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Abstract. Let M be a real submanifold of an almost complex manifold (M, J) and let
Hx = TxM ∩ J(TxM) be the maximal holomorphic subspace, for each x ∈ M . We prove
that c : M → �, c(x) = dim�Hx is upper-semicontinuous.
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Let (M, J) be an almost complex manifold and let M be a real submanifold of

M . Then one can consider, ∀x ∈ M , the maximal holomorphic subspaces Hx =
TxM ∩ J(TxM) and define the dimension function c : M → �, c(x) = dim�Hx.

Submanifolds verifying that the function c is constant are called generic submanifolds
(cf. [C]). As is well known, this condition is equivalent to the following: the maximal

holomorphic subspaces Hx define a distribution over M . Many results have been
found for generic submanifolds and particular cases, such as almost complex, totally

real, Cauchy-Riemann, etc.
However, no global properties of this function have been proved. The purpose

of this note is to prove that the function c is upper-semicontinuous, i.e., the sets
An = {x ∈ M/c(x) < n} are open subsets of M .
One can easily prove the following properties, for all x ∈ M : (a) c(x) is an even

number and (b) 2 dimM − dimM � c(x) � dimM . In particular, if M is a real

hypersurface of M , then c is the constant function c(x) = dimM − 2, ∀x ∈ M .
On the other hand, observe that (M, J

∣∣
M
) is a complex submanifold of (M, J) iff

c(x) = dimM , ∀x ∈ M . (See [K-N, prop. IX.2.3].)
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Let M be a real submanifold of an almost complex manifold (M, J). We shall use

the following notation: Gr(TxM) (resp. Gr(TxM)) is the Grassmann manifold of r-
planes of TxM (resp. of TxM) and π : Gr(M)→ M and π : Gr(M)→ M denote the
Grassmann bundles overM with fibres π−1(x) = Gr(TxM) and π−1(x) = Gr(TxM),

∀x ∈ M . Observe that the almost complex structure J on M induces a continuous
fibred automorphism J : Gr(M)→ Gr(M) which is involutive. i.e., J ◦ J = id.

We can prove the following

Lemma. Let M be a real submanifold of an almost complex manifold (M, J)

and let x ∈ M and r ∈ � be such that c(x) < r � dimM . Then Gr(TxM) ∩
J(Gr(TxM)) = ∅.

�����. As r > c(x), then J(Wr) �= Wr, ∀Wr ∈ Gr(TxM). Let us assume that
there existsWr ∈ Gr(TxM)∩J(Gr(TxM)). ThenWr = J(W ′

r) withW ′
r ∈ Gr(TxM),

and one can easily prove that Wr + W ′
r is a J-invariant subspace of TxM with

dim(Wr +W ′
r) � r > c(x), which is not possible, thus proving the lemma. �

Then we have:

Theorem. If M is a real submanifold of an almost complex manifold (M, J),

then the function c : M → �, c(x) = dim�Hx is upper-semicontinuous.

�����. We shall prove that the sets An = {x ∈ M/c(x) < n} are open subsets
of M showing that ∀x ∈ M , there exists a neighborhood U of x in M such that
∀y ∈ U , c(y) � c(x).

If c(x) = dimM , the result is trivial. Let us assume that c(x) < dimM . We shall
prove that for every r ∈ � such that c(x) < r � dimM , there exists a neighborhood

Ur of x inM , verifying c(y) < r, ∀y ∈ Ur. Then the solution will be the neighborhood
U =

⋂{Ur, c(x) < r � dimM}.
Let us consider x ∈ M and r ∈ � such that c(x) < r � dimM . Then, by

the lemma, one has Gr(TxM) ∩ J(Gr(TxM)) = ∅. As Gr(TxM) is compact and

Gr(M) is a Hausdorff space, there exist two neighborhoods V of Gr(TxM) and W

of J(Gr(TxM)) such that V ∩ W = ∅. Then N = V ∩ J(W ) is a neighborhood of

Gr(TxM) verifying N ∩ J(N) = ∅.
Let us consider N = N ∩ Gr(M). Then N is a neighborhood of Gr(TxM) in

Gr(M). One can consider that N is included in π−1(U ′), where U ′ is a trivialization
neighborhood of x, and then there exists a diffeomorphism

ϕ : π−1(U ′)→ U ′ ×Gr(�dimM )

given by ϕ(Wr) = (π(Wr), α(Wr)).
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For each Wr ∈ Gr(TxM) there exists a basic neighborhood ϕ−1(AWr × BWr ),

where AWr (resp. BWr ) is a neighborhood of π(Wr) (resp. α(Wr)) and ϕ−1(AWr ×
BWr ) ⊂ N , thus defining an open covering of Gr(TxM). Taking into account that
Gr(TxM) is compact, one obtains a finite family {ϕ−1(AW i

r × BW i
r ), 1 � i � k}

covering Gr(TxM).
Finally, let Ur =

⋂{AW i
r , 1 � i � k}. Then π−1(Ur) ⊂ N and π−1(Ur) ∩

J(π−1(Ur)) = ∅, thus proving that c(y) < r, ∀y ∈ Ur. �

Remarks. (1) Let M be a real compact submanifold of the complex euclidean
space �m . As is well known (cf. [W, p. 11]), M cannot be immersed into �m as a

holomorphic submanifold. Therefore, there exists a point x ∈ M such that c(x) <

dimM . The above theorem shows that AdimM is a non-empty open subset of M.

(2) The theorem is also true if one replaces the almost complex manifold (M, J)
by an almost product manifold (M, J), i.e., if J ◦ J = id.
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