently J �
n(M) ≈M .

(2) Jets of cross-sections of a fibre bundle. Consider a fibre bundle � : M → X

and let m = dimX ; �∗ represents C∞(X) as a subring of C∞(M). It is easy to
check that the image of the subset of C∞(X)-regular jets of J�

m(M) by the mapping
� : J�

m(M) → J�
m(X) is J �

m(X) ≈ X . It will cause no confusion if we denote by
J �M the set of C∞(X)-regular jets of J�

m(M). This set is the usual set of jets of
cross-sections of the fibre bundle � : M → X .
Let p�

m ∈ J �M , let p ∈ M be its projection onto M and x = �(p). Since
p�

m∩C∞(X) = m�+1
x , each point p�

m ∈M �
m such that ker p

�
m = p�

m gives rise to an iso-
morphism C∞(X)

/
m�+1

x → �
�
m . For each f ∈ C∞(M) the element f(p�

m) associated
with f(p�

m) is the equivalence class of the only (modm
�+1
x ) function g ∈ C∞(X) such

that f−g ∈ p�
m, hence it depends only on p�

m, not on p
�
m. Consequently, the points of

J �M can be understood as C∞(X)-algebra homomorphisms from C∞(M) onto the
different C∞(X)

/
m�+1

x (x ∈ X), that is, each p�
m ∈ J �M is a C∞(X)

/
m�+1

x -point
of M .
If s : X → M is a cross-section of �, then the mapping s∗ : J �

m(X) → J �
m(M) is

denoted by j�s and called the �-jet prolongation of s. It is obvious that the image of
j�s is a subset of J �M ; for each x ∈ X we will write j�

xs = (j
�s)(x), and this point

will be called the �-jet of s at x.

1.6. Smooth structure on J �
m(M).

The set Aut(��
m ) of �-algebra automorphisms of �

�
m is a closed subgroup of the

linear group GL(N,�), where N =
(
m+�

�

)
, hence it is a Lie group. Its Lie algebra is

the set of derivations of ��
m , Der�(�

�
m ,�

�
m ) (for a proof, see [5]).

The group Aut(��
m ) operates in M

�
m through the mapping

Aut(��
m )×M �

m −→M �
m

(σ, p�
m) �−→ σ(p�

m) = σ ◦ p�
m.

This mapping is easily seen to be smooth and transforms regular points into regular
points. Furthermore, the following assertion holds:

Lemma 1.6.1. The orbits of Aut(��
m ) in M̌

�
m are submanifolds diffeomorphic to

this group.
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�����. Let p�
m ∈ M̌ �

m and y1, . . . , ym ∈ C∞(M) be such that

yi(p�
m) = yi(p) + xi (1 � i � m).

Let ym+1, . . . , yn ∈ C∞(M) be such that y1, . . . , ym, ym+1, . . . , yn is a coordinate
system in an open neighborhood U of p in M .
For each σ ∈ Aut(��

m ) set ξi (x1, . . . , xm) = σ(xi) (1 � i � m); then

yi(σ(p�
m)) = yi(p) + ξi(x) (1 � i � m),

hence the coordinates yiα (1 � i � m; |α| � �) of σ(p�
m) in M

�
m are exactly those

of σ in Aut(��
m ) and, when p

�
m is fixed and σ runs through Aut(�

�
m ), the other

coordinates of σ(p�
m) are smooth functions of the former ones. �

Proposition 1.6.2. Two points of M̌ �
m belong to the same orbit of Aut(�

�
m ) if

and only if they have the same jet.

�����. It follows from the fact that each point p�
m such that ker p

�
m = p�

m gives
rise to an isomorphism C∞(M)/p�

m → �
�
m . �

Corollary 1.6.3. J �
m(M) can be identified in a canonical way with the quotient

set of M̌ �
m by the action of Aut(�

�
m ); this group operates freely on each fibre of the

canonical projection M̌ �
m → J �

m(M).

Remarks. (1) The action of the group Aut(��
m ) is not transitive in the fibres of

the canonical projectionM �
m → J�

m(M). In order to get an example it suffices to find
two isomorphic subalgebras of ��

m such that the isomorphism cannot be prolonged
to an automorphism of ��

m .
For example, consider the subrings

A = {a+ b(x21 + x22 + x23) : a, b ∈ �},
B = {a+ bx1x2 : a, b ∈ �}

of �23 . They are isomorphic in an obvious way, but there exists no automorphism of
�
2
3 which sends A to B, because the polynomial x

2
1 + x

2
2 + x

2
3 is irreducible, while

x1x2 is not.
(2) It is easily shown that the action of Aut(��

m ) on the fibres of the projection
M �

m → J�
m(M) is not free, in general.

The remainder of this section is devoted to endowing J �
m(M) with a smooth struc-

ture in such a way that the canonical projection M̌ �
m → J �

m(M) is a principal fibre
bundle (see [4] for a different proof). We divide the proccess in three steps.
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(1) For each subring B of C∞(M) the set of B-regular points of M �
m is an open

subset (perhaps empty) of M̌ �
m, invariant under the action of Aut(�

�
m ).

Let p�
m, q

�
m ∈ M̌ �

m; since M is a Hausdorff space, if p0m �= q0m then it is obvious
that if J �

m(M) is endowed with the quotient topology then there are disjoint open
neighborhoods of p�

m and q�
m. If p

0
m = q

0
m = p and U is a coordinated neighborhood

of p, then there exist functions z1, . . . , zm ∈ C∞(U) such that p�
m and q

�
m are regular

over the same subring � [z1, . . . , zm] of C∞(U). Thus, to prove that J �
m(M) is a

Hausdorff space we only need to show that for each open subset U of M with a
coordinate system y1, . . . , yn the image of the subset of points of U �

m regular over the
subring � [yi1 , . . . , yim ] of C

∞(U) (i1 < . . . < im) is a Hausdorff subspace of J �
m(U).

(2) Let y1, . . . , yn be a coordinate system in an open subset U ofM and let U
�
m be

the open set of the points of Ǔ �
m regular over �[y1 , . . . , ym]. Our next goal is to show

that J �
m(U) is a Hausdorff subspace of J �

m(U), finding convenient local coordinates.
Set p�

m ∈ U �
m and let p = p

0
m; then p

�
m gives rise to an �-linear isomorphism

p�
m : �[y1 , . . . , ym]

/(
y1 − y1(p), . . . , ym − ym(p)

)�+1 → �
�
m .

Therefore, for each f ∈ C∞(U) there exists a unique polynomial P f ∈ �[y1 , . . . , ym]
of degree � such that

f − P f ∈ p�
m = kerp

�
m.

Lemma 1.6.4. For each f ∈ C∞(U) there exist
(
m+�

m

)
functions Fα : U

�
m → �

(0 � |α| � �) such that for each p�
m ∈ U�

m,

(1.1) f(p�
m) =

∑

|α|��

1
α!
Fα(p�

m)(y(p
�
m)− y(p))α

where for α = (α1, . . . , αm) we write yα = yα1
1 . . . yαm

m . The functions Fα are smooth
in U �

m and they can be written as rational functions of yiβ , fγ (1 � i � m, |β|, |γ| � �)
whose denominators do not vanish in U �

m; they are linear homogeneous in the fγ .
The ideal of C∞

(
U �

m

)
generated by the Fα (|α| � �) agrees with the one generated

by the fγ (|γ| � �).
�����. The first assertion is obvious. On the other hand, equation (1.1) can

be rewritten as

(1.2) f =
∑

|γ|��

1
γ!
fγx

γ =
∑

|α|��

1
α!
Fα(y − y0)α,

understood as an equality between smooth functions from U�
m into �

�
m , and the state-

ment follows from applying Cramer’s rule to the attached system of linear equations
in the unknown functions Fα(p�

m). �
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We will denote by Pf or P (Fα, yi) the polynomial in y1, . . . , ym whose coefficients
are the functions Fα which appear on the right hand side of (1.1). From their
definition it follows that the Fα(p�

m) do not depend on p
�
m, but only on p�

m, hence
the functions Fα are left invariant by Aut(��

m ) and consequently they are functions
in J �

m(U). When f = ym+j (j = 1 . . . , n − m) we will write Ym+j,α = Fα; the
functions yiα, Ym+j,β (1 � i � m; 1 � j � n −m; |α|, |β| � �) are a new coordinate
system in U �

m. If p
�
m ∈ U�

m, then p�
m = ker p

�
m is the sum of m�+1

p and the ideal
of C∞(U) generated by the n − m polynomials ym+j − P (Ym+j,α(p�

m), yi). Since
Ym+j,0 = ym+j,0, p�

m is completely determined by yi(p), Ym+j,α(p�
m) (1 � i �

m; 1 � j � n − m; |α| � �); therefore the functions yi0, Ym+j,α separate points in
J �

m(U), hence it is a Hausdorff space.

(3) The group Aut(��
m ) operates freely in M̌

�
m and the quotient space J �

m(M) is
Hausdorff, the graph of the action of Aut(��

m ) in M̌
�
m is closed in M̌

�
m × M̌ �

m and
homeomorphic to Aut(��

m )× M̌ �
m, as follows from the calculus made in the proof of

Lemma 1.6.1, hence we have completed the proof of

Theorem 1.6.5. J �
m(M) can be given in a canonical way a structure of smooth

manifold such that the natural projection M̌ �
m → J �

m(M) is a principal fibred bundle
with structure group Aut(��

m ).

Remarks. (1) The map η : J �
m(U) → U�

m which assigns to each point p�
m ∈

J �
m(U) the point p

�
m ∈ U �

m defined by

yi(p�
m) = yi(p) + xi,

ym+j(p�
m) =

∑

|α|��

1
α!
Ym+j,α(p�

m)x
α

(1 � i � m; 1 � j � n−m; |α| � �) is a local cross-section of the fibred bundle Ǔ �
m →

J �
m(U). Choosing U smaller if neccesary we can suppose that the coordinate system

y1, . . . , ym, ym+1, . . . , yn represents it as an open subset U ′×U ′′, where U ′ is an open
subset of �m and U ′′ is an open subset of �n−m . Then U �

m ≈ U ′�
m×U ′′�

m (each point
p�

m of U
�
m is identified with the couple

(
p′�m, p

′′�
m

)
, restrictions of p�

m : C
∞(U)→ �

�
m

to C∞(U ′) and C∞(U ′′), respectively). The image of a jet p�
m ∈ J �

m(U) by the
composition of the section η : J �

m(U) → U �
m and the projection U

�
m → U ′ × U ′′�

m is
the couple

(
p′, p′′�m

)
, whose coordinates are

yi(p
′) = yi0(p�

m) (1 � i � m),
ym+j,α(p

′′�
m) = Ym+j,α(p�

m) (1 � j � n−m; |α| � �).

Therefore the above mapping J �
m(U)→ U ′ × U ′′�

m is a diffeomorphism.
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The set of �–jets of cross-sections of the trivial fibred bundle U ′×U ′′ → U ′ is dif-
feomorphic to U ′×U ′′�

m: in fact, as was shown in §1.5 each p� ∈ J �(U ′×U ′′) can be

understood as a C∞(U ′)-algebra homomorphism from C∞(U) into C∞(U ′)
/

m�+1
p′ ≈

�
�
m ; the last isomorphism is not canonical, but it is completely determined by at-
taching to the class yi(p�

m) the element yi0(p′) + xi of ��
m (1 � i � m). Thus we

get an isomorphism J �(U ′ ×U ′′) ≈ U ′ ×U ′′�
m which applies each jet p� to the point

of U ′ × U ′′�
m defined by the restrictions of p

� to C∞(U ′) and C∞(U ′′); we have thus
proved that the space J �

m(M) is covered by open sets which are sets of �–jets of local
cross-sections of fibred bundles.

(2) From the proof of Theorem 1.6.5 it follows that, if � : M → X is a fibred
bundle, then J �(M) is a smooth manifold (it is an open subset of J �

m(M), where
m = dimX).
(3) If n = dimM , the mapping M̌ �

n → J �
n(M) ≈ M is a principal fibred bundle

whose structure group is Aut(��
n ); it is known as the �-th order frame bundle. The

points p�
n ∈ M̌ �

n are homomorphisms from C∞(M) onto ��
n and hence they give

isomorphisms p�
n : C

∞(M)/m�+1
p → �

�
n . This particular case of Theorem 1.6.5 can

be found, without a proof, in [13, p. 117].

1.7. The Taylor imbedding in jet spaces.
Consider the canonical projection M̌ �

m → J �
m(M); for each r � 0 there exists a

mapping Jr
m(M̌

�
m)→ Jr

m(J �
m(M)) such that the diagram

(M̌ �
m)

r
m −−−−→ (J �

m(M))
r
m	

	

Jr
m(M̌

�
m) −−−−→ Jr

m(J �
m(M))

is commutative. Thus we obtain a mapping from (M̌ �
m)

r
m into J

r
m(J �

m(M)) which
we call the canonical mapping; the image of each point P r

m ∈ (M̌ �
m)

r
m is the ideal of

C∞
(
J �

m(M)
)
intersection of this ring with the jet of P r

m : C
∞(M̌ �

m

)
→ �

r
m .

Theorem 1.7.1. The Taylor injection M̌ �+r
m → (M̌ �

m)
r
m gives rise to a mapping

ϕ : J �+r
m (M)→ Jr

m(J �
m(M)) such that the diagram

M̌ �+r
m

Taylor injection−−−−−−−−−−−−→ (M̌ �
m)

r
m

jet

	
	canonical mapping

J �+r
m (M)

ϕ−−−−−−−−−−−−→ Jr
m(J �

m(M))

is commutative; ϕ is injective, its image is a subset of J r
m

(
J �

m(M)
)
and it defines a

diffeomorphism between J �+r
m (M) and a closed submanifold of J r

m

(
J �

m(M)
)
.
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�����. Let p�+r
m be a point of M̌ �+r

m ; the image p�,r
m,m of p

�+r
m in M̌ �,r

m,m by
the Taylor imbedding is identified with a point P r

m ∈ (M̌ �
m)

r
m by the canonical

isomorphism; let P
r
m be the restriction of P

r
m to C

∞(J �
m(M)

)
. The restriction of P

r
m

to C∞(M) is pr
m, the projection of p

�+r
m to M̌ r

m; as p
�+r
m is regular, so is P

r
m. Therefore

kerP
r
m is the sum of the ideal m

r+1
P
0
m

of C∞
(
J �

m(M)
)
and an ideal I generated by a

family of dimJ �
m(M)−m = (n−m)

(
m+�

m

)
functionally independent functions.

The point p�+r
m being regular, there exists a local coordinate system y1, . . . , yn

on an open neighborhood of p = p0m in M such that ym+1, . . . , yn ∈ ker p�+r
m ; then

the (n −m)
(
m+�

m

)
functions Ym+j,α belong to kerP

r
m and, as they are functionally

independent, they generate I. Thus we have proved that kerP
r
m is the sum of the

ideal mr+1
P
0
m

with the ideal I generated by the functions Fα when f runs through the

ideal ker p�+r
m , which shows the existence of the mapping ϕ and, as P

r
m is regular,

that the image of ϕ is contained in J r
m

(
J �

m(M)
)
.

It remains to show that ϕ is an imbedding. As the problem is local in M , we can
replace M by an open subset U with local coordinates y1, . . . , yn which map U into
a product of open subsets U ′ × U ′′ ⊆ �

m × �
n−m . Through the isomorphisms

J �+r(U) ≈ U ′ × U ′′�+r
m ,

J r
(
J �(U)

)
≈ J r

(
U ′ × U ′′�

m

)
≈ U ′ ×

(
U ′′�

m

)r
m

the mapping ϕ : J �+r(U)→ J r
(
J �(U)

)
is attached to the mapping

U ′ × U ′′�+r
m

id.×Taylor−−−−−−−−→ U ′ ×
(
U ′′�

m

)r
m
,

which completes the proof. �

From the proof of the above theorem it follows that, if � : M → X is a fibred
bundle, then there exists an imbedding J �+r(M)→ J r

(
J �(M)

)
which applies j�+r

x s

to jr
x(j

�s).

1.8. Prolongation of ideals from C∞
(
J �

m(M)
)
to C∞

(
J �+r

m (M)
)
.

Definition 1.8.1. The prolongation of an ideal I of C∞(M) to C∞
(
J �

m(M)
)
is

the intersection with this subring of C∞
(
M̌ �

m

)
of the prolongation of I to C∞

(
M̌ �

m

)
.

The following result is a consequence of Lemma 1.6.4 and Theorem 1.6.5:

Proposition 1.8.2. The prolongation of an ideal I from C∞(M) to C∞
(
M̌ �

m

)
is

locally generated by its prolongation to C∞
(
J �

m(M)
)
, that is to say, by functions

invariant by Aut(��
m ).
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This proposition and Proposition 1.4.1 yield

Proposition 1.8.3. Let X be a closed submanifold of M and I the ideal of X in
C∞(M). Then J �

m(X) is a closed submanifold of J �
m(M) (it may be empty) whose

ideal is the prolongation of I to C∞
(
J �

m(M)
)
.

Definition 1.8.4. The prolongation of an ideal I ofC∞
(
J �

m(M)
)
to C∞

(
J �+r

m (M)
)

is the specialization to the closed submanifold J �+r
m (M) of J r

m

(
J �

m(M)
)
of the pro-

longation of I to C∞
(
J r

m

(
J �

m(M)
))
.

In order to obtain a result similar to Theorem 1.4.7 consider the inclusions of rings

(1)

C∞
(
J �

m(M)
)
⊆

(2)

C∞
(
M̌ �

m

)
,

(3)

C∞
(
J r

m

(
J �

m(M)
))
⊆

(4)

C∞
(( ˇJ �

m(M)
)r
m

)
⊆

(5)

C∞
(
(

◦
M̌ �

m)
r
m

)
,

where (
◦

M̌ �
m)

r
m is the inverse image of (

ˇJ �
m(M))

r
m in (M̌

�
m)

r
m.

According to Definition 1.8.1, to obtain the prolongation of an ideal I of (1) to (3)
we must prolongate it from (1) to (4) and then cut this prolongation with (3).
If � : X → Y is a surjective submersion, then the existence of local sections of

� immediately implies that, if F is a sheaf of ideals of Y , then �
∗(F) ∩ C∞Y = F .

Applying this result to the surjective submersion

� : (
◦

M̌ �
m)

r
m →

( ˇJ �
m(M)

)r
m

we see that, when the prolongation of I to (4) is prolongated to (5) and cut with (4),
the result is the prolongation of I to (4); therefore, in order to obtain the prolongation
of I from (1) to (3) it may be prolongated from (1) to (5) and then cut with (3).
By Proposition 1.8.3 the prolongation of I from (1) to (3) generates locally the

prolongation of I from (1) to (4); as the latter generates the prolongation of I from
(1) to (5), the prolongation of I from (1) to (3) generates locally the prolongation
of I from (1) to (5).
Let us consider a system of generators of the prolongation of I from (1) to (5)

contained in its prolongation from (1) to (3). Their specializations to the submani-

fold M̌ �+r
m of (

◦
M̌ �

m)
r
m is a system of generators of the prolongation of IC

∞(M̌ �
m

)

to C∞
(
M̌ �+r

m

)
. From the commutativity of the diagram of Theorem 1.7.1 it follows

that the intersection with C∞
(
J �+r

m (M)
)
of the prolongation of I from C∞

(
J �

m(M)
)

to C∞
(
M̌ �+r

m

)
agrees with the prolongation of I to this ring in the sense of Defini-

tion 1.8.4.
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The above discussion and Theorem 1.4.7 allows us to state the following

Theorem 1.8.5. The prolongation of an ideal I of C∞
(
J �

m(M)
)
to C∞

(
J �+r

m (M)
)

is the intersection with this ring of the prolongation of IC∞
(
M̌ �

m

)
to C∞

(
M̌ �+r

m

)
,

and it generates locally the prolongation of I to C∞
(
M̌ �+r

m

)
. The prolongation

of I to C∞
(
J �+r

m (M)
)
can be obtained by means of successive prolongations from

C∞
(
J �+i

m (M)
)
to C∞

(
J �+i+1

m (M)
)
(0 � i � r − 1).

Finally we give the expression in local coordinates of the prolongation of an ideal.
The above theorem reduces the prolongation of an ideal I from one jet space to
another to the prolongation from C∞(M) to C∞

(
J 1m(M)

)
; such a prolongation can

be obtained by means of a system of generators of I, hence we restrict ourselves to
the case I = (f).
We can suppose that M is an open subset of �n with coordinates y1, . . . , yn; then

yi0;Ym+j,k (1 � i � m, 1 � j � n−m, 0 � k � m) form a coordinate system in the
open subset J 1m(M) of regular jets over � [y1, . . . , ym], where Ym+j,k = Ym+j,εk

.
There is an equality between functions from the open subset M1

m of M
1
m with

values in �1m :

(1.3) f0 + f1x1 + . . .+ fmxm = f = F0 + F1(y1 − y10) + . . .+ Fm(ym − ym0).

Replacing each yi by yi0 +
m∑

k=1
yikxk we obtain a system of linear equations for Fk:

(1.4)

f0 = F0,

f1 = y11F1 + . . .+ ym1Fm,

. . . . . . . . . ,

fm = y1mF1 + . . .+ ymmFm.

If we solve this system and have in mind the equations obtained for the functions fk

of (1.3) at the end of Section 1.3 we see that the prolongation of (f) to C∞
(
J 1m(M)

)

is generated by the functions

F0 = f
(
yi0; ym+j,0

)
,

Fi = ∂
#
i f =

∂f

∂yi

(
yi0; ym+j,0

)
+

n−m∑

j=1

∂f

∂ym+j

(
yi0; ym+j,0

)
Ym+j,i (1 � i � m).

Remark. In this paragraph the prolongation of an ideal I of C∞
(
J �

m(M)
)
was

defined without the hypothesis that I is the ideal of a submanifold of J �
m(M). The

above calculus shows that our definition coincides whith the one given by Kuranishi
[8, p. 15], who defined the prolongation of an ideal I locally, as the result of applying
the operators ∂#i to its generators.
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2. Tangent structures

2.1. Tangent module and tangent space at a near point of M .
According to Theorem 1.3.1, for each local algebra A the manifolds (MA)11 and

MA⊗�11 are canonically diffeomorphic. We know that the first is isomorphic to the
tangent bundle T (MA); on the other hand, each point pA⊗�11 ∈ MA⊗�11 is an �-
algebra homomorphism from C∞(M) into A ⊗ �

1
1 whose composition with the pro-

jection �11 → � is a point pA ∈MA. If each a ∈ A is identified with a⊗ 1 ∈ A⊗�
1
1 ,

the homomorphism pA : C∞(M) → A can be viewed as valued in A ⊗ �
1
1 , and

pA⊗�11 − pA is a derivation of C∞(M) with values in A, that is to say, pA⊗�11 is the
sum of the point pA ∈ MA and a derivation of C∞(M) with values in A, endowed
with the C∞(M)-module structure induced by pA. Thus we have proved our next
fundamental result:

Theorem 2.1.1. For each point pA ∈ MA there exists a canonical linear iso-
morphism between TpAMA, the tangent space to MA at pA, and Der�

(
C∞(M), A

)
,

where A is considered as a C∞(M)-module through the homomorphism pA.

By virtue of this theorem the tangent space TpAMA can be understood as a space
of derivations from C∞(M) into A; in this case it will be denoted by TpAMA and
called the tangent module to MA at pA. It is a free A-module of rank n = dimM .
Fix a basis a1, . . . , ad in A; if we regard a function f ∈ C∞(M) as a function from

MA into A, we write it as f =
d∑

k=1
fkak, where fk ∈ C∞(MA). Each tangent vector

DpA ∈ TpAMA defines a point (pA)�
1
1 ∈ (MA)11 such that, for k = 1 . . . , d,

fk((pA)�
1
1) = fk(pA)⊗ 1 + (DpAfk)⊗ x,

where x is a generator of the maximal ideal of �11 . Hence when f is considered as a
function from (MA)�

1
1 into A⊗ �

1
1 its value at (p

A)�
1
1 is

f((pA)�
1
1) = f(pA)⊗ 1 +

(
d∑

k=1

(
DpAfk

)
ak

)
⊗ x;

thus we have proved that, for each DpA ∈ TpAMA, the derivation DpA ∈ TpAMA

attached to it according to the above theorem maps each f ∈ C∞(M) into the
element

DpAf =
d∑

k=1

(
DpAfk

)
ak.

We will use the same notation DpA for the vector DpA of TpAMA attached to this
derivation.
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Let ϕ : M → N be a smooth mapping and let pA ∈ MA; the linear mapping
ϕ∗ : TpAMA → Tϕ(pA)N

A attached to the differential of the mapping ϕA : MA →
NA at pA according to Theorem 2.1.1 is defined by:

ϕ∗(DpA) = DpA ◦ ϕ∗,

where ϕ∗ : C∞(N)→ C∞(M) is the ring homomorphism induced by ϕ.
On the other hand, if σ : A → B is a homomorphism between local algebras and

σ : MA →MB is the smooth mapping induced by σ, then

σ∗(DpA) = σ ◦DpA .

Let D be a vector field on M ; for each pA ∈MA the mapping DpA : C∞(M)→ A

defined as DpA(f) = (Df)(pA) is an element of TpAMA which we call the value of D
at pA; we will use the same name value of D at pA when we mean the tangent vector
attached to DpA by Theorem 2.1.1. Thus we obtain a vector field on MA which
will be called the prolongation of D to MA. Using the above notation for the real
components of a function f ∈ C∞(M), it is easy to show that (Df)k(pA) = DpAfk,
that is to say, Dfk = (Df)k. This implies immediately that the prolongation of
vector fields preserves the Lie brackets.

Remark. According to our definition the prolongation toMA of a vector field D
on M is only the same field, considered at each point pA ∈MA as a derivation from
C∞(M) into A. This idea gives in a canonical way the prolongation of a tangent
vector field to the manifolds of near points and jets, without any consideration about
the one-parameter groups generated by the vector field.

Proposition 2.1.2. A point pA ∈MA is regular if and only if each tangent vector
to MA at pA is the value at pA of a vector field on M .

�����. Let pA ∈ MA and let p be its projection into M . Let y1, . . . , yn be a
local coordinate system on a neighbourhood U of p in M . If D is a tangent vector

field on M , it can be written in U as D =
n∑

i=1
fi

∂
∂yi
, where fi are smooth functions

in M . Then

DpA =
n∑

i=1

fi(pA)

(
∂

∂yi

)

pA

.

Thus, when D runs through the set of tangent vector fields onM , DpA runs through

the set of derivations
n∑

i=1
ξi
(

∂
∂yi

)
pA , where ξi ∈ Im pA. As

(
∂

∂yi

)
pA (1 � i � n) span

TpAMA, we conclude. �
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2.2. The kernel of the projection Tp�
m
M �

m → Tp�−1
m
M �−1

m .
Let p�

m ∈ M �
m; by Theorem 2.1.1, the differential at p

�
m of the canonical pro-

jection �
�−1
� : M �

m → M �−1
m can be viewed as the natural mapping Tp�

m
M �

m →
Tp�−1

m
M �−1

m which applies each derivation Dp�
m
: C∞(M) → �

�
m to the derivation

Dp�−1
m
: C∞(M)→ �

�−1
m obtained as the composition of Dp�

m
and the canonical pro-

jection �
�−1
� : ��

m → �
�−1
m . This easily yields

Proposition 2.2.1. For each p�
m ∈ M �

m the kernel Qp�
m
M �

m of the canonical
projection Tp�

m
M �

m → Tp�−1
m
M �−1

m is identified by the isomorphism given by Theo-

rem 2.1.1 with the set of �-derivations from C∞(M) into ��
m valued in m

(
�

�
m

)�
.

Proposition 2.2.2. Let Dp�
m

∈ Qp�
m
M �

m be considered as a derivation from
C∞(M) into ��

m . For each derivation Z : �
�
m → �

�−1
m the mapping Z ◦ Dp�

m
be-

longs to Qp�−1
m
M �−1

m . Furthermore, if Z : ��
m → � is the composition of Z with the

canonical projection ��−1
m → �, then Z ◦Dp�

m
depends only on Dp�

m
and Z.

Let � � 1 and let us consider � endowed with the ��
m -module structure given by the

natural projection; then Der�
(
�

�
m ,�

)
can be identified with T0(�m ). Thus, accord-

ing to Proposition 2.2.2 each Dp�
m
∈ Qp�

m
M �

m can be understood as a linear mapping
from T0(�m ) into Qp�−1

m
M �−1

m which applies each tangent vector Z ∈ T0(�m ) to the
derivation Z ◦Dp�

m
of Qp�−1

m
M �−1

m . Iterating the proccess we can define a multilinear
mapping

(2.1)
T0(�m )× . . .× T0(�m ) −→ Qp�−r

m
M �−r

m(
Z1, . . . , Zr

)
�−→ Zr ◦ . . . ◦ Z1 ◦Dp�

m
.

IfDp�
m
�= 0, there must exist a derivation Z1 from �

�
m to �

�−1
m such that Z1◦Dp�

m
�=

0; if we repeat the argument we see that, for each r � �, the mapping which assigns
to each Dp�

m
∈ Qp�

m
M �

m the multilinear mapping (2.1) is injective. On the other
hand, we can suppose that the representants of Zi are determined by vector fields
on �m which commute, hence it is also symmetric.
We can summarize the above discussion as follows:

Theorem 2.2.3. Set p�
m ∈M �

m; for each r � � there exists a cannonical injection

(2.2) Qp�
m
M �

m ⊆ Sr [T ∗0 (�
m )]⊗�Qp�−r

m
M �−r

m

which attaches to each tangent vectorDp�
m
∈ Qp�

m
M �

m the multilinear mapping (2.1).
In particular, for r = � this mapping is an isomorphism, because it is injective and
the two vector spaces have the same dimension, that is to say:

(2.3) Qp�
m
M �

m ≈ S� [T ∗0 (�
m )]⊗� TpM, provided p = p0m.
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Remark. As a consequence ot the translation of this theorem to jet spaces we
will define in an easy way what Kuranishi [8] calls the fundamental identification.

The coordinate expression of the mapping (2.2) may be obtained as the result of
an easy calculus:

Proposition 2.2.4. Set Dp�
m
∈ Qp�

m
M �

m ⊆ Tp�
m
M �

m and denote

Fi (x1, . . . , xm) =
∑

|α|��

1
α!

(
Dp�

m
yiα

)
xα.

Then the Fi are homogeneous polynomials of degree � and the image of Dp�
m
by the

mapping (2.2) is the linear mapping (from SrT0(�m ) into Qp�−r
m
M �−r

m )

n∑

i=1

(
d(r)Fi

)
⊗
(
∂

∂yi

)

p

.

2.3. The projection M �
m →M �−1

m as an affine fibred bundle.
Let p�

m be a point of M
�
m; for each r � � we write p�−r

m = �
�−r
�

(
p�

m

)
. As was

shown in the last paragraph, the elements of Qp�
m
M �

m can be viewed as derivations
from C∞(M) into m(��

m )
�; therefore, if D ∈ Qp�

m
M �

m, then D is a derivation not
only at p�

m, but at each point of M
�
m belonging to the fibre of p

�−r
m in the projection

�
�−r
� . Consequently, the vector space Qp�

m
M �

m does not depend on p
�
m, but only on

p�−r
m , hence the natural projection Q

(
M �

m

)
→ M �−r

m is a vector fibred bundle. In
particular, for � = r the projection Q

(
M �

m

)
→M is a vector fibred bundle.

We will denote by Qp�−r
m
M �

m the fibre of p
�−r
m under the mapping Q

(
M �

m

)
→M �−r

m .
Let p�

m, q
�
m ∈ M �

m and suppose that p
�−1
m = q�−1

m ; if they are viewed as algebra
homomorphisms from C∞(M) into ��

m then p
�
m − q�

m is a derivation from C∞(M)
into ��

m , endowed with the C
∞(M)-module structure given by any of them, with

values in m
(
�

�
m

)�
; in other words, it is an element of Qp�−1

m
M �

m.
Conversely, given p�

m ∈ M �
m and D ∈ Qp�−1

m
M �

m, if p
�
m is considered as an �-

algebra homomorphism from C∞(M) into ��
m and D as a derivation at p

�
m from

C∞(M) into ��
m valued in m

(
�

�
m

)�
, then the mapping q�

m = p
�
m+D : C

∞(M)→ �
�
m

is an �-algebra homomorphism, that is, a point of M �
m, and q

�−1
m = p�−1

m .
The following theorem is a consequence of the definitions and the above discussion:

Theorem 2.3.1. The mapping

(2.4)
Q
(
M �

m

)
×M�−1

m
M �

m −→M �
m(

D, p�
m

)
�−→ p�

m +D
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defines an operation of Q
(
M �

m

)
on M �

m which preserves the fibres of the projection
�

�−1
� : M �

m → M �−1
m ; the latter is an affine fibred bundle modelled over the vector

fibred bundle Q
(
M �

m

)
→M �−1

m . This operation is functorial, in the following sense:
if ϕ : M → N is a smooth mapping, then the diagram

(2.5)

Q
(
M �

m

)
×M�−1

m
M �

m −−−−→ M �
m

ϕ∗×ϕ

	
	ϕ

Q
(
N �

m

)
×N�−1

m
N �

m −−−−→ N �
m

is commutative.

Let ϕ : M → N be a smooth mapping; it follows from the commutativeness of
diagram (2.5) that, for each couple of natural numbersm, �, the mapping ϕ�

m : M
�
m →

N �
m is a morphism of affine fibred bundles over ϕ

�−1
m whose associated morphism of

vector fibred bundles is the restriction of ϕ∗ to Q
(
M �

m

)
. In particular, the following

statement holds:

Proposition 2.3.2. The Taylor embedding M �+r
m → M �,r

m,m is a morphism of
affine fibred bundles over M �+r−1

m → M �,r−1
m,m whose associated morphism of vector

fibred bundles Q
(
M �+r

m

)
→ Q

(
M �,r

m,m

)
agrees, up to a constant factor, with the

fundamental identification.

2.4. The tangent space to J �
m(M) at a point p�

m.
Given p�

m ∈ J �
m(M), let p

�
m ∈ M̌ �

m be such that p
�
m = kerp

�
m. As the differential at

p�
m of the surjective submersion M̌

�
m → J �

m(M) is surjective and �
�
m ≈ C∞(M)

/
p�

m ,
Theorem 2.1.1 implies that Tp�

m
J �

m(M) is isomorphic to the quotient vector space
of Tp�

m
M �

m ≈ Der�
(
C∞(M), C∞(M)

/
p�

m

)
by the subspace of the vectors tangent to

the fibre of the projection M̌ �
m → J �

m(M) at p�
m. If p

�
m is considered as an ideal of

C∞(M), then each function f ∈ p�
m vanishes in such fibre; therefore each derivation

from C∞(M) into C∞(M)
/
p�

m ≈ �
�
m that, considered as belonging to Tp�

m
M �

m by
Theorem 2.1.1, is tangent to the fibre which contains p�

m, annihilates the ideal p
�
m,

hence it gives a derivation from C∞(M)
/
p�

m into C
∞(M)

/
p�

m .

Hence there exists a surjective homomorphism of vector spaces

Der�
(
C∞(M), C∞(M)

/
p�

m

) /
Der�

(
C∞(M)

/
p�

m , C∞(M)
/
p�

m

)
→ Tp�

m
J �

m(M)

which must be an isomorphism, because the two spaces have the same dimension.

We summarize the discussion as follows:
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Theorem 2.4.1. Let p�
m ∈ J �

m(M). Then the tangent space Tp�
m
J �

m(M) is iso-
morphic to the vector space

Der�
(
C∞(M), C∞(M)

/
p�

m

) /
Der�

(
C∞(M)

/
p�

m , C∞(M)
/
p�

m

)
.

The remainder of this paragraph is devoted to computing the local coordinate
expression of the prolongation to the jet spaces of a vector field on M .
Let D be a tangent vector field in M ; the prolongation of D to M �

m is defined as
the vector field whose value at each point p�

m ∈ M̌ �
m is the vector attached to Dp�

m

by Theorem 2.1.1. The restriction of this field to M̌ �
m is projectable to a vector field

on J �
m(M) which we call the prolongation of D to J �

m(M).
We will use the notation of §1.6. Let y1 . . . , ym, ym+1, . . . , yn be a coordinate

system on an open subset U of M ; then {yiα, ym+j,α} is a coordinate system on U �
m

and {yi0, Ym+j,α} is a coordinate system in J �
m(U) ≈ U ′ × U ′′�

m. Let p�
m ∈ J �

m(U)
and p�

m = η(p
�
m); then yi(p�

m) = yi(p) + xi (1 � i � m). If the local expression of D
in the coordinates {y1, . . . , yn} is

D =
m∑

i=1

fi
∂

∂yi
+

n−m∑

j=1

fm+j
∂

∂ym+j
,

then
Dp�

m
yi = fi(p

�
m) =

∑

|γ|��

1
γ!
Fi,γ(p

�
m)x

γ i = 1, . . . ,m

where Fi0 = fi0 is fi, considered in C∞
(
J �

m(U)
)
. Further,

(2.6)

Dp�
m
ym+j= Dp�

m

[∑

|α|��

1
α!
Ym+j,α(y − y0)α

]

=
∑

|α|��

1
α!

[
Dp�

m
Ym+j,αx

α + Ym+j,α(p
�
m)

m∑

k=1

αkDp�
m
(yk − yk0)x

α−εk
]

=
∑

|α|��

1
α! Dp�

m
Ym+j,αx

α +
∑

|β|��−1
1�k�m

1
β! Ym+j,β+εk

(p�
m)

∑

1�|γ|��

1
γ! Fk,γ(p�

m)x
β+γ .

On the other hand,

(2.7) Dp�
m
ym+j = fm+j(p�

m) =
∑

|α|��

1
α!
Fm+j,α(p�

m)x
α,

therefore, if Dp�
m
is the projection of Dp�

m
to Tp�

m
J �

m(M), then (2.6)–(2.7) yields

(2.8) Dp�
m
Ym+j,α = Fm+j,α(p

�
m)−

∑

1�k�m
β+γ=α
|γ|>0

α!
β!γ!

Ym+j,β+εk
(p�

m)Fk,γ(p
�
m),
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hence the prolongation of D can be written locally as:

(2.9)
m∑

i=1

fi
∂

∂yi0
+

∑

1�j�n−m
|α|��

[
Fm+j,α −

∑

1�k�m
β+γ=α
|γ|>0

α!
β!γ!

Ym+j,β+εk
Fk,γ

] ∂

∂Ym+j,α
.

2.5. The vertical tangent space at a point of J �M .

Definition 2.5.1. Let � : M → X be a fibred bundle, p ∈ M and x = �(p).
The vertical tangent space to M at p is the kernel VpM of the linear mapping
�∗ : TpM → TxX .

We know that, if p� ∈ J �M and x = �
�(p�), then p� establishes a ring isomorphism

C∞(M)
/
p� ≈ C∞(X)

/
m�+1

x ; therefore, according to the previus paragraph Tp�J �M

can be identified with

Der�
(
C∞(M), C∞(X)

/
m�+1

x

) /
Der�

(
C∞(X)

/
m�+1

x , C∞(X)
/
m�+1

x

)
.

As DerC∞(X)
(
C∞(M), C∞(M)

/
p�
)
∩ Der�

(
C∞(X)

/
m�+1

x , C∞(X)
/
m�+1

x

)
= (0),

there exists an injective mapping

DerC∞(X)

(
C∞(M), C∞(M)

/
p�
)
→ Tp�J �M

whose image is a subspace of Vp�J �M ; as the two vector spaces have the same
dimension, this injection is an isomorphism. This proves

Theorem 2.5.2. The vertical tangent space Vp�J �M is canonically isomorphic
to the vector space DerC∞(X)

(
C∞(M), C∞(X)

/
m�+1

x

)
.

Remark. If D is a vertical vector field on M , then its prolongation to J �M is
a vertical vector field whose value at each point p� is the C∞(X)–derivation Dp� =
p� ◦D. It can be easily shown that each vertical vector tangent to J �M at p� is the
value at p� of some tangent vector field in M vertical for the surjective submersion
� : M → X .

The above theorem allows us to translate to jet spaces the main results of para-
graphs 2.2 and 2.3.

Proposition 2.5.3. For each point p� ∈ J �M the kernel Qp�J �M of the canon-
ical projection

Vp�J �M → Vp�−1J �−1M

is identified by Theorem 2.5.2 with the set of C∞(X)-derivations from C∞(M) into
C∞(X)

/
m�+1

x whose images are contained in m�
x

/
m�+1

x .
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In much the same way as in Theorem 2.2.3, for each r � � we obtain the map-
ping (2.10), called the fundamental identification by Kuranishi [8, p. 8]. Our char-
acterization of the elements of Qp�J �M as C∞(X)–derivations from C∞(M) into
m�

x

/
m�+1

x allows us to give an elementary algebraic definition of the fundamental
identification, which Kuranishi defines by means of local one-parametric groups.

Theorem 2.5.4. For each r � � there exists a canonical injection

(2.10) i�−r
� : Qp�J �M → SrT ∗x (X)⊗Qp�−rJ �−rM

which maps the vertical tangent vector Dp� into the symmetric multilinear mapping
defined by

(2.11) i�−r
�

(
Dp�

) (
Z1, . . . , Zr

)
= Zr ◦ . . . ◦ Z1 ◦Dp� ,

where Dp� is understood as a C∞(X)-derivation from C∞(M) into C∞(X)
/
m�+1

x ≈
C∞(M)

/
p� and each Zi : C∞(X)

/
m�−i+2

x → C∞(X)
/
m�−i+1

x is any derivation
whose “value” at x is the tangent vector Zi. In particular, when r = � then the
injection (2.10) is an isomorphism

(2.12) Qp�J �M ≈ S�T ∗x (X)⊗� VpM.

Let p� ∈ J �M ; as we have shown there is a bijective correspondence between
Qp�J �M and the C∞(X)–derivations from C∞(M) into C∞(X)

/
m�+1

x whose values
are in m�

x

/
m�+1

x ; this fact implies that, if for r � � we write pr = �
r
�

(
p�
)
, each D ∈

Qp�J �M is a derivation not only at p�, but also at all points of the fibre at pr, hence
the vector space Qp�J �M does not depend on p�, but only of pr; consequently, the
projection Q

(
J �M

)
→ J rM is a vector fibre bundle. In particular, the projection

Q
(
J �M

)
→M is a vector fibre bundle. The fibre of pr in the projectionQ

(
J �M

)
→

J rM will be denoted by QprJ �M .
Let p�, q� ∈ J �M such that p�−1 = q�−1. If they are viewed as C∞(X)-algebra

homomorphisms from C∞(M) into C∞(X)
/
m�+1

x , then p�−q� is a C∞(X)-derivation
from C∞(M) into C∞(X)

/
m�+1

x whose image is contained in m�
x

/
m�+1

x , that is to
say, it belongs to Qp�−1J �M .
Conversely, given p� ∈ J �M and D ∈ Qp�−1J �M , its sum as mappings from

C∞(M) into C∞(X)
/
m�+1

x is an element of J �M at p�−1.
The above discussion allows us to state the analogue of Theorem 2.3.1 for jets of

cross-sections of a fibred bundle:

Theorem 2.5.5. Let � : M → X be a fibred bundle. For each � � 0 there exists
a mapping

(2.13) Q
(
J �M

)
×J �−1M J �M → J �M
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such that the canonical projection J �M → J �−1M is an affine fibred bundle mod-
elled over the vector fibre bundle

Q
(
J �M

)
→ J �−1M.

Furthermore, the action (2.13) is functorial: If ϕ : M → N is a fibred mapping over
X , the following diagram is commutative:

Q
(
J �M

)
×J �−1M J �M −−−−→ J �M

ϕ∗×ϕ

	
	ϕ

Q
(
J �N

)
×J �−1N J �N −−−−→ J �N

Remarks. (1) Let ϕ : M → N be a morphism of fibred bundles over X . It
follows from the above theorem that, for each � � 0, j�ϕ : J �M → J �N is a mapping
between affine fibred bundles over j�−1ϕ whose associated vector bundle morphism
is the restriction of ϕ∗ to Q

(
J �M

)
.

In particular, the Taylor imbedding

J �+rM → J r
(
J �M

)

is a morphism of affine fibred bundles over the imbedding

J �+r−1M → J r−1(J �M
)
.

Following Goldschmidt [3] we denote by ∆�,r its attached morphism of fibred vector
bundles over J �M . The image of each vector Dp�+r ∈ Qp�+rJ �+rM , considered as
a derivation from C∞(M) into m�+r

x

/
m�+r+1

x , is its composition with the Taylor
homomorphism (2.14). ∆�,r and the fundamental identification 2.10 agree up to the
factor 1r! , which makes easy to operate with this mapping.

(2) Let us fix a local coordinate system y1, . . . , ym ∈ C∞(X) on a neighborhood
of x ∈ X , vanishing at x. For each k � 0 the ring C∞(X)

/
mk+1

x is isomorphic to
�[y1 , . . . , ym]

/
(y1, . . . , ym)k+1 , hence the Taylor homomorphism

T : �[y1 , . . . , ym]→ �[y1 , . . . , ym]⊗ �[y1 , . . . , ym]

yi → yi ⊗ 1 + 1⊗ yi

factorizes as a homomorphism

C∞(X)
/
m�+r+1

x → C∞(X)
/
m�+1

x ⊗ C∞(X)
/
mr+1

x

whose definition depends on the local coordinates; nevertheless, its specialization to
m�+r

x

/
m�+r+1

x .

(2.14) m�+r
x

/
m�+r+1

x → m�
x

/
m�+1

x ⊗mr
x

/
mr+1

x ,

does not depend on the coordinates chosen.
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