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Throughout the paper E1 ⊂ E2 ⊂ . . . is a sequence of Hausdorff locally convex

spaces with continuous identity maps id: En → En+1, n ∈ N . Their locally convex
inductive limit is denoted by indEn or for brevity, just E. If all spaces En are

Banach, resp. Fréchet, then we call E an LB-, resp. LF-space. We use the following
notation: given a setM ⊂ E, then coM , resp. clE M is its convex hull, resp. closure
in the topology of E.

According to [3] or [1, § 5.2], the space E = indEn is called regular if every set
bounded in E is also bounded in some constituent space En. By Makarov’s Theorem,

see [1, § 5.6], every quasi-complete LF-space is regular. It is natural to ask whether
the reverse statement is true, at least for LB-spaces. By Raikov’s Theorem, see

[1, § 4.3], every LB-space is quasi-complete iff it is complete. So in [4] Mujica asks:
Is every regular LB-space complete? The answer is negative as shown in [2] with

an example of an incomplete regular LB-space. In this paper we slightly generalize
Makarov’s Theorem and receive an equivalence: An LF-space is regular iff it is
sequentially complete.

Proposition 1. Every sequentially complete LF-space is regular.

�����. Let B be a bounded set in an LF-space E = indEn. Let A be the
closure in E of the convex, balanced hull of B, and F =

⋃{nA ; n ∈ N}. We equip
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F with the norm topology generated by the Minkowski functional of A and show

that F is complete.

The set A is bounded in E. Hence for any 0-nbhd V in E there exists α > 0 such
that A ⊂ αV . Thus the identity map id: F → E is continuous.

Let {xn} be a Cauchy sequence in F . Due to continuity of id: F → E, it is also

Cauchy in E and as such it converges to some x0 ∈ E. The set S = {xn ; n ∈ N} is
bounded in F . Hence S ⊂ βA for some β > 0. Since the set βA is closed in E, we

have x0 ∈ βA ⊂ F .

For any closed 0-nbhd λA, λ > 0 in F , there exists k ∈ N such that xn−xm ∈ λA

for m, n � k. If we let m → ∞, we get xn − x0 ∈ λA for n � k, which implies

xn → x0 in F .

Now F is a Banach space and id: F → indEn is continuous. Hence the graph
of id: F → E in F × E is closed. By [5; cor. iv. 6.5] there exists n ∈ N such that

id: E → En is continuous. This implies that A, hence also B, is bounded in En,
i.e., E is regular. �

Proposition 2. Every regular LF-space is sequentially complete.

�����. Let E = indEn be a regular LF-space and {xn ; n ∈ N} a Cauchy
sequence in E. Put Bn = clE co{xm ; m > n}; n = 0, 1, 2, . . .Then B0 is bounded

in E and, by the regularity ofE, it is bounded in some constituent space En. Without
a loss of generality, we may assume n = 1.

The space E1 is Fréchet, hence the canonical imbedding E1 → E′′
1 , where E′′

1 is the

second dual of E1, equipped with its strong topology, is a topological isomorphism
into E′′

1 . Since E1 is complete, it is closed in E′′
1 and each f ∈ E′

1 can be continuously

extended to E′′
1 . Also, the set B0 is closed and convex in E′′

1 , hence it is weakly closed
in E′′

1 . Since each f ∈ E′
1 has an continuous extension in E′′

1 , the set B0 is σ(E
′′
1 , E

′
1)-

closed in E′′
1 .

Further, the set B0, bounded in E′′
1 , is equicontinuous on E′

1. Hence, by Alaoglu
Theorem, it is relatively σ(E′′

1 , E
′
1)-compact. This, together with the σ(E′′

1 , E
′
1)-

closedness implies that B0 is σ(E′′
1 , E

′
1)-compact in E′′

1 .

Similarly, all sets Bn, n ∈ N , are σ(E′′
1 , E

′
1)-compact. Any finite intersection⋂{Bn ; 0 � n � m} = Bm, m ∈ N , is non-empty, hence there exists x0 ∈

⋂{Bn ;

n � 0} ⊂ E1. This implies the existence of an upper-triangular matrix Λ = (λnm)
with all λnm � 0, only finite number of non-zero entries in each row, and the sum of
all entries in each row equal to 1, such that the sequence

{
yn =

∞∑
m=n

λnmxm ; n ∈ N
}

converges to x0 in the topology of E1.

Evidently yn → x0 also in the topology of E. Given a balanced, convex, 0-nbhd
V in E, there exist p, q ∈ N such that yn − x0 ∈ V for n � p and xm − xn ∈ V for
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m � n � q. Then for n � max(p, q), we have x0 − xn = (x0 − yn) + (yn − xn) =

(x0 − yn) +
∞∑

m=n
λnm(xm − xn) ∈ V + V and xn → x0 in E. �

Remark. We have proved a little more: If a Cauchy sequence in E is bounded

in a Fréchet space En, then it converges to an element in En in the topology of E,
but not necessarily in the topology of En.

If we combine the two Propositions, we get:

Theorem. Any LF-space is sequentially complete iff it is regular.
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