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1. INTRODUCTION

One of the oldest problems in the theory of abelian groups is the question whether
a given class of groups is closed with respect to direct summands. Simply presented
p-groups and completely decomposable groups are examples of classes where this
problem has been solved by an Azumaya-style theorem. No similar results can,
however, be obtained for direct summands of sums taken over an arbitrary class A
of groups without imposing some immediate restrictions on the elements of A. To
simplify our notation while considering such decompositions, the class of A-projective
groups consists of direct summands of direct sums of copies of a fixed group A. An
abelian group G is A-decomposable if it is of the form G = @ ,. , Pa where each Py
is A-projective. Azumaya’s original result describes the case that every A € A has a
local endomorphism ring [4]. Arnold, Hunter, and Richman extended his work in [6]
where they showed that the class of A-decomposable groups is closed with respect
to direct summands if A is a pseudo-rigid class of countable groups.

The goal of this paper is to establish the existence of an Azumaya-style theorem
for the class of G-decomposable groups where G is the class of mixed abelian groups
which was introduced by Glaz and Wickless in [11]. In order to define G, we first
consider the class I" of mixed groups G with the property that GG is isomorphic to
a pure subgroup of Hp G, containing @p Gp. The symbol I'y, denotes the groups
in I which have finite torsion-free rank. Every G € I, contains a finite independent
subset X such that F' = (X) is a free subgroup of G with G/F torsion. We view G
as a pure subgroup of Hp Gp, and write X = {xz = (zip) | 1 = 1,...,n}. Glaz
and Wickless investigated the class G of groups in I's for which G, is finite for all
p and satisfies G, = (z1p,...,Znp) for all but finitely many p. Observe that every
element of G is either an honest mixed group of finite. They showed in [11] that
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a group G € I'y such that G, is finite for all p is in G if and only if Hom(G,tG)
is a torsion group. In particular, E(A)/tE(A) is a finite dimensional Q-algebra for
A € G. Goeters, Wickless, and the author continued the discussion of [11] in [3] by
showing that the elements of G are the mixed self-small abelian groups which have
finite torsion-free rank.

Since G is not a pseudo-rigid class, we cannot use the results of [6] directly to
show that the class of G-decomposable groups is closed with respect to direct sum-
mands. However, Corollary 4.4 and Theorem 5.2 yield that every group in G is
the finite direct sum of groups with local Walk-endomorphism ring where Walk is
the category with abelian groups as objects, but whose morphisms are defined by
Morwa (G, H) = Hom(G, H)/ Hom(G, tH) ([13]). Therefore, every direct summand
G of a G-decomposable group is Walk-isomorphic to a G-decomposable group. Going
back to the category of abelian groups, this only gives us that there exists a torsion
group T such that G @ T is G-decomposable [13, Theorem 12]. Since our proof that
a direct summand G of a G-decomposable group is G-decomposable will not be sim-
pler if G has a torsion complement, we prove the Azumaya-Theorem for G directly
by showing that the Walk-indecomposable groups in G exhibit a behavior similar
to that of modules with local endomorphism ring when they appear as direct sum-
mands of G-decomposable groups (Lemma 5.4). This behavior is in stark contrast
to the case that A is the class of torsion-free groups of finite rank, where the class of
A-decomposable groups is not closed with respect to direct summands [10, Theorem
91.1].

The Azumaya Theorem for G is a consequence of our discussion of the structure
of A-generated groups in the first part of this paper. For a fixed A € G, call an
abelian group (finitely) A-generated if it is an epimorphic image of a group of the
form @; A for some (finite) index-set I. Theorem 2.2 shows that every reduced
A-generated group is in I" and isomorphic to a subgroup of []; A for some index-set
I. Furthermore, if G € ', is A-generated, then G = H + tG for some A-generated
group H € G. Finally, an A-generated reduced group is in G if and only if it is finitely
A-generated.

Sections 3 discusses finitely A-generated groups. Following [1], we say that an
abelian group G is A-solvable if the evaluation map 0g: Hom(A,G) @pa) A —
G is an isomorphism. Theorem 3.2 and Corollary 3.4 characterize the finitely A-
generated A-solvable groups. Applications of these results are given in Section 4
where we investigate when finitely A-generated A-solvable groups are essentially
indecomposable (Proposition 4.1 and Theorem 4.2). We want to remind the reader
that a group A is essentially indecomposable if, whenever A = B @ C, then B or C
is bounded. In particular, we show that a group A € G is essentially indecomposable
if and only if F(A)/tE(A) is a local ring (Corollary 4.4).
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The results of Sections 2 and 3 not merely lay the ground-work for the proof of the
Azumaya-Theorem. They also provide substantially deeper insight in the structure
of A-generated groups in G than the corresponding results did in the case of torsion-
free groups. This is primarily due to the fact that we are able to combine the well-
developed machinery for the discussion of A-solvable groups with a structure theory,
which is significantly richer than that for torsion-free abelian groups of finite rank.
In addition, we find that these characterizations can be obtained without imposing
any immediate restrictions on the E(A)-module structure of A. In contrast, this was
necessary for the discussion of A-solvable groups when A is torsion-free.

This demonstrates that there are significant differences between G and 7 F o, the
category of torsion-free abelian groups of finite rank, in spite of Wickless’ results
in [18] which establish a high degree of similarity between these categories at the
quasi-level. We want to point out that Wickless’ results just like our proof of the
Azumaya-Theorem does not use the category Walk.

2. A-GENERATED ABELIAN GROUPS

We begin this section with a summary of standard properties of reduced groups
G € T which we will frequently use without reference. We view G € I' as a pure
subgroup of Hp Gp. For any finite number p;,...,p, of primes, G = G, © ... D
Gp, ® G’ where G’ is a fully invariant subgroup of G such that multiplication by p;
is an automorphism of G’ for i = 1,...,n. Moreover, a reduced group G is in T" if
and only if G, is a direct summand of G for all primes p and G/tG is divisible. In
particular, if G € T has bounded p-primary subgroups for all p, then E(G) is a pure
subring of [[, E(Gp) and tE(G) = @, E(Gy).

Given abelian groups A and G, composition of maps induces a right E(A)-module-
structure on H4(G) = Hom(A4, G). For a right F(A)-module M, the symbol T4 (M)
denotes M ®@p(4) A. Since the functors induced by Ha and T4 between the category
of abelian groups, Ab, and the category, Mgy, of right E(A)-modules form an
adjoint pair, there exist natural maps g: TAHA(G) — Gfor G € Aband ppr: M —
HATA(M) for M € Mg(A).

Lemma 2.1. Let A€ g.

a) tA is projective as a left F(A)-module, and TorlE(A) (M, A) is torsion-free divis-
ible for all right E(A)-modules M. In particular, Tor}E(A)(M, A) = 0 whenever
the additive group of M is torsion.

b) Every reduced A-generated torsion group G is A-solvable and has the property
that Ha(G) = D, Ha(G)) is torsion. Moreover, if G € G is A-generated, then
tG C tA™ for some n < w.
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Proof. a) Let p be a prime of Z, and write A = A, & A? where AP is p-
divisible and AP[p] = 0. Since E(A) = E(A,) x E(AP), every right F(A)-module M
decomposes as M = M, & M? where M, is an E, = E(A,)-module and M? is an
EP = E(AP)-module. In order to show that A, is a projective F(A)-module, it thus
is enough to show that it is projective over E,,. For this, observe that every subgroup
of A} is A,-generated whenever n < w since A, is finite. By Ulmer’s Theorem [17],
Ap is a flat Ej,-module. Since E, is finite, every finite flat E,-module is projective.

Furthermore, TorlE( 4)(M, A/tA) is torsion-free divisible, and fits into the induced

exact sequence 0 = Tor}g(A)(M, tA) — Tor}E(A)(M, A) — Tor}E(A)(M, AJtA) A

M ®pa) tA, in which M ®p(a) tA is a torsion group with bounded p-components.
Thus, ImA = 0, and TorlE(A)(M, A) = TorlE(A)(M, A/tA) is torsion-free divisible.
If the additive group of M is torsion, then so is Tor}g( 4)(M, —). By what has been
shown, Tor}E(A)(M, A)=0.

b) Let G be a reduced A-generated torsion group. It remains to show that ¢ is
one-to-one. Consider an exact sequence @, A — G, — 0. Since Hom(A?,G),) = 0,
the group G, is an epimorphic image of @, A4,. If k, < w is minimal with pkr A, =0,
then A has a direct summand U, isomorphic to Z /p*»Z and p*»G = 0. Therefore,
we can find a monomorphism a: G, — @ I, U, for some index-set I,,. Consequently,
G is isomorphic to a subgroup of the A-projective torsion group P = @p [EBIP Up].
Observe that Ha(P) = €, [@IP H4(Up)] since A is self-small. Thus, H4(P) is
torsion and Tor}E(A)(HA(P)/HA(G),A) = 0 by a). Therefore, the commutative
diagram

0 —— TAHA(G) —— TAHA(P)

Joo o

0 —— G  E— P

has exact rows, from which it follows that 6¢ is one-to-one.

If G € G is A-generated, then every cyclic summand of G, is isomorphic to a
subgroup of A, by what has been established. The statement follows once we have
shown that there exists m < w such that G}, is the direct sum of at most m cyclic
groups. To see this, observe that, for all but finitely many primes, G, is generated
by at most n elements where n = ro(G). But then, G, cannot be the direct sum
of more than n non-zero cyclic subgroups. Since G,, is finite for all primes, the last
statement in b) follows. O

In the following, the A-radical of a group G is denoted by Ra(G) = ﬂ{kercp |
¢ € Hom(G, A)}. Clearly, Ra(G) = 0 if and only if G C A’ for some index-set I.
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Theorem 2.2. Let A € G.
a) The following conditions are equivalent for an A-generated group G:

i) G is reduced.
ii) ker 0 is torsion-free divisible, and Q € G.
iii) Ra(G)=0.
iv) Q@ € G; and ifpkAp = 0 for some k < w, then kap =0.
b) A reduced A-generated group G is finitely A-generated if and only if G € G.
c) Let G be a reduced A-generated group which has finite torsion-free rank. Then,
G contains a finitely A-generated subgroup H such that ker 6y = ker 0g and
G = H + tG. In particular, G/H is A-solvable.

Proof. For the sake of an easier reference, we first show that every reduced
A-generated group G is in I': Observe that G/tG is an epimorphic image of €, A for
some index-set I. Under this isomorphism, €p; tA is mapped to zero. Hence G/tG
is divisible as an epimorphic image of the divisible group €, A/tA.

Let k, be the smallest positive integer such that p*» A, = 0. If p*»G, # 0, then G
has a direct summand U = Z /p"Z for some integer n > k, because G}, is reduced.
Since U is A-generated, there is an epimorphism p: A — U whose kernel contains
p"A. If we write A = A, @ AP with AP is p-divisible and A[p] = 0, then n > k, yields
p"A = AP, and A/p™A is bounded by p*r. Hence, U cannot be an image of A, a
contradiction. Therefore, G, is a bounded direct summand of G, and G € I'. Further-
more, tG is A-generated. We now prove the equivalences in part a) of the theorem:

iv) = ii): Since G has to be reduced, G € T', and tG is an A-solvable group such
that Ha(tG) = @, Ha(G)) is torsion (Lemma 2.1). The fact that Ha(G)/Ha(tG)
is isomorphic to a subgroup of the torsion-free divisible group Ha(G/tG) yields
tHA(G) = Ha(tG). On the other hand, if we view G as a pure subgroup of [, G,
then H4(G) is a pure subgroup of H4 (Hp Gp), and the torsion subgroup of the latter
group is H4(tG) too. Consequently, the right E(A)-module M = H4(G)/Ha(tG)
has a torsion-free divisible additive group. Consider the commutative diagram

0 e ker 0 LN kerf —— 0
I L
TaHA(tG) —2229 ) 2229 1y () —— 0
o Joe Js
0 —— tG — G _A, G/tG —— 0
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where A is onto by the Snake-Lemma. Since T4(M) and G/tG are torsion-free
divisible, ker g = ker # is torsion-free divisible.

ii) = i): Observe that G is isomorphic to a direct summand of the group H =
TaHA(G). Any free resolution of Ha(G) induces an exact sequence 0 — U
b, A 2 H — 0 with Sa(U) = U. Let p be a prime of Z. For x € H,, we can
find y € @, A with f(y) = =. If p™az = 0, then there are a1,...,a, € A and
1, pn € Ha(U) with p™y = > | aupi(a;). Since A/tA is divisible, we can find
b1,...,bp, €tAandcy,...,c, € Awith a; = p™c;+0b;. Thus p™ [9*22;1 acpi(ci)] =
S api(b) € @, tA. Write o(y— Y1, api(c;)) = p'q where t < kj, and (p,q) = 1.
Then, p'qz = B(p'q(y— Y1, awpi(c;))) = 0. Since x € H,, we obtain p'z = 0. Thus,
H, is bounded by p*», and G,, is reduced.

i) = iii): Since G, is bounded by p*r, we have G, C [1;, Ap for some index-set Ij,.
But G € I' implies G C [, G).

iii) = iv) follows directly from the initial remarks of the proof.

b) Let G be a reduced A-generated group. If G admits an exact sequence A™ —
G — 0, then ro(G) < oo. Using the arguments in the initial part of the proof of
a), we obtain that G € ', tG is A-generated, and |G,| < oo for all p. It remains
to show that Hom(G,tG) is torsion. For this, observe that there is an induced
exact sequence 0 — Hom(G,tG) — @, Ha(tG), in which HA(tG) is torsion by
Lemma 2.1b. Conversely, assume that G is an A-generated group in G. We can
find n < w and a map a: A" — G such that G/a(A™) is torsion. We show that
G = tG + a(A™). For this observe that [tG + a(A™)]/tG = a(A™)/[tG N a(A™)]
is a torsion-free image of A™, and hence an image of the divisible group A™/tA™.
Therefore, [tG 4+ a(A™)]/tG is a direct summand of the torsion-free divisible group
G/tG. Since G/[tG + a(A™)] is torsion, we have G = tG + a(A").

Consider the exact sequence 0 — a(A™) — G — T — 0 for some torsion group 7.
Since T = [tG + a(A™)] /a(A™) =2 G/ [tG N a(A™)], we have that T, is finite for all
p. Moreover, G[p] = 0 implies T'[p] = 0. If T'[p] # 0 for all primes p in an infinite set
Py of primes, then Hom(T,tG) 2 [[p, Hom(7},G)), which cannot be torsion since
T, and G), are non-zero finite p-groups for p € P;. On the other hand, the exact
sequence 0 — Hom(7T,tG) — Hom(G,tG) shows that this group is torsion. The
resulting contradiction establishes that T is finite, from which it immediately follows
that G is finitely A-generated.

¢) There is nothing to show if G is torsion. Thus, we may assume that G contains a
non-empty independent subset X = {z1,...,z,} such that (X) is free and G/(X) is
torsion. Since we can view G as a pure subgroup of Hp Gp, weset X, = (T1p, - -+, Tnp)
for each prime p. The inclusions X, C G, coordinatewise induce a monomorphism
A [, Xp — [I, Gp. Clearly, A operates like the identity on P, X, and satisfies
Az;) = x; for all . Observe that z1,...,x, generate a free subgroup of Hp Xp.
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We set tH = @p X,, and let H be the subgroup of Hp X, containing tH such
that H/tH = @_, Q(z; + tH). By definition, H € G. For h € H, we can find
r1,...,T7n € Z and y € tH such that mh = ryz1 + ... + 2z, + y for some non-
zero integer m. Then, mA(h) € G since tH C tG. Since (Hp Gp)/G is torsion-
free, we have A(h) € G. We shall identify H with its image under A in G. Since
Z1,...,Ln € H 4+ tG, we have that G/(H + tG) is torsion. On the other hand,
(H+1tG)/tG = H/(HNtG) = H/tH is torsion-free divisible. Thus, (H +tG)/tG is
a direct summand of the torsion-free group G/tG whose complement is isomorphic
to G/(H + tG). By what has been shown, this is only possible if G = H + tG. In
particular, G/H = (H + tG)/H = tG/tH is a reduced A-generated torsion group
which is A-solvable by Lemma 2.1b.

In the exact sequence 0 — Hy(H) — Ha(G) — M — 0, the additive group of
M is torsion as a subgroup of H4(G/H) by Lemma 2.1b. Because of Lemma 2.1a,
TorlE(A)(M, A) =0, and the top-row of the diagram

0 —— TuHs(H) —— TaAHA(G) —— Ta(M) —— 0

Jo e

0 —— H —_— G —— G/H —— 0

is exact. The induced map 6 satisfies 6 = 0,y Ta(t) where 12 M — Ha(G/H) is
the inclusion map. Observe that T4(¢) is one-to-one by Lemma 2.1a, from which we
obtain that € is an isomorphism. By the Snake-Lemma, 0 is an epimorphism, and
ker O = ker 0. O

Corollary 2.3. The class of reduced A-solvable groups is closed with respect to
direct sums whenever A € G.

Proof. Let {G;}ics be a family of reduced A-solvable groups. Suppose ¢ €
Hy (@I Gi) satisfies m;0 # 0 for infinitely many i € I where 7;: @,.; Gi — G
denotes the projection onto the j*»—coordinate. For each such 4, there is a map
a;: Gy — A with om0 # 0 by Theorem 2.2a. Coordinatewise, the maps «; induce
amap a: @,;G; — @;A. If§;: @, A — A denotes the projection onto the i*"-
coordinate, then d;ap = a;p is non-zero for infinitely many i, which contradicts the
fact that the groups in G are self-small [3]. Thus, {G;}ics is A-small. Since the class
of A-solvable groups is closed with respect to A-small direct sums by [2], the proof
is complete. O

Furthermore, Theorem 2.2 allows to answer the question for which groups A there
may exist A-solvable groups G with R4 (G) # 0:
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Corollary 2.4. Let A be a self-small abelian group of finite torsion-free rank such
that A/tA is a faithfully flat E(A)/tE(A)-module. Then, there exists a reduced A-
solvable group G with R4(G) # 0 if and only if A is torsion-free and reduced.

Proof. Suppose that there exists a reduced A-solvable group G with R4(G) # 0.
By Theorem 2.2 together with [3], we obtain that A is either torsion or torsion-free.
In the first case, the group A has to be finite, and every A-solvable group has a zero
A-radical, which is not possible. In the second case, it remains to show that A is
reduced. If @ C A, then every torsion-free A-generated group is A-solvable as in [1].
But this yields that A is homogeneous completely decomposable by [1]. Therefore,
A = @Q", and all A-solvable groups are A-projective. On the other hand, if A is
torsion-free reduced, then there exists a right E(A)-module M which is N;-free and
has E(A) as its Z-endomorphism-ring using the construction of [9] (e.g. see [2]). Let
G = T4(M). Once we have shown that G is A-solvable, it will follow as in [2] that
E(G) = Center(E(A)) and Hom(G, A) = 0. The A-solvability of G, however, follows
from the fact that, for ¢1,...,or € Ha(G), there is a free submodule U of M with
Yy @i(A) C Ta(U), O

3. G4-PRESENTED ABELIAN GROUPS

A sequence 0 — B = C LA G — 0 of abelian groups is almost A-balanced if
M = Ha(G)/Im H4(0) is torsion.

Lemma 3.1. Let A€ G and0 — B — C 5 G — 0 be an almost A-balanced
sequence in which C' A-solvable and G € G. Then, G is A-solvable if and only if B
is A-generated.

Proof. By [1, Lemma 2.1], M = ImH,(n) fits into an exact sequence
TaH4(B) B - Ta(M) LG - 0, and it is enough to show that G is A-
solvable iff 6 is a monomorphism. If t: M — Ha(G) denotes the inclusion map,
then 0 = 6cT4(¢) and coker ¢ is torsion as an abelian group. Moreover, ker T4(¢) = 0
as an epimorphic image of TorlE(A) (Ha(G)/M, A) which vanishes by Lemma 2.1a.
Clearly, this gives that 6 is one-to-one if GG is A-solvable. Conversely, assume that
0 is a monomorphism. For z € ImT4(¢) Nkerf¢, there is y € T4 (M) such that
x = Ta(t)(y). Then, 0(y) = 0cTa(t)(y) = 0 yields © = 0. Therefore, ker 0 is
isomorphic to a subgroup of the torsion group cokerTs(:) = Ta(coker:) which
results in a contradiction unless G is A-solvable since ker 8¢ is torsion-free divisible
by Theorem 2.2. O
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Theorem 3.2. Let A € G. The following conditions are equivalent for a reduced
abelian group G:
a) G is a finitely A-generated A-solvable group.
b) G is an A-solvable group in G.
¢) G admits an almost A-balanced sequence 0 — U = A™ 2 G — 0 such that U
is A-generated.

Moreover, the sequence in c¢) can be chosen in such a way that
Ta(Ha(G))/Im Ha(B) = 0.

Proof. The equivalence of a) and b) is an immediate consequence of Theo-
rem 2.2a. Moreover, a reduced finitely A-generated group is in G by Theorem 2.2b.
By Lemma 3.1, the implication c¢) = b) is true.

b) = ¢): Since G has finite torsion-free rank, we can choose a finite independent
subset X = {x1,...,2,} of G such that (X) is free and G/(X) is torsion. Because
G € G, we have G, = (Z1p,. .., Tnp) for almost all primes p of Z. There are maps
@1, -, m € Ha(G) such that X C p1(A4) + ...+ ¢om(A). We write A = A, & AP
and G = G, ¢ GP for each prime p such that AP and G? are fully invariant. There
are aip, ..., amp € Ap and iy, ... by € AP such that z; = 37", @j(a, + bjp).
Since Hom(Ap, GP) = 0 = Hom(A?,Gy), we have z;, = 371, ;j(azy); and G, C
©1(A) + ... + om(A) for all but finitely many primes p. By adding finitely many
maps to {¢1,...,om} if necessary, we may assume that tG C p1(A) + ...+ om(4)
and G/[p1(A) + ... + ¢m(A)] is torsion. Since H4(G) has finite torsion-free rank,
no generality is lost if we assume that M = (p1,..., ) has the additional property
that H4(G)/M is torsion as an abelian group.

We define a map 6: Ta(M) — G by 8(a ® a) = a(a), and observe § = 05T 4(¢)
where (: M — Ha(G) is the inclusion map. Since ¢ is an isomorphism and
kerT4(t) = 0 as an image of Tor}E(A) (Ha(G)/M, A) which vanishes by Lemma 2.1,
0 is one-to-one. Furthermore, Im6 = 1 (A) + ...+ @ (A) yields that coker T4 (1) =
G/Im6 = (G/tG)/(Im@/tG) is torsion and divisible. In particular, (G/Im®),
either vanishes or is unbounded. On the other hand, since M and H4(G) are
E(A)-modules, the same holds for (coker:),. However, the E(A)-module-structure
of the latter module is completely determined by its E,-module-structure. Since
E, is finite, (coker:), is bounded, and cokerT4(:) = T4(coker:) has bounded
p-components. This is only possible if cokerT4(:) = 0. Therefore, T4(¢) is an
isomorphism, and the same holds for 6.

Choose a projective resolution 0 — V 2, EA)™ 5 M — 0 of M. Since
U = kerTq(w) = ImT4(\) is A-generated, it remains to show that 0 — U —

Ta(E(A)™) T 'a(M) — 0 is almost A-balanced. An application of the functor
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H 4 yields the diagram

ZT‘F’E(A)’” TWM

EA)™ e M — 0.
T
It gives Im(H AT A(w)) = Im ), and the proof is complete once we have shown that
o has a torsion cokernel. For this, we consider the commutative diagram

0 — HATA(M) EEE— HATAHA(G) — 0 — 0
HATA(L)

T‘Pbl ZTSDHA(G) T«p

0 —— M —_— Hs(G) —— cokert —— 0
L
whose first row is exact since T4(¢) is an isomorphism. By the Snake-Lemma,
coker s = ker ¢ = cokert. As we have shown before coker: is torsion as abelian
group. O

We say that an A-generated group G € G is G4-presented if there exists an almost
A-balanced exact sequence 0 — U — A"™ — G — 0 in which U is A-generated and
in G. By Lemma 3.1, any G4-presented group is A-solvable.

Proposition 3.3. For a group A € G, the class of G4-presented groups is closed
with respect to direct summands.

Proof. Let G = B® C be a G4-presented group. Choose an almost A-balanced
exact sequence 0 — U 5 A" LA G — 0 with U € G, and let 7g: G — B be the
projection along C. We consider the induced exact sequence (£) 0 — V A gn 728
B — 0 in which A is the inclusion-map. If ¢ € H4(B), then there is v € H4(G) with
¢ =7py = Ha(np)(y). We can find a non-zero integer m and a map 6 € Ha(A™)
with my = Ha(8)(d). Therefore, my = Hu(wp)(my) = Ha(rpB)(d), and (€) is
almost A-balanced. Furthermore, B is A-solvable and in G as a direct summand of
an A-solvable group in G. If M =Im Ha(wp8) C Ha(B), then the evaluation map
0: TaA(M) — B satisfies § = 0T4(¢) where v: M — H4(B) is the inclusion map.
Since coker ¢ is torsion, we have that T4(¢) is a monomorphism, and the same holds
for §. By [1, Lemma 2.1], cokerfy = kerf = 0. Therefore, V is an A-generated
subgroup of A", and it remains to show that V' € G. Since V € ', as in the proof
of Theorem 2.2, it suffices to establish that Hom(V,tV) is torsion:

Blv

Observe that C' = 3(V) and fits into the exact sequence 0 — U % V =% C — 0
in which U and C are A-generated groups in G. By Theorem 2.2, U and C are
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finitely A-generated. In particular, Hom(U,tA) and Hom(C,tA) are torsion. Since
V C A", we have Hom(V,tV') C @, Hom(V,tA). But Hom(V,tA) fits into the exact
sequence 0 — Hom(C,tA) — Hom(V,tA) — Hom(U, tA) in which the first and third
Hom-group are torsion. O

Corollary 3.4. Let A be in G. The following conditions are equivalent for a
reduced abelian group G:
a) G is an A-solvable group in G.
b) There exists an almost A-balanced exact sequence 0 - T — H — G — 0 in
which H is Ga-presented and T is a reduced A-generated torsion group.

Proof. b)=-a): Since G4-presented groups are finitely A-generated, G is in G
by Theorem 2.2b as a reduced finitely A-generated group. Because T is A-solvable,
G is A-solvable by Theorem 3.2.

a) = b): Since G is A-solvable, we can find an almost A-balanced exact sequence
0-U 24" % G = 0 in which U is A-generated and « is an inclusion map.
By Theorem 2.2c, there exists an A-generated subgroup V of U with V € G and

U =V +tU. We consider the induced sequence (£) 0 — U/V o A"V Za-o.
Observe that U/V = tU/tV is a reduced A-generated torsion-group which is A-
solvable.

Let m: U — U/V and my: A™ — A™/V be the canonical projections. Since
mea = am and [my = 3, we obtain the commutative diagram

0 —— Hs(U) ———— Hjs(A") — Hu(G)
Ha(a) Ha(B)

lHA(Tfl) lHA(Wz) llHA(G)

0 —— HaA(U)V) ———— Ha(A")V) ———— HA(G).
Ha(a@) Ha(B)

Given z € H,(G), there is a non-zero integer m such that ma = Ha(8)(y) for

some y € Ha(A™). Then, mz = Ha(S)Ha(m2)(y), and (€) is almost A-balanced.
Set M = Im HA(f3), and let t: M — H4(G) be the inclusion map. Since coker is
torsion and the evaluation map 0: Ta(M) — G satisfies = T4 (1), the map Ta(r)

is a monomorphism, and the same holds for #. The map 6 fits into the commutative

diagram
TAHA(U)V) —— TaAHA(A")V) —— Ta(M) —— 0
ZlQU/v JVGA”/V le
0 —— u/ywv A"V s G —— 0
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It follows that 6 4» /v is an isomorphism. In particular, A" /V is reduced by Theorem
2.2a. An application of Theorem 2.2b gives A™/V € G.

It remains to show that 0 — V — A” 22 A" /V — 0 is almost A-balanced. Given
@ € Ha(A"/V), there is a non-zero integer ¢ such that Ha(3)(lp) = Ha(B)(¥)) =
Ha(B)Ha(m2) () for some ¢ € Ha(A™). Thus, fo—Ha(ma) () € Ha(a@)(Ha(U/V))
which is a torsion group by Lemma 2.1b. Hence, kfp € Im H 4 () for some non-zero
integer k. O

Looking at the almost A-balanced sequences of the form . LA 0 con-
structed in Theorem 3.2 and Corollary 3.4, we see that N = coker H4(8) al-
ways satisfies T4(N) = 0. Since N is torsion, we obtain the exact sequence
0 = Torgay(N,A/tA) — N ®pay tA — Ta(N) = 0. It yields N, ®pg, A, =
Np ®@pgay Ap = 0 for all primes p. Since A, is homogeneous if and only if it is
faithfully flat as an E,-module [3], we have N = 0 if A, is homogeneous for all
primes p. We thus have shown:

Corollary 3.5. Let A € G have homogeneous p-components for all primes p, and

suppose that G € G is A-solvable.

a) There exists an A-balanced exact sequence 0 — U — A" — G — 0 with
Sa(U) = U. Moreover, G is Ga-presented if and only if the sequence can be
chosen such that U € G.

b) There exists an A-balanced exact sequence 0 — T — H — G — 0 in which T
is a torsion A-solvable group and H is G4-presented.

4. DIRECT SUM DECOMPOSITIONS OF G 4-PRESENTED GROUPS

In the following, projection modulo the torsion subgroup of a given abelian
group will be indicated by an overscore. This section investigates how the exis-
tence of non-trivial direct sum decompositions of the right E(A)/tE(A)-module
H,4(G) is related to decompositions of the A-solvable group G. Observe that the
E(A)/tE(A)-module structure of M coincides with its E(A)-module structure for
any right E(A)-module M.

Proposition 4.1. Let A € G, and G be an A-solvable group in G. If Ho(G) is
an indecomposable E(A)/tE(A)-module, then G is essentially indecomposable.

Proof. There is nothing to show if G is torsion. Hence, suppose that G is
an honest mixed group. If it is not essentially indecomposable, then there exists
an idempotent e € F(G) such that e, 1 —e ¢ tE(G). Since G is A-solvable, we
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have E(G) = Endg)(Ha(G)) as has been shown in [2, Theorem 4.4]. Let f be
the idempotent corresponding to e under this isomorphism. Clearly, f induces an

idempotent endomorphism f: Ha(G) — Ha(G) by f(Z) = f(z). Since Ha(G)
is indecomposable as an E(A)/tE(A)-module, its endomorphism ring has no non-

trivial idempotents. Without loss of generality, we have f = 0. Thus, f: Ha(G) —
tH4(G). However, tH4(G) = HA(tG) by Lemma 2.1 since G € G. We view T4(f) as
amap from T4 H4(G) into TaH4(tG). Since tG and G are A-solvable, thTA(f)é)g,l
is an element of the torsion group Hom(G, tG). We obtain that mT4(f) = 0 for some
non-zero integer m. Observe that HaTA(f)¢n, () = Prawq)f vields o, caymf =
0. Since tG is A-solvable by Lemma 2.1b, we have that ¢, (1) is an isomorphism.
Hence, mf = 0, which is not possible by the choice of f. O

We now show that the converse of this result is true if G is G4-presented.

Theorem 4.2. Let A € G. A Ga-presented group G is essentially indecomposable
if and only if Hx(G) is an indecomposable E(A)/tE(A)-module.

Proof. As before, it is enough to consider the case that G is an honest mixed
group. Assume that G is essentially indecomposable. Let 0 — U = A" LA G—0
be an almost A-balanced exact sequence where U € G is A-generated. It induces the
exact sequence 0 — H,(U) Halo) Ha(A™) Ha(P) M — 0 in which M = Im H4(B)
is a submodule of H4(G) with H4(G)/M torsion. Observe that G = T4 (M) by
[1, Lemma 2.1]. Moreover, K = H4(G)/[M + tHa(G)] is torsion as an abelian
group and fits into the exact sequence 0 — M/tM — Ha(G)/tHA(G) — K — 0
because of (M +tHA(G))/tHA(G) = M/(MNtHA(G)) = M/tM. Since M/tM and
HA(G)/tH4(G) are torsion-free divisible, the same has to hold for K. Therefore,
K =0, and M = H,(G). Once we have shown that

(I) if p: M — M is an E(A)/tE(A)-morphism, then there is a map 7: M — M
such that (Z) = 7(x) for all z € M, and
(1) if 7 € Endg(a)(M) satisfies 7(z) = 0 for all z € M, then 7 € tE(A),

then the theorem is shown as follows:

Let m: M — M be an E(A)-morphism with 72 = 7. There is a map A\: M — M
with \(z) = «(%) for all z € M by (I). Since A\2(z) = ’/T(W) = 72(T) = n(T), we
have kA2 = k) for some non-zero integer k using (II). Let P be the set of primes
dividing k, and write A = Ay @ Ay with A; = EquP A, and Hom(A;, A;) = 0 if
i # j. Then, E(A) = E(A1) X E(As2), and M = M; & M» such that M;E(A;) = 0 for
1 # j. In particular, M; is bounded, and A\(M;) C M; for i = 1,2. Therefore, A\| My is
an idempotent of Endg(4)(M2). Write My = A(M2) @ (1 — \)(M2), and observe G =
Ta(M) =Ta(Mi®(1=\)(Ma))®Ta(A(M2)). Since G is essentially indecomposable,
we have that one of the modules T4 (A(M2)) or Ta (M @® (1 — X)(Mz)) is bounded.
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In the first case, H ATA()\(MQ)) is bounded as an abelian group. The commutative
diagram
HATy ()\(Mg)) ——— H TAHA(G)

T‘PA(ZVIQ) ZTSDHA(G)

0 —— A(Mo) e H4(G)

yields that A(Mz) is isomorphic to a subgroup of the bounded group H4T's ()\(Mg))
Consequently, \(M) = A(M;) @ A(Mz) is bounded, and 7 = XA = 0. On the other
hand, if Ta (M1 & (1 — A)(Mz)) is bounded, then the same argument as before gives
that My @ (1 — \)(Mz) is bounded, from which we obtain that 0 =1 - A=1— X =
1 — 7. In either case, M is indecomposable.

In order to verify the two statements, we first show that Hom(T4 HA(U), T4 (tM))
is torsion: For this, observe that T4 (tM) is A-generated and has bounded p-
components for each prime p because M, is an E,-module, and E, is finite. By
Lemma 2.1b, T4 (tM) is A-solvable, and 0 — T4 (tM) — Ta(M) — Ta(M/tM) — 0
is exact. Moreover, M/tM is torsion-free and divisible implies that Ta(tM) =
tT4(M) = tG. Since G is A-solvable and in G, we have that tG is isomorphic to
a subgroup of tA™ for some m < w by Lemma 2.1b. By Theorem 2.2a, ker 0y
is torsion-free and divisible, and TAHA(U) = U @ @, Q for some k < w. There-
fore, Hom (T4 Ha(U),Ta(tM)) = Hom(U,tG) which is isomorphic to a subgroup
of Hom(U,tA™). The latter group is torsion, since U € G implies that there is
an epimorphism A®* — U — 0 for some s < w which induces a monomorphism
0 — Hom(U,tA™) — Hom(A®,tA™).

We view ¢ as a map M — M, and can find a map v: H4(A") — M making the

diagram
0 —— Ha(U) ———— Hx(A") M 0
Ha(a) Ha(B)
v v
0 —— tM —_— M M 0

4

commutative in which § denotes the canonical projection. An easy diagram
chase shows that Ha(a) € Hompga)(Ha(U),tM) and, hence, Ta(¢)TaHa(c):
TsHA(U) — Ta(tM). By the result of the previous paragraph, there is a
non-zero integer r such that rT4(y)TaHa(a) = 0. Because roppHa(a) =
HATA(erA(a))cpHA(U) = 0, we have pipriHa(a) = 0. But ¢sp is one-to-one:
To see this, observe that tM C H4(G) and that v , () is an isomorphism such that
o)t = HaTa(t)pinr where o2 tM — H4(G) is the inclusion map. Therefore,
riyH (o) = 0.

86



We can write F(A) = Ry x Ry where R; is finite and multiplication by r is an
automorphism of Ry. Given an E(A)-module N, this ring-decomposition yields a cor-
responding decomposition N = N; @ N3 such that V;R; = 0 for 7 # j. In particular,
multiplication by r is an automorphism of Ny. Therefore, iy H 4 () (HA(U)Q) =0
yields Y Ha(a)(Ha(U)2) = 0.

We now define 7: Write x € Ha(A™) as © = 1+ with z; € H4(A"™);, and define
amap v: Hy(A") — M by v(z) = ¢(z2). Since HA(a)(HA(U)l) C Ha(A™); C
ker v, we have Hu(a)(Ha(U)) C kerv, and v induces a map 7: M — M in the
following way: For x € M, choose y € Ha(A™) with Ha(8)(y) = z, and define
7(x) = v(y). Write x = 21 + 22 and y = y1 + y2, and obtain i7(z) = dv(y) =
0p(y2) = wHA(B)(y2) = ¢(x2). Since x1 € My C tM, we have p(x1) =0, and 7 is
the desired map.

Moreover, if o: M — M is a map with m =0 for all z € M, then o(M) CtM.
However, this yields that T4(¢) is an element of Hom(Ta(M),tTa(M)) which is
isomorphic to the torsion group Hom(G, tG). Since pipr0 = HaTa(0)pas is torsion,
we obtain as before that ¢ has finite order. O

Corollary 4.3. Let A € G and G € G be an A-solvable group. If 0 — T —
H 5 G — 0 is an almost A-balanced exact sequence in which T an A-solvable
torsion group and H is an essentially indecomposable G 4-presented group, then G is
essentially indecomposable.

Proof. Let M =ImHy(w). Since Ha(G)/M and H4(T) are torsion, we have
ro(Ha(H)) = 1o(M) = 10(Ha(G)) < co. Thus, Ha(H) & M = H,(G). By the
last theorem, H4(H) is indecomposable, and hence the same holds for H4(G), from

which it follows that G is essentially indecomposable by Proposition 4.1. O

Corollary 4.4. The following conditions are equivalent for an abelian group
Aeg:

a) A is essentially indecomposable.

b) A is indecomposable in Walk.

c) E(A)/tE(A) is local.

Proof. To see that a) and ¢) are equivalent, observe that the fact that A is
Ga-presented yields that A is essentially indecomposable if and only if E(A)/tE(A)
is an indecomposable E(A)/tE(A)-module. However, an Artinian ring without non-
trivial idempotents is local.

For the equivalence of b) and c¢), observe that Hom(A,tA) = tFE(A). Hence, the
Walk-endomorphism ring Eyw (A) of A coincides with E(A)/tE(A), and nothing is
to prove. O
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5. AN AZUMAYA THEOREM FOR GROUPS IN G

Our first step toward showing that the class of G-decomposable groups is closed
with respect to direct summands is the verification of the fact that there is a Krull-
Schmitt-Theorem for the groups in G.

Lemma 5.1. Let A € G. If {e1,...,€,} is a family of orthogonal idempotents
of E(A)/tE(A), then there are orthogonal idempotents e, ...,e, € E(A) with &; =
e; +tE(A) fori=1,...,n.

Proof. Write &, = f1 + tE(A) for some f; € E(A). Then, fZ — f1 €
Dper, E(4p)
(xpep E(Ap)) x S for some subring S of E(A). There is a central idempotent g1 €
E(A) with E(A)g1 = Xpep, E(A,). Since E(A,) is torsion, and (1—g1)(ff —f1) = 0,
we have that (1—g¢1)f1 is an idempotent of E(A) withe; = fi1+tE(A) = (1—g1)f1+
tE(A). Hence, we can find a finite subset P; of P and an idempotent e; of F(A)
with & = ey + tE(A) and ey (P, p, 4p) = 0.

Assume that we have found finite subsets P; C ... C P, of P and orthogonal
idempotents eq,...,e, of E(A) with & = e; + tE(A) and ¢; (@pepi Ap) = 0. If
n < m, then we choose f, 11 € E(A) with €,11 = fn+1 +tE(A). As before, we can
find a finite subset @, +1 2 P, of P and a central idempotent g,11 € F(A) such that
(1- gnﬂ)(@pe%ﬂ Ap) =0 and hyy1 = (1 — Gny1)fnt1 is an idempotent of E(A)
with &,71 = hnt1 + tE(A). Since €€,41 = €,41€; = 0, we can enlarge Q,41 to a
finite subset P,y1 of P such that e;hp41, hpt16; € @pePnﬂ E(A,) fori=1,...,n.
If we choose a central idempotent g, 41 in E(A) with E(A)gn+1 = Xpep, . E(Ap),

for some finite subset P; of the set P of all primes. As rings, F(A) =

then e, 41 = (1 — gnt1)hnt1 is an idempotent of E(A) with the desired properties.
U

If A is essentially indecomposable and T is a bounded abelian group, then A $ T
is essentially indecomposable. To see this, write AT = B @ C, and let P; be the
set of those primes p for which T'[p] # 0. Since A € G, we can write A = D @ E with
E bounded and Hom(D,T @ E) = Hom(E @& T, D) = 0. We have B = B; & T} and
C =C1 915 with B;,C; € Dand T1,7o C E®T. Hence, A= B, $C, & S for
some bounded group S. Since A is essentially indecomposable, B; or C'; is bounded.
This shows that A @ T is essentially indecomposable.

Theorem 5.2. Let A € G.
a) There are essentially indecomposable subgroups A1, ..., A, of A with A= A; ®
DA,
b) fA=A41¢.. A, =B1®...®&B,, with A, and B; essentially indecomposable
for all i and j, then n = m and, after reindexing, there are bounded groups
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Ci,...,Cy and Dy, ...,D, with A; & C; = B; & D;. Moreover, if 1 < k < n,
then A=B1®...0B,® A}, ®...® A, ®T where Aj = A} © S; for bounded
groups T, S1,...,Sn.

Proof. a) Since E(A)/tE(A) is a finite dimensional (Q-algebra, we can find
a finite set {€1,...,€,} of orthogonal primitive idempotents of E(A)/tE(A) with
14 =€1+...+¢€,. By Lemma 5.1, each €; is of the form &; = e;+tF(A) for orthogonal
idempotents eq,...,e, of E(A). Setting e = e; + ... + e, yields a decomposition
A=e1(A)D...de(A) D (1—e)(A). Weset A; =e;(A) and T = (1 —e)(A). Since
(1—e) € tE(A), we have mT = 0 for some non-zero integer m. Once we have shown
that the A}s are essentially indecomposable, A1 & T is essentially indecomposable by
the preceding remarks; and we have a decomposition of A as in a). By Theorem 4.2,
it is enough to show that H4(A;) is indecomposable:

Since E(A) = Ha(A1) @ ... ® Ha(A,) & Ha(T), we have E(A) = Ha(A1) &
... ® Hu(An). In particular, Hu(A;) = e;E(A)/tHa(A;) = eiE(A)/[eiE(A) N
tE(A)] = [e;E(A) + tE(A)|/tE(A) = €;E(A) yields that Ha(A4;) is an indecom-
posable E(A)-module.

b) Choose orthogonal idempotents fi,... fm, of E(A) with f;(A) = B; for i =
1,...,m. Since Ha(B;) is an indecomposable F(A)-module for i = 1,...,m, the
classical Krull-Schmitt-Theorem yields n = m and Ha(A4;) = Ha(B;) fori=1,...,n
after a possible reindexing.

Inverse E(A)-module isomorphisms &: Hy(A;) — Ha(B;) and 7: Ha(B;) —
H,4(A;) can be lifted to a pair of maps o: Ha(A;) — Ha(B;) and 7: Ha(B;) —
H4(A;) such that 57 = lg g and 76 = lg 7 using property (I) in the proof
of Theorem 4.2. Furthermore, using property (II) in the same proof, we can find a
non-zero integer k with kot = klp,(p,) and k7o = klpy,(a,). By splitting off the p-
components of A; and B; for those primes p which divide k, we obtain decompositions
A; =T;®C; and B; = S;® D; into direct sums of fully invariant subgroups such that
multiplication by k is an automorphism of C; and D;. In particular, the restriction
of Ty(o) to TaHA(C;) induces an isomorphism between C; and D;. This shows
A;®T; = B; ®S; as required.

Finally, F(A) = Ha(B1) ® ... ® Ha(Br) ® Ha(Ak41) @ ... ® Ha(A,) by the
classical Krull-Schmitt-Theorem. This gives 14— (f1+...+ fx) — (ex41+...+en) €
tE(A). By Lemma 5.1, we can extend {f1,..., fx} toaset {fi,..., fis Gkt+1,-- -, 9n}
of orthogonal idempotents of E(A) with €; = g; + tE(A). Moreover, the g;’s can

be chosen in such a way that A; = g¢;(A4) @ C; for some bounded C;. Setting
AL = gj(A) and f = fi+ ... fx + gk+1 + ... + gn gives a decomposition A =
Bi®..®By®Ap, ®...® A, ®(1— f)(A). Since 1 — f € t(E(A)), we obtain
that (1 — f)(A) is bounded, as desired. O
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Combining the last result with Proposition 3.3, we immediately obtain

Corollary 5.3. Let A € G. Every Ga-presented group is a direct sum of essen-
tially indecomposable G 4-presented groups.

The proof of the next result is based on that of [4, Lemma 26.4], which is used
in the proof of the Crawley-Jonnson-Warfield-Theorem, but several modifications to
the arguments used in [4] are necessary due to the fact that [4, Lemma 26.4] deals
with direct sums of modules whose endomorphism ring is local, while we consider
direct sums of groups A for which E(A), but not E(A) is local.

Lemma 5.4. Let G =B ® C = N & H be a G-decomposable group. If N € G is
not torsion, then G = N & T & B’ @ C’' for subgroups B C B and C' C C and a
sigma-cyclic torsion group T such that T, # 0 for only finitely many primes p.

Proof. Asin the proof of [4, Lemma 26.4], it suffices to consider the case that
G=NoHeoH =H®K&L. Weshowthat G=N®H&T ® K' & L for some
K' C K, L C L, and a sigma-cyclic torsion group 7' with T}, # 0 for only finitely
many primes p.

Once this has been shown, we use Theorem 5.2 to write N = @le N; where
Ny, ..., Ni are essentially indecomposable groups which are not torsion, and prove
the lemma by induction on k. The case k = 1 is trivial since it corresponds to H = 0.
Setting H = N1 @ ... @ Ni, we can find 71, K1 C B, and L; C C as desired with
G=H®T,® Ky, ® L. By the result in the first paragraph, there are Ky C K7,
Lo C Ly @71, and a suitable torsion group T» with G = Niy1 @ H @ To ® Ko @ Lo.
Let p1,...,p: be the primes for which Ti[p;] # 0. Since G is G-decomposable, we
can write G = V @ U such that V = G,, @...® Gy, is a direct sum of cyclics and U
is a fully invariant subgroup of G for which Ulp;] =0 and U = p;U for i = 1,...,t.
Therefore, L1 ®T; = T1®(L1NV)B(L1NU) = La® S for some subgroup S C L1 BT;.
Observe that Lo NV, SNV C Ty & (L NV). Since L1 NU is a direct summand of
U, it is fully invariant in Ly @ Ty. Therefore, Ty ® (L1 NV) = (LaNV) @ (SN V)
and (L1 NU) = (LeNU)® (SNU). Weset T = (LaNV) @ Ty and obtain G =
NoT® Ky® (LaNU) with Lo NU C Ly C C as desired.

Following [4], we choose idempotents e, e’, f € E(G) such that ee/ = e¢'e = 0,
K=¢eG),L=¢(G),H=(1-e—-¢)(G), N=f(G),and He H = (1— f)(G).
Because of (1 —e —€')(G) C (1 — f)(GQ), we have f = fef + fe/f. Since f is the
identity in fE(G)f = E(N), it is impossible that fef and fe/f are both in the
Jacobson-radical of fE(G)f. Observe that E(N) is non-zero since N is not torsion.

But E(N) = fE(G)f is a local ring, and one of these two elements is a unit in
fE( )f. Without loss of generality, this is the case for fef. There is r € E(G)
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such that s = frf satisfies 5fef = fefs = f. We can find t1,ty € t(fE(G)f) with
sfef = f+t; and fefs = f+ty. Choose a non-zero integer m with mt; = mts = 0,
and let pi,...,p, be the primes dividing m. As before, T' = G,, ® ... ® G, is
sigma-cyclic, and G = T @ U for some fully invariant subgroup U of G for which
multiplication by p; is an automorphism. In contrast to [4], ese need not be an
idempotent of E(G). Nevertheless, we are able to show U = (ese)(U) @ (1 —ese)(U):

Since s = fs = fs, we have (ese)? = efsfefsfe=efs(f+t1)fe = ese+ efstife
with mefst;fe = 0. Hence, (ese)? = ese + t' for some ' € tE(G) with #'(G) C T.
Since U is fully invariant in G, it remains to show ese(U) N (1 — ese)(U) = 0. If
w = ese(u) = (1 — ese)(v) for some u,v € U, then ese(w) = [ese — (ese)?](u) =
(=t')(u) € TNU. Thus, 0 = (ese)?(v) = ese(v) +t'(v) = ese(v) = w.

Moreover, (1 —¢e)(G) = L® H, and hence (1—¢€)(U) = (1—e)(G)NU = (LNU) @
(HNVU) is contained in (1 — ese)(U). Since U = (1 —¢)(U) @ (K NU) by the full
invariance of U in G, we have (1 —ese)(U) = (LNU)® (HNU) @ (KN (1 —ese)(V)).
On the other hand, ese(U) C K NU. Hence, KNU = ese(U) @ (K N (1 —ese)(U)).
We set K' = KN (1 — ese)(U) and obtain U = ese(U)® K' & (LNU) @ (HNU).
We show that N N U can replace ese(U) in this decomposition. For this, define
p: U —ese(U) by p(u) = ese(u). Since K’ @ (LNU) @ (HNU) = ker g, it suffices
to show that ¢|(N NU) is an isomorphism. For u € U, we have fse(u) € NNU and
ese(u) = (ese)?(u) — t'(u) = ese(se)(u) = ese(fse)(u) € (N NU). Furthermore, if
ese(x) = 0 for some x € NNU, then x = f(x) yields 0 = esef(x) = efsfef(x) =
ef(f+t2)(x) = ef(x) since mefty = 0 yields efta(z) € TNU. Thus, 0 = sfef(z) =
(f +t1)(x) = f(2) = .

Therefore, U = (NNU)@K'&(LNU)S(HNU) and T = (NNT)&(HNT)®(H'NT).
Consequently, G = N H® (H' NV)® K' ® L' with L' = LNU. Observe that
H’' NT is sigma-cyclic with only finitely many non-zero p-primary components. [

Lemma 5.5. Let G =N ® H = B ® C be G-decomposable where N € G or N is
finite. If X is a finite subset of N N B, then B = By ® B° and C = Cy ® C° such
that X C Bgand N ® D = By ® Cy @ F for finite groups D and F.

Proof. We first consider the case that N is finite. Since GG is G-decomposable,
we can write G = T @ U where U and T are fully invariant and T is a sigma-
cyclic group containing N with 7}, # 0 for only finitely many primes p. We have
T = (TNB)®(I'NC). There are finite direct summands By of TN B and Cy of
TNC with N C By & Cp.

In the case that N € G, we use Lemma 5.4 to write G = N ® T & B"” ®& C” where
B" C B, C"” C C and T is a direct sum of cyclics with T}, # 0 for only finitely many
primes p. Set B, = BN(N®T®C") and C. = CN(N@®T @ B"). We have X C B,,
B=B.®B", and C = C,.®C". Moreover, B,&C, 2 N&T. Let p1,...,p, be the
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primes with T, # 0, and set V = G,, @ ... D Gp,. Write G =V @ U for some fully
invariant subgroup U of G. Since T C V', we have (NNV)®T = (B.NV)® (C.NV)
and NNU = (B.NU)® (C, NU). Observe that N NV is finite since it is a
torsion direct summand of a group in G. Moreover, B, NV is a direct sum of
cyclics, and we can write B, NV = W & E where W is finite and By = B, ® W
contains X. We set Cp = C, NU, B = E® B’, and ¢' = (C., N V) ® C”. Since
(NNV)®By®Co = (B.NU)S(C.NU)BWS(NNV) = (NNU)S(NNV)eW = NeW,
we have obtained the desired decomposition of G. O

We are now able to show that the class of G-decomposable groups is closed with
respect to direct summands. By Theorem 5.2, every G-decomposable group G has
the form G = @, ,
indecomposable honest mixed group.

G; such that G; is either a cyclic p-group or an essentially

Theorem 5.6. Let G = B& C = @,;
is either an essentially indecomposable group in G or a cyclic p-group. Then, B =2

G; be G-decomposable where each G;

®D,c, Hj where, for each j € J, we can find i € I such that H; is a direct summand
of Gz

Proof. By Kaplansky’s Theorem, we may assume that G is countable. We
write B = {b, | n < w} with by = 0. We construct an ascending chain 0 = By C
... C B,, C ... of direct summands of B such that B,, € G and contains b,, for all
n <w.

We write B = B,, ® D,, and write b,+1 =z +y with z € B,, and y € D,,. We can
find a finite subset I,, of I such that y € N = @iel” G;. Observe that N € G. We
apply Lemma 5.5 to the decomposition G = D,, & [B,, ® C] to obtain D,, = K,, ® K’
and B, ®C = L, ® L' such that y € K,, and K, ® L, ® S, = N @& T, for some
finite groups S,, and T;,. We set B,11 = B, & K,,. Since B =
B=@, ., K, Every p-primary cyclic direct summand of K, is isomorphic a direct

n<w Bn, we have
summand of @,.; (Gi), as desired. If K, has an essentially indecomposable direct
summand W, then there is i € I,, such that W & U; =2 G; @ V; for some finite groups
U; and V;. But then, W = W’ & W" where W' is isomorphic to a direct summand
of G; and W is finite. Hence, K,, = (EBZ.GI"
to a direct summand of G; and T is finite. This proves the theorem. O

Hz) @ T,, where each H; is isomorphic

Corollary 5.7. Let Ac Gand G=B&C =@, ;Gi.

a) If each G; is a reduced A-generated group in G, then B =T & @jeJ B;, where
each Bj is a reduced A-generated group in G, and T is an A-solvable torsion
group.

b) Ifeach G; is Ga-presented, then B is a direct sum of an A-solvable torsion group
and a direct sum of G s-presented groups.
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c) Every A-projective group P is of the form P = ; P; where each P; is isomor-

or

phic to a cyclic or essentially indecomposable direct summand of A.

Proof. By Theorem 4.6, we have B = @ ; B; where each Bj is either torsion
isomorphic to a direct summand of G;. Let J;1 = {j € J | B, is torsion}. Since

D, Bj is an A-generated reduced torsion group, it is A-solvable by Lemma 2.1.

This proves the corollary. (]
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