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FOR A CLASS OF MIXED ABELIAN GROUPS
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1. Introduction

One of the oldest problems in the theory of abelian groups is the question whether
a given class of groups is closed with respect to direct summands. Simply presented
p-groups and completely decomposable groups are examples of classes where this
problem has been solved by an Azumaya-style theorem. No similar results can,
however, be obtained for direct summands of sums taken over an arbitrary class A
of groups without imposing some immediate restrictions on the elements of A. To
simplify our notation while considering such decompositions, the class of A-projective
groups consists of direct summands of direct sums of copies of a fixed group A. An
abelian group G is A-decomposable if it is of the form G ∼=

⊕
A∈A PA where each PA

is A-projective. Azumaya’s original result describes the case that every A ∈ A has a
local endomorphism ring [4]. Arnold, Hunter, and Richman extended his work in [6]
where they showed that the class of A-decomposable groups is closed with respect
to direct summands if A is a pseudo-rigid class of countable groups.
The goal of this paper is to establish the existence of an Azumaya-style theorem

for the class of G-decomposable groups where G is the class of mixed abelian groups
which was introduced by Glaz and Wickless in [11]. In order to define G, we first
consider the class Γ of mixed groups G with the property that G is isomorphic to
a pure subgroup of

∏
pGp containing

⊕
pGp. The symbol Γ∞ denotes the groups

in Γ which have finite torsion-free rank. Every G ∈ Γ∞ contains a finite independent
subset X such that F = 〈X〉 is a free subgroup of G with G/F torsion. We view G
as a pure subgroup of

∏
pGp, and write X =

{
xi = (xip) | i = 1, . . . , n

}
. Glaz

and Wickless investigated the class G of groups in Γ∞ for which Gp is finite for all
p and satisfies Gp = 〈x1p, . . . , xnp〉 for all but finitely many p. Observe that every
element of G is either an honest mixed group of finite. They showed in [11] that
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a group G ∈ Γ∞ such that Gp is finite for all p is in G if and only if Hom(G, tG)
is a torsion group. In particular, E(A)/tE(A) is a finite dimensional �-algebra for
A ∈ G. Goeters, Wickless, and the author continued the discussion of [11] in [3] by
showing that the elements of G are the mixed self-small abelian groups which have
finite torsion-free rank.

Since G is not a pseudo-rigid class, we cannot use the results of [6] directly to
show that the class of G-decomposable groups is closed with respect to direct sum-
mands. However, Corollary 4.4 and Theorem 5.2 yield that every group in G is
the finite direct sum of groups with local Walk-endomorphism ring where Walk is
the category with abelian groups as objects, but whose morphisms are defined by
MorWalk(G,H) = Hom(G,H)/Hom(G, tH) ([13]). Therefore, every direct summand
G of a G-decomposable group is Walk-isomorphic to a G-decomposable group. Going
back to the category of abelian groups, this only gives us that there exists a torsion
group T such that G⊕ T is G-decomposable [13, Theorem 12]. Since our proof that
a direct summand G of a G-decomposable group is G-decomposable will not be sim-
pler if G has a torsion complement, we prove the Azumaya-Theorem for G directly
by showing that the Walk-indecomposable groups in G exhibit a behavior similar
to that of modules with local endomorphism ring when they appear as direct sum-
mands of G-decomposable groups (Lemma 5.4). This behavior is in stark contrast
to the case that A is the class of torsion-free groups of finite rank, where the class of
A-decomposable groups is not closed with respect to direct summands [10, Theorem
91.1].

The Azumaya Theorem for G is a consequence of our discussion of the structure
of A-generated groups in the first part of this paper. For a fixed A ∈ G, call an
abelian group (finitely) A-generated if it is an epimorphic image of a group of the
form

⊕
I A for some (finite) index-set I. Theorem 2.2 shows that every reduced

A-generated group is in Γ and isomorphic to a subgroup of
∏
I A for some index-set

I. Furthermore, if G ∈ Γ∞ is A-generated, then G = H + tG for some A-generated
groupH ∈ G. Finally, an A-generated reduced group is in G if and only if it is finitely
A-generated.

Sections 3 discusses finitely A-generated groups. Following [1], we say that an
abelian group G is A-solvable if the evaluation map θG : Hom(A,G) ⊗E(A) A →
G is an isomorphism. Theorem 3.2 and Corollary 3.4 characterize the finitely A-
generated A-solvable groups. Applications of these results are given in Section 4
where we investigate when finitely A-generated A-solvable groups are essentially
indecomposable (Proposition 4.1 and Theorem 4.2). We want to remind the reader
that a group A is essentially indecomposable if, whenever A = B ⊕ C, then B or C
is bounded. In particular, we show that a group A ∈ G is essentially indecomposable
if and only if E(A)/tE(A) is a local ring (Corollary 4.4).
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The results of Sections 2 and 3 not merely lay the ground-work for the proof of the
Azumaya-Theorem. They also provide substantially deeper insight in the structure
of A-generated groups in G than the corresponding results did in the case of torsion-
free groups. This is primarily due to the fact that we are able to combine the well-
developed machinery for the discussion of A-solvable groups with a structure theory,
which is significantly richer than that for torsion-free abelian groups of finite rank.
In addition, we find that these characterizations can be obtained without imposing
any immediate restrictions on the E(A)-module structure of A. In contrast, this was
necessary for the discussion of A-solvable groups when A is torsion-free.
This demonstrates that there are significant differences between G and T F∞, the

category of torsion-free abelian groups of finite rank, in spite of Wickless’ results
in [18] which establish a high degree of similarity between these categories at the
quasi-level. We want to point out that Wickless’ results just like our proof of the
Azumaya-Theorem does not use the category Walk.

2. A-generated Abelian groups

We begin this section with a summary of standard properties of reduced groups
G ∈ Γ which we will frequently use without reference. We view G ∈ Γ as a pure
subgroup of

∏
pGp. For any finite number p1, . . . , pn of primes, G = Gp1 ⊕ . . . ⊕

Gpn ⊕G′ where G′ is a fully invariant subgroup of G such that multiplication by pi
is an automorphism of G′ for i = 1, . . . , n. Moreover, a reduced group G is in Γ if
and only if Gp is a direct summand of G for all primes p and G/tG is divisible. In
particular, if G ∈ Γ has bounded p-primary subgroups for all p, then E(G) is a pure
subring of

∏
pE(Gp) and tE(G) =

⊕
p E(Gp).

Given abelian groups A and G, composition of maps induces a right E(A)-module-
structure on HA(G) = Hom(A,G). For a right E(A)-module M , the symbol TA(M)
denotes M ⊗E(A)A. Since the functors induced by HA and TA between the category
of abelian groups, Ab, and the category, ME(A), of right E(A)-modules form an
adjoint pair, there exist natural maps θG : TAHA(G)→ G forG ∈ Ab and ϕM : M →
HATA(M) for M ∈ ME(A).

Lemma 2.1. Let A ∈ G.
a) tA is projective as a left E(A)-module, and Tor1E(A)(M,A) is torsion-free divis-
ible for all right E(A)-modules M . In particular, Tor1E(A)(M,A) = 0 whenever
the additive group of M is torsion.

b) Every reduced A-generated torsion group G is A-solvable and has the property
that HA(G) ∼=

⊕
pHA(Gp) is torsion. Moreover, if G ∈ G is A-generated, then

tG ⊆ tAn for some n < ω.
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�����. a) Let p be a prime of �, and write A = Ap ⊕ Ap where Ap is p-
divisible and Ap[p] = 0. Since E(A) = E(Ap)×E(Ap), every right E(A)-module M
decomposes as M = Mp ⊕Mp where Mp is an Ep = E(Ap)-module and Mp is an
Ep = E(Ap)-module. In order to show that Ap is a projective E(A)-module, it thus
is enough to show that it is projective over Ep. For this, observe that every subgroup
of Anp is Ap-generated whenever n < ω since Ap is finite. By Ulmer’s Theorem [17],
Ap is a flat Ep-module. Since Ep is finite, every finite flat Ep-module is projective.

Furthermore, Tor1E(A)(M,A/tA) is torsion-free divisible, and fits into the induced

exact sequence 0 = Tor1E(A)(M, tA) → Tor1E(A)(M,A) → Tor1E(A)(M,A/tA)
∆→

M ⊗E(A) tA, in which M ⊗E(A) tA is a torsion group with bounded p-components.
Thus, Im∆ = 0, and Tor1E(A)(M,A) ∼= Tor1E(A)(M,A/tA) is torsion-free divisible.
If the additive group of M is torsion, then so is Tor1E(A)(M,−). By what has been
shown, Tor1E(A)(M,A) = 0.

b) Let G be a reduced A-generated torsion group. It remains to show that θG is
one-to-one. Consider an exact sequence

⊕
I A → Gp → 0. Since Hom(Ap, Gp) = 0,

the group Gp is an epimorphic image of
⊕

I Ap. If kp < ω is minimal with pkpAp = 0,
then A has a direct summand Up isomorphic to �/pkp� and pkpG = 0. Therefore,
we can find a monomorphism α : Gp →

⊕
Ip
Up for some index-set Ip. Consequently,

G is isomorphic to a subgroup of the A-projective torsion group P =
⊕

p

[⊕
Ip
Up

]
.

Observe that HA(P ) ∼=
⊕

p

[⊕
Ip
HA(Up)

]
since A is self-small. Thus, HA(P ) is

torsion and Tor1E(A)(HA(P )/HA(G), A) = 0 by a). Therefore, the commutative
diagram

0 −−−−→ TAHA(G) −−−−→ TAHA(P )�θG �
�θP

0 −−−−→ G −−−−→ P

has exact rows, from which it follows that θG is one-to-one.

If G ∈ G is A-generated, then every cyclic summand of Gp is isomorphic to a
subgroup of Ap by what has been established. The statement follows once we have
shown that there exists m < ω such that Gp is the direct sum of at most m cyclic
groups. To see this, observe that, for all but finitely many primes, Gp is generated
by at most n elements where n = r0(G). But then, Gp cannot be the direct sum
of more than n non-zero cyclic subgroups. Since Gp is finite for all primes, the last
statement in b) follows. �

In the following, the A-radical of a group G is denoted by RA(G) =
⋂{
kerϕ |

ϕ ∈ Hom(G,A)
}
. Clearly, RA(G) = 0 if and only if G ⊆ AI for some index-set I.
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Theorem 2.2. Let A ∈ G.
a) The following conditions are equivalent for an A-generated group G:

i) G is reduced.
ii) ker θG is torsion-free divisible, and � 	⊆ G.
iii) RA(G) = 0.
iv) � 	⊆ G; and if pkAp = 0 for some k < ω, then pkGp = 0.

b) A reduced A-generated group G is finitely A-generated if and only if G ∈ G.
c) Let G be a reduced A-generated group which has finite torsion-free rank. Then,

G contains a finitely A-generated subgroup H such that ker θH ∼= ker θG and
G = H + tG. In particular, G/H is A-solvable.

�����. For the sake of an easier reference, we first show that every reduced
A-generated group G is in Γ: Observe that G/tG is an epimorphic image of

⊕
I A for

some index-set I. Under this isomorphism,
⊕

I tA is mapped to zero. Hence G/tG
is divisible as an epimorphic image of the divisible group

⊕
I A/tA.

Let kp be the smallest positive integer such that pkpAp = 0. If pkpGp 	= 0, then G
has a direct summand U ∼= �/pn� for some integer n > kp because Gp is reduced.
Since U is A-generated, there is an epimorphism ϕ : A → U whose kernel contains
pnA. If we write A = Ap⊕Ap with Ap is p-divisible and A[p] = 0, then n > kp yields
pnA = Ap, and A/pnA is bounded by pkp . Hence, U cannot be an image of A, a
contradiction. Therefore,Gp is a bounded direct summand ofG, andG ∈ Γ. Further-
more, tG is A-generated. We now prove the equivalences in part a) of the theorem:
iv)⇒ ii): Since G has to be reduced, G ∈ Γ, and tG is an A-solvable group such

that HA(tG) ∼=
⊕

pHA(Gp) is torsion (Lemma 2.1). The fact that HA(G)/HA(tG)
is isomorphic to a subgroup of the torsion-free divisible group HA(G/tG) yields
tHA(G) = HA(tG). On the other hand, if we view G as a pure subgroup of

∏
pGp,

thenHA(G) is a pure subgroup ofHA

(∏
pGp

)
, and the torsion subgroup of the latter

group is HA(tG) too. Consequently, the right E(A)-module M = HA(G)/HA(tG)
has a torsion-free divisible additive group. Consider the commutative diagram

0 −−−−→ ker θG
λ−−−−→ ker θ −−−−→ 0

�τ
��

TAHA(tG)
TAHA(α)−−−−−−−−→ TAHA(G)

TAHA(β)−−−−−−−−→ TA(M) −−−−→ 0

�
�θtG

�θG

�θ

0 −−−−→ tG
α−−−−→ G

β−−−−→ G/tG −−−−→ 0
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where λ is onto by the Snake-Lemma. Since TA(M) and G/tG are torsion-free
divisible, ker θG ∼= ker θ is torsion-free divisible.
ii) ⇒ i): Observe that G is isomorphic to a direct summand of the group H =

TAHA(G). Any free resolution of HA(G) induces an exact sequence 0 → U
α→

⊕
I A

β→ H → 0 with SA(U) = U . Let p be a prime of �. For x ∈ Hp, we can
find y ∈ ⊕

I A with β(y) = x. If pmx = 0, then there are a1, . . . , an ∈ A and
ϕ1, . . . , ϕn ∈ HA(U) with pmy =

∑n
i=1 αϕi(ai). Since A/tA is divisible, we can find

b1, . . . , bn ∈ tA and c1, . . . , cn ∈ A with ai = pmci+bi. Thus pm
[
y−∑n

i=1 αϕi(ci)
]
=∑n

i=1 αϕi(bi) ∈
⊕

I tA. Write o
(
y−∑n

i=1 αϕi(ci)
)
= ptq where t � kp and (p, q) = 1.

Then, ptqx = β
(
ptq

(
y−∑n

i=1 αϕi(ci)
))
= 0. Since x ∈ Hp, we obtain ptx = 0. Thus,

Hp is bounded by pkp, and Gp is reduced.

i)⇒ iii): Since Gp is bounded by pkp, we have Gp ⊆
∏
Ip
Ap for some index-set Ip.

But G ∈ Γ implies G ⊆ ∏
pGp.

iii)⇒ iv) follows directly from the initial remarks of the proof.
b) Let G be a reduced A-generated group. If G admits an exact sequence An →

G → 0, then r0(G) < ∞. Using the arguments in the initial part of the proof of
a), we obtain that G ∈ Γ∞, tG is A-generated, and |Gp| < ∞ for all p. It remains
to show that Hom(G, tG) is torsion. For this, observe that there is an induced
exact sequence 0 → Hom(G, tG) → ⊕

nHA(tG), in which HA(tG) is torsion by
Lemma 2.1b. Conversely, assume that G is an A-generated group in G. We can
find n < ω and a map α : An → G such that G/α(An) is torsion. We show that
G = tG + α(An). For this observe that

[
tG + α(An)

]
/tG ∼= α(An)/

[
tG ∩ α(An)

]

is a torsion-free image of An, and hence an image of the divisible group An/tAn.
Therefore,

[
tG+ α(An)

]
/tG is a direct summand of the torsion-free divisible group

G/tG. Since G/
[
tG+ α(An)

]
is torsion, we have G = tG+ α(An).

Consider the exact sequence 0→ α(An)→ G→ T → 0 for some torsion group T .
Since T ∼=

[
tG+ α(An)

]
/α(An) ∼= tG/

[
tG ∩ α(An)

]
, we have that Tp is finite for all

p. Moreover, G[p] = 0 implies T [p] = 0. If T [p] 	= 0 for all primes p in an infinite set
P1 of primes, then Hom(T, tG) ⊇

∏
P1
Hom(Tp, Gp), which cannot be torsion since

Tp and Gp are non-zero finite p-groups for p ∈ P1. On the other hand, the exact
sequence 0 → Hom(T, tG) → Hom(G, tG) shows that this group is torsion. The
resulting contradiction establishes that T is finite, from which it immediately follows
that G is finitely A-generated.

c) There is nothing to show if G is torsion. Thus, we may assume that G contains a
non-empty independent subset X = {x1, . . . , xn} such that 〈X〉 is free and G/〈X〉 is
torsion. Since we can viewG as a pure subgroup of

∏
pGp, we setXp = 〈x1p, . . . , xnp〉

for each prime p. The inclusions Xp ⊆ Gp coordinatewise induce a monomorphism
λ :

∏
pXp →

∏
pGp. Clearly, λ operates like the identity on

⊕
pXp and satisfies

λ(xi) = xi for all i. Observe that x1, . . . , xn generate a free subgroup of
∏
pXp.
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We set tH =
⊕

pXp, and let H be the subgroup of
∏
pXp containing tH such

that H/tH =
⊕n

i=1 �(xi + tH). By definition, H ∈ G. For h ∈ H , we can find
r1, . . . , rn ∈ � and y ∈ tH such that mh = r1x1 + . . . + rnxn + y for some non-
zero integer m. Then, mλ(h) ∈ G since tH ⊆ tG. Since

(∏
pGp

)
/G is torsion-

free, we have λ(h) ∈ G. We shall identify H with its image under λ in G. Since
x1, . . . , xn ∈ H + tG, we have that G/(H + tG) is torsion. On the other hand,
(H + tG)/tG ∼= H/(H ∩ tG) = H/tH is torsion-free divisible. Thus, (H + tG)/tG is
a direct summand of the torsion-free group G/tG whose complement is isomorphic
to G/(H + tG). By what has been shown, this is only possible if G = H + tG. In
particular, G/H = (H + tG)/H ∼= tG/tH is a reduced A-generated torsion group
which is A-solvable by Lemma 2.1b.

In the exact sequence 0 → HA(H) → HA(G) → M → 0, the additive group of
M is torsion as a subgroup of HA(G/H) by Lemma 2.1b. Because of Lemma 2.1a,
Tor1E(A)(M,A) = 0, and the top-row of the diagram

0 −−−−→ TAHA(H) −−−−→ TAHA(G) −−−−→ TA(M) −−−−→ 0
�θH

�θG

�θ

0 −−−−→ H −−−−→ G −−−−→ G/H −−−−→ 0

is exact. The induced map θ satisfies θ = θG/HTA(ι) where ι : M → HA(G/H) is
the inclusion map. Observe that TA(ι) is one-to-one by Lemma 2.1a, from which we
obtain that θ is an isomorphism. By the Snake-Lemma, θH is an epimorphism, and
ker θH ∼= ker θG. �

Corollary 2.3. The class of reduced A-solvable groups is closed with respect to
direct sums whenever A ∈ G.

�����. Let {Gi}i∈I be a family of reduced A-solvable groups. Suppose ϕ ∈
HA

(⊕
I Gi

)
satisfies πiϕ 	= 0 for infinitely many i ∈ I where πj :

⊕
i∈I Gi → Gj

denotes the projection onto the jth−coordinate. For each such i, there is a map
αi : Gi → A with αiπiϕ 	= 0 by Theorem 2.2a. Coordinatewise, the maps αi induce
a map α :

⊕
I Gi →

⊕
I A. If δi :

⊕
I A → A denotes the projection onto the ith-

coordinate, then δiαϕ = αiϕ is non-zero for infinitely many i, which contradicts the
fact that the groups in G are self-small [3]. Thus, {Gi}i∈I is A-small. Since the class
of A-solvable groups is closed with respect to A-small direct sums by [2], the proof
is complete. �

Furthermore, Theorem 2.2 allows to answer the question for which groups A there
may exist A-solvable groups G with RA(G) 	= 0:
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Corollary 2.4. Let A be a self-small abelian group of finite torsion-free rank such
that A/tA is a faithfully flat E(A)/tE(A)-module. Then, there exists a reduced A-
solvable group G with RA(G) 	= 0 if and only if A is torsion-free and reduced.

�����. Suppose that there exists a reducedA-solvable groupG with RA(G) 	= 0.
By Theorem 2.2 together with [3], we obtain that A is either torsion or torsion-free.
In the first case, the group A has to be finite, and every A-solvable group has a zero
A-radical, which is not possible. In the second case, it remains to show that A is
reduced. If � ⊆ A, then every torsion-free A-generated group is A-solvable as in [1].
But this yields that A is homogeneous completely decomposable by [1]. Therefore,
A ∼= �n , and all A-solvable groups are A-projective. On the other hand, if A is
torsion-free reduced, then there exists a right E(A)-module M which is ℵ1-free and
has E(A) as its �-endomorphism-ring using the construction of [9] (e.g. see [2]). Let
G = TA(M). Once we have shown that G is A-solvable, it will follow as in [2] that
E(G) = Center

(
E(A)

)
and Hom(G,A) = 0. The A-solvability of G, however, follows

from the fact that, for ϕ1, . . . , ϕk ∈ HA(G), there is a free submodule U of M with∑k
i=1 ϕi(A) ⊆ TA(U). �

3. GA-presented Abelian groups

A sequence 0 → B
α→ C

β→ G → 0 of abelian groups is almost A-balanced if
M = HA(G)/ ImHA(β) is torsion.

Lemma 3.1. Let A ∈ G and 0 → B → C
π→ G → 0 be an almost A-balanced

sequence in which C A-solvable and G ∈ G. Then, G is A-solvable if and only if B
is A-generated.

�����. By [1, Lemma 2.1], M = ImHA(π) fits into an exact sequence

TAHA(B)
θB→ B → TA(M)

θ→ G → 0, and it is enough to show that G is A-
solvable iff θ is a monomorphism. If ι : M → HA(G) denotes the inclusion map,
then θ = θGTA(ι) and coker ι is torsion as an abelian group. Moreover, kerTA(ι) = 0
as an epimorphic image of Tor1E(A)(HA(G)/M,A) which vanishes by Lemma 2.1a.
Clearly, this gives that θ is one-to-one if G is A-solvable. Conversely, assume that
θ is a monomorphism. For x ∈ ImTA(ι) ∩ ker θG, there is y ∈ TA(M) such that
x = TA(ι)(y). Then, θ(y) = θGTA(ι)(y) = 0 yields x = 0. Therefore, ker θG is
isomorphic to a subgroup of the torsion group cokerTA(ι) ∼= TA(coker ι) which
results in a contradiction unless G is A-solvable since ker θG is torsion-free divisible
by Theorem 2.2. �
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Theorem 3.2. Let A ∈ G. The following conditions are equivalent for a reduced
abelian group G:
a) G is a finitely A-generated A-solvable group.
b) G is an A-solvable group in G.
c) G admits an almost A-balanced sequence 0 → U

α→ An
β→ G → 0 such that U

is A-generated.

Moreover, the sequence in c) can be chosen in such a way that

TA(HA(G))/ ImHA(β) = 0.

�����. The equivalence of a) and b) is an immediate consequence of Theo-
rem 2.2a. Moreover, a reduced finitely A-generated group is in G by Theorem 2.2b.
By Lemma 3.1, the implication c)⇒ b) is true.
b) ⇒ c): Since G has finite torsion-free rank, we can choose a finite independent

subset X = {x1, . . . , xn} of G such that 〈X〉 is free and G/〈X〉 is torsion. Because
G ∈ G, we have Gp = 〈x1p, . . . , xnp〉 for almost all primes p of �. There are maps
ϕ1, . . . , ϕm ∈ HA(G) such that X ⊆ ϕ1(A) + . . . + ϕm(A). We write A = Ap ⊕ Ap

and G = Gp ⊕Gp for each prime p such that Ap and Gp are fully invariant. There
are a1p, . . . , amp ∈ Ap and b1p, . . . , bmp ∈ Ap such that xi =

∑m
j=1 ϕj(ajp + bjp).

Since Hom(Ap, Gp) = 0 = Hom(Ap, Gp), we have xip =
∑m
j=1 ϕj(ajp); and Gp ⊆

ϕ1(A) + . . . + ϕm(A) for all but finitely many primes p. By adding finitely many
maps to {ϕ1, . . . , ϕm} if necessary, we may assume that tG ⊆ ϕ1(A) + . . .+ ϕm(A)
and G/

[
ϕ1(A) + . . . + ϕm(A)

]
is torsion. Since HA(G) has finite torsion-free rank,

no generality is lost if we assume thatM = 〈ϕ1, . . . , ϕm〉 has the additional property
that HA(G)/M is torsion as an abelian group.
We define a map θ : TA(M) → G by θ(α ⊗ a) = α(a), and observe θ = θGTA(ι)

where ι : M → HA(G) is the inclusion map. Since θG is an isomorphism and
kerTA(ι) = 0 as an image of Tor

1
E(A)

(
HA(G)/M,A

)
which vanishes by Lemma 2.1,

θ is one-to-one. Furthermore, Im θ = ϕ1(A) + . . .+ ϕm(A) yields that cokerTA(ι) ∼=
G/ Im θ ∼= (G/tG)/(Im θ/tG) is torsion and divisible. In particular, (G/ Im θ)p
either vanishes or is unbounded. On the other hand, since M and HA(G) are
E(A)-modules, the same holds for (coker ι)p. However, the E(A)-module-structure
of the latter module is completely determined by its Ep-module-structure. Since
Ep is finite, (coker ι)p is bounded, and cokerTA(ι) ∼= TA(coker ι) has bounded
p-components. This is only possible if cokerTA(ι) = 0. Therefore, TA(ι) is an
isomorphism, and the same holds for θ.
Choose a projective resolution 0 → V

λ→ E(A)m
π→ M → 0 of M . Since

U = kerTA(π) = ImTA(λ) is A-generated, it remains to show that 0 → U →
TA

(
E(A)m

) TA(π)−→ TA(M) → 0 is almost A-balanced. An application of the functor
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HA yields the diagram

HATA
(
E(A)m

)
−−−−−−−−→
HATA(π)

HATA(M)

�

ϕE(A)m


ϕM

E(A)m −−−−→
π

M −−−−→ 0.

It gives Im
(
HATA(π)

)
= ImϕM , and the proof is complete once we have shown that

ϕM has a torsion cokernel. For this, we consider the commutative diagram

0 −−−−→ HATA(M) −−−−−−−→
HATA(ι)

HATAHA(G) −−−−→ 0 −−−−→ 0

ϕM �


ϕHA(G)


ϕ

0 −−−−→ M −−−−→
ι

HA(G) −−−−→ coker ι −−−−→ 0

whose first row is exact since TA(ι) is an isomorphism. By the Snake-Lemma,
cokerϕM ∼= kerϕ = coker ι. As we have shown before coker ι is torsion as abelian
group. �

We say that an A-generated group G ∈ G is GA-presented if there exists an almost
A-balanced exact sequence 0 → U → An → G → 0 in which U is A-generated and
in G. By Lemma 3.1, any GA-presented group is A-solvable.

Proposition 3.3. For a group A ∈ G, the class of GA-presented groups is closed
with respect to direct summands.

�����. Let G = B ⊕C be a GA-presented group. Choose an almost A-balanced
exact sequence 0 → U

α→ An
β→ G → 0 with U ∈ G, and let πB : G → B be the

projection along C. We consider the induced exact sequence (E) 0 → V
λ→ An

πBβ−→
B → 0 in which λ is the inclusion-map. If ϕ ∈ HA(B), then there is γ ∈ HA(G) with
ϕ = πBγ = HA(πB)(γ). We can find a non-zero integer m and a map δ ∈ HA(An)
with mγ = HA(β)(δ). Therefore, mϕ = HA(πB)(mγ) = HA(πBβ)(δ), and (E) is
almost A-balanced. Furthermore, B is A-solvable and in G as a direct summand of
an A-solvable group in G. If M = ImHA(πBβ) ⊆ HA(B), then the evaluation map
θ : TA(M) → B satisfies θ = θBTA(ι) where ι : M → HA(B) is the inclusion map.
Since coker ι is torsion, we have that TA(ι) is a monomorphism, and the same holds
for θ. By [1, Lemma 2.1], coker θV ∼= ker θ = 0. Therefore, V is an A-generated
subgroup of An, and it remains to show that V ∈ G. Since V ∈ Γ∞ as in the proof
of Theorem 2.2, it suffices to establish that Hom(V, tV ) is torsion:

Observe that C = β(V ) and fits into the exact sequence 0 → U
α→ V

β|V−→ C → 0
in which U and C are A-generated groups in G. By Theorem 2.2, U and C are
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finitely A-generated. In particular, Hom(U, tA) and Hom(C, tA) are torsion. Since
V ⊆ An, we have Hom(V, tV ) ⊆ ⊕

nHom(V, tA). But Hom(V, tA) fits into the exact
sequence 0→ Hom(C, tA)→ Hom(V, tA)→ Hom(U, tA) in which the first and third
Hom-group are torsion. �

Corollary 3.4. Let A be in G. The following conditions are equivalent for a
reduced abelian group G:

a) G is an A-solvable group in G.
b) There exists an almost A-balanced exact sequence 0 → T → H → G → 0 in
which H is GA-presented and T is a reduced A-generated torsion group.

�����. b)⇒ a): Since GA-presented groups are finitely A-generated, G is in G
by Theorem 2.2b as a reduced finitely A-generated group. Because T is A-solvable,
G is A-solvable by Theorem 3.2.

a)⇒ b): Since G is A-solvable, we can find an almost A-balanced exact sequence
0 → U

α→ An
β→ G → 0 in which U is A-generated and α is an inclusion map.

By Theorem 2.2c, there exists an A-generated subgroup V of U with V ∈ G and
U = V + tU . We consider the induced sequence (E) 0 → U/V

α→ An/V
β→ G → 0.

Observe that U/V ∼= tU/tV is a reduced A-generated torsion-group which is A-
solvable.

Let π1 : U → U/V and π2 : An → An/V be the canonical projections. Since
π2α = απ1 and βπ2 = β, we obtain the commutative diagram

0 −−−−→ HA(U) −−−−−−→
HA(α)

HA(An) −−−−−−→
HA(β)

HA(G)
�HA(π1)

�HA(π2)

�1HA(G)

0 −−−−→ HA(U/V ) −−−−−−→
HA(α)

HA(An/V ) −−−−−−→
HA(β)

HA(G).

Given x ∈ HA(G), there is a non-zero integer m such that mx = HA(β)(y) for
some y ∈ HA(An). Then, mx = HA(β)HA(π2)(y), and (E) is almost A-balanced.
Set M = ImHA(β), and let ι : M → HA(G) be the inclusion map. Since coker ι is
torsion and the evaluation map θ : TA(M)→ G satisfies θ = θGTA(ι), the map TA(ι)
is a monomorphism, and the same holds for θ. The map θ fits into the commutative
diagram

TAHA(U/V ) −−−−→ TAHA(An/V ) −−−−→ TA(M) −−−−→ 0

�
�θU/V

�θAn/V

�θ

0 −−−−→ U/V −−−−→ An/V −−−−→ G −−−−→ 0
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It follows that θAn/V is an isomorphism. In particular, An/V is reduced by Theorem
2.2a. An application of Theorem 2.2b gives An/V ∈ G.
It remains to show that 0→ V → An

π2→ An/V → 0 is almost A-balanced. Given
ϕ ∈ HA(An/V ), there is a non-zero integer � such that HA(β)(�ϕ) = HA(β)(ψ) =
HA(β)HA(π2)(ψ) for some ψ ∈ HA(An). Thus, �ϕ−HA(π2)(ψ) ∈ HA(α)

(
HA(U/V )

)

which is a torsion group by Lemma 2.1b. Hence, k�ϕ ∈ ImHA(π2) for some non-zero
integer k. �

Looking at the almost A-balanced sequences of the form .
β→ . → 0 con-

structed in Theorem 3.2 and Corollary 3.4, we see that N = cokerHA(β) al-
ways satisfies TA(N) = 0. Since N is torsion, we obtain the exact sequence
0 = Tor1E(A)(N,A/tA) → N ⊗E(A) tA → TA(N) = 0. It yields Np ⊗Ep Ap

∼=
Np ⊗E(A) Ap = 0 for all primes p. Since Ap is homogeneous if and only if it is
faithfully flat as an Ep-module [3], we have N = 0 if Ap is homogeneous for all
primes p. We thus have shown:

Corollary 3.5. Let A ∈ G have homogeneous p-components for all primes p, and
suppose that G ∈ G is A-solvable.
a) There exists an A-balanced exact sequence 0 → U → An → G → 0 with

SA(U) = U . Moreover, G is GA-presented if and only if the sequence can be
chosen such that U ∈ G.

b) There exists an A-balanced exact sequence 0 → T → H → G → 0 in which T
is a torsion A-solvable group and H is GA-presented.

4. Direct sum decompositions of GA-presented groups

In the following, projection modulo the torsion subgroup of a given abelian
group will be indicated by an overscore. This section investigates how the exis-
tence of non-trivial direct sum decompositions of the right E(A)/tE(A)-module
HA(G) is related to decompositions of the A-solvable group G. Observe that the
E(A)/tE(A)-module structure of M coincides with its E(A)-module structure for
any right E(A)-module M .

Proposition 4.1. Let A ∈ G, and G be an A-solvable group in G. If HA(G) is
an indecomposable E(A)/tE(A)-module, then G is essentially indecomposable.

�����. There is nothing to show if G is torsion. Hence, suppose that G is
an honest mixed group. If it is not essentially indecomposable, then there exists
an idempotent e ∈ E(G) such that e, 1 − e 	∈ tE(G). Since G is A-solvable, we
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have E(G) ∼= EndE(A)(HA(G)) as has been shown in [2, Theorem 4.4]. Let f be
the idempotent corresponding to e under this isomorphism. Clearly, f induces an
idempotent endomorphism f : HA(G) → HA(G) by f(x) = f(x). Since HA(G)
is indecomposable as an E(A)/tE(A)-module, its endomorphism ring has no non-
trivial idempotents. Without loss of generality, we have f = 0. Thus, f : HA(G)→
tHA(G). However, tHA(G) = HA(tG) by Lemma 2.1 since G ∈ G. We view TA(f) as
a map from TAHA(G) into TAHA(tG). Since tG and G are A-solvable, θtGTA(f)θ

−1
G

is an element of the torsion group Hom(G, tG). We obtain thatmTA(f) = 0 for some
non-zero integer m. Observe that HATA(f)ϕHA(G) = ϕHA(tG)f yields ϕHA(tG)mf =
0. Since tG is A-solvable by Lemma 2.1b, we have that ϕHA(tG) is an isomorphism.
Hence, mf = 0, which is not possible by the choice of f . �

We now show that the converse of this result is true if G is GA-presented.

Theorem 4.2. Let A ∈ G. A GA-presented group G is essentially indecomposable
if and only if HA(G) is an indecomposable E(A)/tE(A)-module.

�����. As before, it is enough to consider the case that G is an honest mixed

group. Assume that G is essentially indecomposable. Let 0 → U
α→ An

β→ G → 0
be an almost A-balanced exact sequence where U ∈ G is A-generated. It induces the
exact sequence 0 → HA(U)

HA(α)→ HA(An)
HA(β)→ M → 0 in which M = ImHA(β)

is a submodule of HA(G) with HA(G)/M torsion. Observe that G ∼= TA(M) by
[1, Lemma 2.1]. Moreover, K = HA(G)/

[
M + tHA(G)

]
is torsion as an abelian

group and fits into the exact sequence 0 → M/tM → HA(G)/tHA(G) → K → 0
because of (M + tHA(G))/tHA(G) ∼=M/

(
M ∩ tHA(G)

)
=M/tM . SinceM/tM and

HA(G)/tHA(G) are torsion-free divisible, the same has to hold for K. Therefore,
K = 0, and M ∼= HA(G). Once we have shown that
(I) if ϕ : M → M is an E(A)/tE(A)-morphism, then there is a map τ : M → M

such that ϕ(x) = τ(x) for all x ∈M , and
(II) if τ ∈ EndE(A)(M) satisfies τ(x) = 0 for all x ∈M , then τ ∈ tE(A),
then the theorem is shown as follows:
Let π : M →M be an E(A)-morphism with π2 = π. There is a map λ : M →M

with λ(x) = π(x) for all x ∈ M by (I). Since λ2(x) = π
(
λ(x)

)
= π2(x) = π(x), we

have kλ2 = kλ for some non-zero integer k using (II). Let P be the set of primes
dividing k, and write A = A1 ⊕ A2 with A1 =

⊕
q∈P Aq and Hom(Ai, Aj) = 0 if

i 	= j. Then, E(A) = E(A1)×E(A2), andM =M1⊕M2 such thatMiE(Aj) = 0 for
i 	= j. In particular,M1 is bounded, and λ(Mi) ⊆Mi for i = 1, 2. Therefore, λ|M2 is
an idempotent of EndE(A)(M2). Write M2 = λ(M2)⊕ (1−λ)(M2), and observe G ∼=
TA(M) = TA

(
M1⊕(1−λ)(M2)

)
⊕TA

(
λ(M2)

)
. Since G is essentially indecomposable,

we have that one of the modules TA
(
λ(M2)

)
or TA

(
M1 ⊕ (1 − λ)(M2)

)
is bounded.
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In the first case, HATA
(
λ(M2)

)
is bounded as an abelian group. The commutative

diagram
HATA

(
λ(M2)

)
−−−−→ HATAHA(G)
ϕλ(M2) �


ϕHA(G)

0 −−−−→ λ(M2) −−−−→ HA(G)

yields that λ(M2) is isomorphic to a subgroup of the bounded group HATA
(
λ(M2)

)
.

Consequently, λ(M) = λ(M1) ⊕ λ(M2) is bounded, and π = λ = 0. On the other
hand, if TA

(
M1 ⊕ (1− λ)(M2)

)
is bounded, then the same argument as before gives

that M1 ⊕ (1− λ)(M2) is bounded, from which we obtain that 0 = 1− λ = 1− λ =
1− π. In either case, M is indecomposable.

In order to verify the two statements, we first show that Hom(TAHA(U), TA(tM))
is torsion: For this, observe that TA(tM) is A-generated and has bounded p-
components for each prime p because Mp is an Ep-module, and Ep is finite. By
Lemma 2.1b, TA(tM) is A-solvable, and 0→ TA(tM)→ TA(M)→ TA(M/tM)→ 0
is exact. Moreover, M/tM is torsion-free and divisible implies that TA(tM) =
tTA(M) ∼= tG. Since G is A-solvable and in G, we have that tG is isomorphic to
a subgroup of tAm for some m < ω by Lemma 2.1b. By Theorem 2.2a, ker θU
is torsion-free and divisible, and TAHA(U) ∼= U ⊕ ⊕

k � for some k < ω. There-
fore, Hom

(
TAHA(U), TA(tM)

) ∼= Hom(U, tG) which is isomorphic to a subgroup
of Hom(U, tAm). The latter group is torsion, since U ∈ G implies that there is
an epimorphism As → U → 0 for some s < ω which induces a monomorphism
0→ Hom(U, tAm)→ Hom(As, tAm).
We view ϕ as a map M →M , and can find a map ψ : HA(An)→M making the

diagram

0 −−−−→ HA(U) −−−−−−→
HA(α)

HA(An) −−−−−−→
HA(β)

M −−−−→ 0
�ψ

�ϕ

0 −−−−→ tM −−−−→ M −−−−→
δ

M −−−−→ 0

commutative in which δ denotes the canonical projection. An easy diagram
chase shows that ψHA(α) ∈ HomE(A)

(
HA(U), tM

)
and, hence, TA(ψ)TAHA(α) :

TAHA(U) → TA(tM). By the result of the previous paragraph, there is a
non-zero integer r such that rTA(ψ)TAHA(α) = 0. Because rϕtMψHA(α) =
HATA

(
rψHA(α)

)
ϕHA(U) = 0, we have ϕtMrψHA(α) = 0. But ϕtM is one-to-one:

To see this, observe that tM ⊆ HA(G) and that ϕHA(G) is an isomorphism such that
ϕHA(G)ι = HATA(ι)ϕtM where ι : tM → HA(G) is the inclusion map. Therefore,
rψHA(α) = 0.
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We can write E(A) = R1 × R2 where R1 is finite and multiplication by r is an
automorphism of R2. Given an E(A)-module N , this ring-decomposition yields a cor-
responding decomposition N = N1⊕N2 such that NiRj = 0 for i 	= j. In particular,
multiplication by r is an automorphism of N2. Therefore, rψHA(α)

(
HA(U)2

)
= 0

yields ψHA(α)(HA(U)2) = 0.

We now define τ : Write x ∈ HA(An) as x = x1+x2 with xi ∈ HA(An)i, and define
a map ν : HA(An) → M by ν(x) = ψ(x2). Since HA(α)

(
HA(U)1

)
⊆ HA(An)1 ⊆

ker ν, we have HA(α)
(
HA(U)

)
⊆ ker ν, and ν induces a map τ : M → M in the

following way: For x ∈ M , choose y ∈ HA(An) with HA(β)(y) = x, and define
τ(x) = ν(y). Write x = x1 + x2 and y = y1 + y2, and obtain δτ(x) = δν(y) =
δψ(y2) = ϕHA(β)(y2) = ϕ(x2). Since x1 ∈ M1 ⊆ tM , we have ϕ(x1) = 0, and τ is
the desired map.

Moreover, if � : M →M is a map with �(x) = 0 for all x ∈M , then �(M) ⊆ tM .
However, this yields that TA(�) is an element of Hom

(
TA(M), tTA(M)

)
which is

isomorphic to the torsion group Hom(G, tG). Since ϕtM� = HATA(�)ϕM is torsion,
we obtain as before that � has finite order. �

Corollary 4.3. Let A ∈ G and G ∈ G be an A-solvable group. If 0 → T →
H

π→ G → 0 is an almost A-balanced exact sequence in which T an A-solvable
torsion group and H is an essentially indecomposable GA-presented group, then G is
essentially indecomposable.

�����. Let M = ImHA(π). Since HA(G)/M and HA(T ) are torsion, we have
r0(HA(H)) = r0(M) = r0(HA(G)) < ∞. Thus, HA(H) ∼= M ∼= HA(G). By the
last theorem, HA(H) is indecomposable, and hence the same holds for HA(G), from
which it follows that G is essentially indecomposable by Proposition 4.1. �

Corollary 4.4. The following conditions are equivalent for an abelian group
A ∈ G:
a) A is essentially indecomposable.

b) A is indecomposable in Walk.

c) E(A)/tE(A) is local.

�����. To see that a) and c) are equivalent, observe that the fact that A is
GA-presented yields that A is essentially indecomposable if and only if E(A)/tE(A)
is an indecomposable E(A)/tE(A)-module. However, an Artinian ring without non-
trivial idempotents is local.

For the equivalence of b) and c), observe that Hom(A, tA) = tE(A). Hence, the
Walk-endomorphism ring EW (A) of A coincides with E(A)/tE(A), and nothing is
to prove. �
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5. An Azumaya theorem for groups in G

Our first step toward showing that the class of G-decomposable groups is closed
with respect to direct summands is the verification of the fact that there is a Krull-
Schmitt-Theorem for the groups in G.

Lemma 5.1. Let A ∈ G. If {e1, . . . , en} is a family of orthogonal idempotents
of E(A)/tE(A), then there are orthogonal idempotents e1, . . . , en ∈ E(A) with ei =
ei + tE(A) for i = 1, . . . , n.

�����. Write e1 = f1 + tE(A) for some f1 ∈ E(A). Then, f21 − f1 ∈⊕
p∈P1 E(Ap) for some finite subset P1 of the set P of all primes. As rings, E(A) =(
×p∈P1E(Ap)

)
× S for some subring S of E(A). There is a central idempotent g1 ∈

E(A) with E(A)g1 = ×p∈P1E(Ap). Since E(Ap) is torsion, and (1−g1)(f21 −f1) = 0,
we have that (1−g1)f1 is an idempotent of E(A) with e1 = f1+tE(A) = (1−g1)f1+
tE(A). Hence, we can find a finite subset P1 of P and an idempotent e1 of E(A)
with e1 = e1 + tE(A) and e1

(⊕
p∈P1 Ap

)
= 0.

Assume that we have found finite subsets P1 ⊆ . . . ⊆ Pn of P and orthogonal
idempotents e1, . . . , en of E(A) with ei = ei + tE(A) and ei

(⊕
p∈Pi

Ap
)
= 0. If

n < m, then we choose fn+1 ∈ E(A) with en+1 = fn+1 + tE(A). As before, we can
find a finite subset Qn+1 ⊇ Pn of P and a central idempotent g̃n+1 ∈ E(A) such that
(1− g̃n+1)

(⊕
p∈Qn+1

Ap
)
= 0 and hn+1 = (1− g̃n+1)fn+1 is an idempotent of E(A)

with en+1 = hn+1 + tE(A). Since eien+1 = en+1ei = 0, we can enlarge Qn+1 to a
finite subset Pn+1 of P such that eihn+1, hn+1ei ∈

⊕
p∈Pn+1

E(Ap) for i = 1, . . . , n.
If we choose a central idempotent gn+1 in E(A) with E(A)gn+1 = ×p∈Pn+1E(Ap),
then en+1 = (1− gn+1)hn+1 is an idempotent of E(A) with the desired properties.

�

If A is essentially indecomposable and T is a bounded abelian group, then A⊕ T

is essentially indecomposable. To see this, write A⊕ T = B ⊕ C, and let P1 be the
set of those primes p for which T [p] 	= 0. Since A ∈ G, we can write A = D⊕E with
E bounded and Hom(D,T ⊕ E) = Hom(E ⊕ T,D) = 0. We have B = B1 ⊕ T1 and
C = C1 ⊕ T2 with B1, C1 ⊆ D and T1, T2 ⊆ E ⊕ T . Hence, A = B1 ⊕ C1 ⊕ S for
some bounded group S. Since A is essentially indecomposable, B1 or C1 is bounded.
This shows that A⊕ T is essentially indecomposable.

Theorem 5.2. Let A ∈ G.
a) There are essentially indecomposable subgroups A1, . . . , An of A with A = A1⊕

. . .⊕An.

b) If A = A1⊕. . .⊕An = B1⊕. . .⊕Bm with Ai and Bj essentially indecomposable
for all i and j, then n = m and, after reindexing, there are bounded groups
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C1, . . . , Cn and D1, . . . , Dn with Ai ⊕ Ci = Bi ⊕Di. Moreover, if 1 � k � n,

then A = B1⊕ . . .⊕Bk⊕A′
l+1⊕ . . .⊕A′

n⊕T where Aj = A′
j ⊕Sj for bounded

groups T , S1, . . . , Sn.

�����. a) Since E(A)/tE(A) is a finite dimensional �-algebra, we can find
a finite set {e1, . . . , en} of orthogonal primitive idempotents of E(A)/tE(A) with
1A = e1+. . .+en. By Lemma 5.1, each ei is of the form ei = ei+tE(A) for orthogonal
idempotents e1, . . . , en of E(A). Setting e = e1 + . . . + en yields a decomposition
A = e1(A)⊕ . . .⊕ en(A)⊕ (1− e)(A). We set Ai = ei(A) and T = (1− e)(A). Since
(1− e) ∈ tE(A), we have mT = 0 for some non-zero integer m. Once we have shown
that the A′

is are essentially indecomposable, A1⊕T is essentially indecomposable by
the preceding remarks; and we have a decomposition of A as in a). By Theorem 4.2,
it is enough to show that HA(Ai) is indecomposable:

Since E(A) = HA(A1) ⊕ . . . ⊕ HA(An) ⊕ HA(T ), we have E(A) = HA(A1) ⊕
. . . ⊕ HA(An). In particular, HA(Ai) = eiE(A)/tHA(Ai) = eiE(A)/

[
eiE(A) ∩

tE(A)
] ∼=

[
eiE(A) + tE(A)

]
/tE(A) = eiE(A) yields that HA(Ai) is an indecom-

posable E(A)-module.

b) Choose orthogonal idempotents f1, . . . fm of E(A) with fi(A) = Bi for i =
1, . . . ,m. Since HA(Bi) is an indecomposable E(A)-module for i = 1, . . . ,m, the
classical Krull-Schmitt-Theorem yields n = m andHA(Ai) ∼= HA(Bi) for i = 1, . . . , n
after a possible reindexing.

Inverse E(A)-module isomorphisms σ : HA(Ai) → HA(Bi) and τ : HA(Bi) →
HA(Ai) can be lifted to a pair of maps σ : HA(Ai) → HA(Bi) and τ : HA(Bi) →
HA(Ai) such that στ = 1HA(Bi

and τσ = 1HA(Ai)
using property (I) in the proof

of Theorem 4.2. Furthermore, using property (II) in the same proof, we can find a
non-zero integer k with kστ = k1HA(Bi) and kτσ = k1HA(Ai). By splitting off the p-
components of Ai and Bi for those primes p which divide k, we obtain decompositions
Ai = Ti⊕Ci and Bi = Si⊕Di into direct sums of fully invariant subgroups such that
multiplication by k is an automorphism of Ci and Di. In particular, the restriction
of TA(σ) to TAHA(Ci) induces an isomorphism between Ci and Di. This shows
Ai ⊕ Ti ∼= Bi ⊕ Si as required.

Finally, E(A) = HA(B1) ⊕ . . . ⊕ HA(Bk) ⊕ HA(Ak+1) ⊕ . . . ⊕ HA(An) by the
classical Krull-Schmitt-Theorem. This gives 1A− (f1+ . . .+fk)− (ek+1+ . . .+en) ∈
tE(A). By Lemma 5.1, we can extend {f1, . . . , fk} to a set {f1, . . . , fk, gk+1, . . . , gn}
of orthogonal idempotents of E(A) with ej = gj + tE(A). Moreover, the gj’s can
be chosen in such a way that Aj = gj(A) ⊕ Cj for some bounded Cj . Setting
A′
j = gj(A) and f = f1 + . . . fk + gk+1 + . . . + gn gives a decomposition A =

B1 ⊕ . . . ⊕ Bk ⊕ A′
k+1 ⊕ . . . ⊕ A′

n ⊕ (1 − f)(A). Since 1 − f ∈ t
(
E(A)

)
, we obtain

that (1− f)(A) is bounded, as desired. �
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Combining the last result with Proposition 3.3, we immediately obtain

Corollary 5.3. Let A ∈ G. Every GA-presented group is a direct sum of essen-
tially indecomposable GA-presented groups.

The proof of the next result is based on that of [4, Lemma 26.4], which is used
in the proof of the Crawley-Jonnson-Warfield-Theorem, but several modifications to
the arguments used in [4] are necessary due to the fact that [4, Lemma 26.4] deals
with direct sums of modules whose endomorphism ring is local, while we consider
direct sums of groups A for which E(A), but not E(A) is local.

Lemma 5.4. Let G = B ⊕ C = N ⊕H be a G-decomposable group. If N ∈ G is
not torsion, then G = N ⊕ T ⊕ B′ ⊕ C′ for subgroups B′ ⊆ B and C′ ⊆ C and a

sigma-cyclic torsion group T such that Tp 	= 0 for only finitely many primes p.

�����. As in the proof of [4, Lemma 26.4], it suffices to consider the case that
G = N ⊕H ⊕H ′ = H ⊕K ⊕ L. We show that G = N ⊕H ⊕ T ⊕K ′ ⊕ L′ for some
K ′ ⊆ K, L′ ⊆ L, and a sigma-cyclic torsion group T with Tp 	= 0 for only finitely
many primes p.

Once this has been shown, we use Theorem 5.2 to write N =
⊕k

i=1Ni where
N1, . . . , Nk are essentially indecomposable groups which are not torsion, and prove
the lemma by induction on k. The case k = 1 is trivial since it corresponds to H = 0.
Setting H = N1 ⊕ . . . ⊕ Nk, we can find T1, K1 ⊆ B, and L1 ⊆ C as desired with
G = H ⊕ T1 ⊕ K1 ⊕ L1. By the result in the first paragraph, there are K2 ⊆ K1,
L2 ⊆ L1 ⊕ T1, and a suitable torsion group T2 with G = Nk+1 ⊕H ⊕ T2 ⊕K2 ⊕ L2.
Let p1, . . . , pt be the primes for which T1[pi] 	= 0. Since G is G-decomposable, we
can write G = V ⊕U such that V = Gp1 ⊕ . . .⊕Gpt is a direct sum of cyclics and U
is a fully invariant subgroup of G for which U [pi] = 0 and U = piU for i = 1, . . . , t.
Therefore, L1⊕T1 = T1⊕(L1∩V )⊕(L1∩U) = L2⊕S for some subgroup S ⊆ L1⊕T1.
Observe that L2 ∩ V, S ∩ V ⊆ T1 ⊕ (L1 ∩ V ). Since L1 ∩ U is a direct summand of
U , it is fully invariant in L1 ⊕ T1. Therefore, T1 ⊕ (L1 ∩ V ) = (L2 ∩ V ) ⊕ (S ∩ V )
and (L1 ∩ U) = (L2 ∩ U) ⊕ (S ∩ U). We set T = (L2 ∩ V ) ⊕ T2 and obtain G =
N ⊕ T ⊕K2 ⊕ (L2 ∩ U) with L2 ∩ U ⊆ L1 ⊆ C as desired.

Following [4], we choose idempotents e, e′, f ∈ E(G) such that ee′ = e′e = 0,
K = e(G), L = e′(G), H = (1 − e− e′)(G), N = f(G), and H ⊕H ′ = (1 − f)(G).
Because of (1 − e − e′)(G) ⊆ (1 − f)(G), we have f = fef + fe′f . Since f is the
identity in fE(G)f ∼= E(N), it is impossible that fef and fe′f are both in the
Jacobson-radical of fE(G)f . Observe that E(N) is non-zero since N is not torsion.
But E(N) ∼= fE(G)f is a local ring, and one of these two elements is a unit in
fE(G)f . Without loss of generality, this is the case for fef . There is r ∈ E(G)
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such that s = frf satisfies sfef = fefs = f . We can find t1, t2 ∈ t(fE(G)f) with
sfef = f + t1 and fefs = f + t2. Choose a non-zero integer m with mt1 = mt2 = 0,
and let p1, . . . , pn be the primes dividing m. As before, T = Gp1 ⊕ . . . ⊕ Gpn is
sigma-cyclic, and G = T ⊕ U for some fully invariant subgroup U of G for which
multiplication by pi is an automorphism. In contrast to [4], ese need not be an
idempotent of E(G). Nevertheless, we are able to show U = (ese)(U)⊕ (1−ese)(U):
Since s = fs = fs, we have (ese)2 = efsfefsfe = efs(f + t1)fe = ese+ efst1fe

with mefst1fe = 0. Hence, (ese)2 = ese + t′ for some t′ ∈ tE(G) with t′(G) ⊆ T .
Since U is fully invariant in G, it remains to show ese(U) ∩ (1 − ese)(U) = 0. If
w = ese(u) = (1 − ese)(v) for some u, v ∈ U , then ese(w) = [ese − (ese)2](u) =
(−t′)(u) ∈ T ∩ U . Thus, 0 = (ese)2(v) = ese(v) + t′(v) = ese(v) = w.
Moreover, (1− e)(G) = L⊕H , and hence (1− e)(U) = (1− e)(G)∩U = (L∩U)⊕

(H ∩ U) is contained in (1 − ese)(U). Since U = (1 − e)(U) ⊕ (K ∩ U) by the full
invariance of U in G, we have (1−ese)(U) = (L∩U)⊕ (H ∩U)⊕ (K ∩ (1−ese)(U)).
On the other hand, ese(U) ⊆ K ∩ U . Hence, K ∩ U = ese(U)⊕ (K ∩ (1− ese)(U)).
We set K ′ = K ∩ (1 − ese)(U) and obtain U = ese(U) ⊕K ′ ⊕ (L ∩ U) ⊕ (H ∩ U).
We show that N ∩ U can replace ese(U) in this decomposition. For this, define
ϕ : U → ese(U) by ϕ(u) = ese(u). Since K ′ ⊕ (L ∩U)⊕ (H ∩U) = kerϕ, it suffices
to show that ϕ|(N ∩U) is an isomorphism. For u ∈ U , we have fse(u) ∈ N ∩U and
ese(u) = (ese)2(u)− t′(u) = ese(se)(u) = ese(fse)(u) ∈ ϕ(N ∩ U). Furthermore, if
ese(x) = 0 for some x ∈ N ∩ U , then x = f(x) yields 0 = esef(x) = efsfef(x) =
ef(f + t2)(x) = ef(x) since meft2 = 0 yields eft2(x) ∈ T ∩U . Thus, 0 = sfef(x) =
(f + t1)(x) = f(x) = x.
Therefore, U = (N∩U)⊕K ′⊕(L∩U)⊕(H∩U) and T = (N∩T )⊕(H∩T )⊕(H ′∩T ).

Consequently, G = N ⊕ H ⊕ (H ′ ∩ V ) ⊕ K ′ ⊕ L′ with L′ = L ∩ U . Observe that
H ′ ∩ T is sigma-cyclic with only finitely many non-zero p-primary components. �

Lemma 5.5. Let G = N ⊕H = B ⊕C be G-decomposable where N ∈ G or N is
finite. If X is a finite subset of N ∩ B, then B = B0 ⊕ B0 and C = C0 ⊕ C0 such

that X ⊆ B0 and N ⊕D ∼= B0 ⊕ C0 ⊕ E for finite groups D and E.

�����. We first consider the case that N is finite. Since G is G-decomposable,
we can write G = T ⊕ U where U and T are fully invariant and T is a sigma-
cyclic group containing N with Tp 	= 0 for only finitely many primes p. We have
T = (T ∩ B) ⊕ (T ∩ C). There are finite direct summands B0 of T ∩ B and C0 of
T ∩ C with N ⊆ B0 ⊕ C0.
In the case that N ∈ G, we use Lemma 5.4 to write G = N ⊕ T ⊕B′′ ⊕C′′ where

B′′ ⊆ B, C′′ ⊆ C and T is a direct sum of cyclics with Tp 	= 0 for only finitely many
primes p. Set B∗ = B∩(N⊕T ⊕C′′) and C∗ = C∩(N⊕T ⊕B′′). We have X ⊆ B∗,
B = B∗⊕B′′, and C = C∗⊕C′′. Moreover, B∗⊕C∗ ∼= N ⊕T . Let p1, . . . , pn be the
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primes with Tp 	= 0, and set V = Gp1 ⊕ . . .⊕Gpn . Write G = V ⊕ U for some fully
invariant subgroup U of G. Since T ⊆ V , we have (N ∩V )⊕T ∼= (B∗∩V )⊕ (C∗∩V )
and N ∩ U ∼= (B∗ ∩ U) ⊕ (C∗ ∩ U). Observe that N ∩ V is finite since it is a
torsion direct summand of a group in G. Moreover, B∗ ∩ V is a direct sum of
cyclics, and we can write B∗ ∩ V = W ⊕ E where W is finite and B0 = B∗ ⊕W

contains X . We set C0 = C∗ ∩ U , B′ = E ⊕ B′′, and C′ = (C∗ ∩ V ) ⊕ C′′. Since
(N∩V )⊕B0⊕C0 = (B∗∩U)⊕(C∗∩U)⊕W⊕(N∩V ) ∼= (N∩U)⊕(N∩V )⊕W = N⊕W ,
we have obtained the desired decomposition of G. �

We are now able to show that the class of G-decomposable groups is closed with
respect to direct summands. By Theorem 5.2, every G-decomposable group G has
the form G =

⊕
i∈I Gi such that Gi is either a cyclic p-group or an essentially

indecomposable honest mixed group.

Theorem 5.6. Let G = B ⊕ C =
⊕

i∈I Gi be G-decomposable where each Gi
is either an essentially indecomposable group in G or a cyclic p-group. Then, B ∼=⊕

j∈J Hj where, for each j ∈ J , we can find i ∈ I such that Hj is a direct summand
of Gi.

�����. By Kaplansky’s Theorem, we may assume that G is countable. We
write B = {bn | n < ω} with b0 = 0. We construct an ascending chain 0 = B0 ⊆
. . . ⊆ Bn ⊆ . . . of direct summands of B such that Bn ∈ G and contains bn for all
n < ω.
We write B = Bn ⊕Dn and write bn+1 = x+ y with x ∈ Bn and y ∈ Dn. We can

find a finite subset In of I such that y ∈ N =
⊕

i∈In
Gi. Observe that N ∈ G. We

apply Lemma 5.5 to the decomposition G = Dn⊕ [Bn⊕C] to obtain Dn = Kn⊕K ′

and Bn ⊕ C = Ln ⊕ L′ such that y ∈ Kn and Kn ⊕ Ln ⊕ Sn ∼= N ⊕ Tn for some
finite groups Sn and Tn. We set Bn+1 = Bn ⊕ Kn. Since B =

⋃
n<ω Bn, we have

B ∼=
⊕

n<ωKn. Every p-primary cyclic direct summand of Kn is isomorphic a direct
summand of

⊕
i∈In
(Gi)p as desired. If Kn has an essentially indecomposable direct

summand W , then there is i ∈ In such that W ⊕Ui ∼= Gi⊕Vi for some finite groups
Ui and Vi. But then, W = W ′ ⊕W ′′ where W ′ is isomorphic to a direct summand
of Gi and W ′′ is finite. Hence, Kn =

(⊕
i∈In

Hi

)
⊕ Tn where each Hi is isomorphic

to a direct summand of Gi and T is finite. This proves the theorem. �

Corollary 5.7. Let A ∈ G and G = B ⊕ C =
⊕

i∈I Gi.

a) If each Gi is a reduced A-generated group in G, then B ∼= T ⊕
⊕

j∈J Bj , where
each Bj is a reduced A-generated group in G, and T is an A-solvable torsion
group.

b) If each Gi is GA-presented, then B is a direct sum of an A-solvable torsion group
and a direct sum of GA-presented groups.
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c) Every A-projective group P is of the form P =
⊕

I Pi where each Pi is isomor-

phic to a cyclic or essentially indecomposable direct summand of A.

�����. By Theorem 4.6, we have B ∼=
⊕

J Bj where each Bj is either torsion
or isomorphic to a direct summand of Gi. Let J1 = {j ∈ J | Bj is torsion}. Since⊕

J1
Bj is an A-generated reduced torsion group, it is A-solvable by Lemma 2.1.

This proves the corollary. �
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