Czechoslovak Mathematical Journal

Gary Chartrand; Elzbieta B. Jarrett; Farrokh Saba; Ebrahim Salehi; Ping Zhang F-continuous graphs

Czechoslovak Mathematical Journal, Vol. 51 (2001), No. 2, 351-361
Persistent URL: http://dml.cz/dmlcz/127652

Terms of use:

© Institute of Mathematics AS CR, 2001

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

F-CONTINUOUS GRAPHS

Gary Chartrand, Kalamazoo, Elzbieta B. Jarrett, Modesto, Farrokh Saba, Detroit, Ebrahim Salehi, Las Vegas, Ping Zhang, Kalamazoo

(Received July 23, 1998)

Abstract. For a nontrivial connected graph F, the F-degree of a vertex v in a graph G is the number of copies of F in G containing v. A graph G is F-continuous (or F-degree continuous) if the F-degrees of every two adjacent vertices of G differ by at most 1 . All P_{3}-continuous graphs are determined. It is observed that if G is a nontrivial connected graph that is F-continuous for all nontrivial connected graphs F, then either G is regular or G is a path. In the case of a 2-connected graph F, however, there always exists a regular graph that is not F-continuous. It is also shown that for every graph H and every 2-connected graph F, there exists an F-continuous graph G containing H as an induced subgraph.

Keywords: F-degree, F-degree continuous
MSC 2000: 05C12

1. Introduction

For a vertex v in a graph G, the degree $\operatorname{deg} v$ of v is the number of edges in G incident with v. For a nontrivial connected graph F, the F-degree $F \operatorname{deg} v$ of v in G is the number of copies of F in G containing v. Thus the K_{2}-degree of a vertex is synonymous with its degree. The concept of F-degree was introduced and studied in [2]. If $F \operatorname{deg} v=r$ for every vertex v of G, then G is said to be F-regular of degree r.

In [1] an integer-valued parameter f defined on the vertex set of a graph G is called continuous if $|f(u)-f(v)| \leqslant 1$ for every two adjacent vertices u and v of G.

Research supported in part by the Western Michigan University Faculty Research and Creative Activities Grant.

In particular, degree continuous graphs have the property that $|\operatorname{deg} u-\operatorname{deg} v| \leqslant 1$ for every two adjacent vertices u and v. Degree continuous graphs were studied by Gimbel and Zhang [5], who showed, among other results, that for every two positive integers r and s with $r \leqslant s$, there exists a degree continuous graph with degree set $\{r, r+1, \ldots, s\}$.

For a nontrivial connected graph F, we define a graph G to be F-degree continuous or, more simply, F-continuous if the F-degrees of every two adjacent vertices differ by at most 1 .

It is an elementary observation that a graph G is F-continuous for some nontrivial connected graph F if and only if every component of G is F-continuous. Hence it suffices to consider only connected graphs G. Also, if G contains no copy of F, then every vertex of G has F-degree 0 and G is trivially F-continuous. Therefore, unless otherwise stated, we assume, for a given graph F, that every graph G under consideration contains a copy of F. The following fact will be useful. We denote the path of order n by P_{n}.

Lemma 1.1. Let F be a nontrivial connected graph with the property that for every connected graph G, whenever G contains F as a subgraph, then every vertex of G belongs to a copy of F. Then F is P_{2}, P_{3}, or P_{4}.

Proof. Obviously, P_{2} has the desired property. Suppose next that G is a connected graph containing $F=P_{4}$ as a subgraph and let v be a vertex of G. Let Q be a shortest path (of length ℓ) in G from v to F. If $\ell=0$ or $\ell=3$, then clearly v lies on a copy of P_{4}. Otherwise, Q together with an appropriate subpath of F gives a path P_{4} containing v. The argument for $F=P_{3}$ is similar.

It remains to show that no graph F different from P_{2}, P_{3}, or P_{4} has such a property. Assume first that $F=P_{k}$, where $k \geqslant 5$. Let $P: v_{1}, v_{2}, \ldots, v_{k}$ be a path of order k and let G be the tree obtained by adding a new vertex v to P and the edge $v v_{\left\lfloor\frac{k}{2}\right\rfloor}$. Then v lies on no copy of F. Assume then that F is not a path. In this case, let ℓ be the length of a longest path in F. A graph G is constructed by identifying an end-vertex of $P_{\ell+1}$ with a vertex of F. Let u be the other end-vertex of $P_{\ell+1}$. Then u lies on no copy of F.

By Lemma 1.1, it then follows that if $P_{k}(2 \leqslant k \leqslant 4)$ is a subgraph of a connected graph G, then every vertex of G has a positive P_{k}-degree. Moreover, only these paths have this property.

In this paper, we present several results concerning F-continuous graphs for various graphs F.

3. P_{3}-CONTINUOUS GRAPHS

In this section we consider F-continuous graphs for the case where $F=P_{3}$, the path of order 3 . We begin with the observation that every path $P_{n}(n \geqslant 3)$ is P_{3}-continuous. In fact, the P_{3}-degree of every vertex of P_{3} is 1 , that is, P_{3} is P_{3}-regular. For $n \geqslant 4$, the end-vertices of P_{n} have P_{3}-degree 1, while the P_{3}-degrees of the two vertices adjacent to an end-vertex are 2. The remaining vertices of P_{n} have P_{3}-degree 3 .

Next we make a general observation about the P_{3}-degree of a vertex. Let G be a connected graph containing a path of order 3. By Lemma 1.1, every vertex of G lies on a path of order 3 . Denote the neighbourhood of a vertex v (the vertices adjacent to v) by $N(v)$. Then v is the central vertex of $\binom{\operatorname{deg} v}{2}$ copies of P_{3} and it is the end-vertex of $\sum_{u \in N(v)}(\operatorname{deg} u-1)$ copies of P_{3}. Therefore,

$$
\begin{equation*}
P_{3} \operatorname{deg} v=\binom{\operatorname{deg} v}{2}+\sum_{u \in N(v)}(\operatorname{deg} u-1) \tag{1}
\end{equation*}
$$

An immediate consequence of this observation is that every r-regular graph is $P_{3^{-}}$ regular of degree $3\binom{r}{2}$ and so is P_{3}-continuous. Hence it follows that all cycles, complete graphs, and hypercubes are P_{3}-continuous. Next we determine those complete bipartite graphs that are P_{3}-continuous.

Theorem 2.1. Among the complete bipartite graphs, only $K_{1,2}, K_{1,3}, K_{2,3}$ and $K_{r, r}(r \geqslant 2)$ are P_{3}-continuous.

Proof. Since $K_{r, r}(r \geqslant 2)$ is an r-regular graph, $K_{r, r}$ is P_{3}-continuous. Next, let $G=K_{r, s}$, where $1 \leqslant r<s$ and let $u, v \in V(G)$, where $\operatorname{deg} u=r$ and $\operatorname{deg} v=s$.

Assume first that $P_{3} \operatorname{deg} v \leqslant P_{3} \operatorname{deg} u$. Then

$$
\binom{s}{2}+s(r-1) \leqslant\binom{ r}{2}+r(s-1) .
$$

So $(s-r)(r+s-3) \leqslant 0$. This implies that $r+s=3$, from which it follows that $(r, s)=(1,2)$. Otherwise, $P_{3} \operatorname{deg} v=1+P_{3} \operatorname{deg} u$. In this case, $s(s-3)=(r-1)(r-2)$. Hence $(r, s)=(1,3)$ or $(r, s)=(2,3)$.

The following lemma describes the P_{3}-continuous graphs containing vertices with P_{3}-degree at most 3.

Lemma 2.2. Let G be a P_{3}-continuous graph. Then
(a) G contains a vertex with P_{3}-degree 1 if and only if $G=P_{n}$, where $n \geqslant 3$;
(b) G contains a vertex with P_{3}-degree 2 if and only if $G=P_{n}$, where $n \geqslant 4$, or $G=K_{1,3} ;$
(c) G contains a vertex with P_{3}-degree 3 if and only if $G=P_{n}$, where $n \geqslant 5$, or $G=C_{n}$, where $n \geqslant 3$, or $G=K_{1,3}$.

Proof. Let v be a vertex with $P_{3} \operatorname{deg} v=1$. Necessarily, then, $\operatorname{deg} v \leqslant 2$. If $\operatorname{deg} v=1$, then v is an end-vertex that is adjacent to a vertex u of degree 2 . Let $N(u)=\{v, w\}$. Now $\operatorname{deg} w \leqslant 2$; otherwise, $P_{3} \operatorname{deg} u \geqslant 3$, contradicting the P_{3}-continuity of G. Repeating this procedure, it follows that $G=P_{n}$, where $n \geqslant 3$. If $\operatorname{deg} v=2$, then $G=P_{3}$. This verifies (a).

Next let v be a vertex with $P_{3} \operatorname{deg} v=2$. Then $\operatorname{deg} v \leqslant 2$. If $\operatorname{deg} v=1$, then v is an end-vertex adjacent to a vertex u of degree 3. Let $N(u)=\left\{v, w_{1}, w_{2}\right\}$. Now $\operatorname{deg} w_{1}=\operatorname{deg} w_{2}=1$; otherwise, $P_{3} \operatorname{deg} u \geqslant 4$, contradicting the P_{3}-continuity of G. Therefore, $G=K_{1,3}$.

Now suppose that $\operatorname{deg} v=2$, and let $N(v)=\{u, w\}$. Then exactly one of u and w is an end-vertex with P_{3}-degree 1. By (a), it follows that $G=P_{n}$, in this case with $n \geqslant 4$. This verifies (b).

Finally, let v be a vertex with degree $P_{3} \operatorname{deg} v=3$. Then $\operatorname{deg} v \leqslant 3$. If $\operatorname{deg} v=1$, then v is an end-vertex adjacent to a vertex u of degree 4. Consequently, $P_{3} \operatorname{deg} u \geqslant$ $\binom{4}{2}=6$, contradicting the P_{3}-continuity of G. Hence $\operatorname{deg} v \geqslant 2$.

If $\operatorname{deg} v=2$, then v is adjacent to two vertices u and w, neither of which is an end-vertex. Necessarily, $\operatorname{deg} u=\operatorname{deg} w=2$. Continuing in this manner, we see that either $G=C_{n}$, where $n \geqslant 3$, or $G=P_{n}$ where $n \geqslant 5$. If $\operatorname{deg} v=3$, then $G=K_{1,3}$. This verifies (c).

As a consequence of Lemma 2.2, we are able to determine all P_{3}-continuous trees.
Corollary 2.3. The only P_{3}-continuous trees are P_{n}, where $n \geqslant 3$, and $K_{1,3}$.
Proof. Let T be a P_{3}-continuous tree and let v be an end-vertex of T that is adjacent to w. Let $\operatorname{deg} w=k$. Then

$$
\binom{k}{2} \leqslant P_{3} \operatorname{deg} w \leqslant 1+P_{3} \operatorname{deg} v
$$

Thus $1+(k-1)=k \geqslant\binom{ k}{2}$, so $k \leqslant 3$. If $k=2$, then $P_{3} \operatorname{deg} v=1$. By Lemma 2.2 (a), $G=P_{n}$, where $n \geqslant 3$. If $k=3$, then $P_{3} \operatorname{deg} v=2$ and either $G=P_{n}$, where $n \geqslant 4$, or $G=K_{1,3}$ by Lemma $2.2(\mathrm{~b})$.

We have already noted that every r-regular graph, $r \geqslant 2$, is P_{3}-continuous; indeed it is P_{3}-regular of degree $3\binom{r}{2}$. We now determine the possible P_{3}-degree sets of all P_{3}-continuous graphs. Necessarily these sets are of the form $\{r, r+1, r+2, \ldots, s\}$
for positive integers r and s with $r \leqslant s$. We begin by determining the P_{3}-degree sets of cardinality 2 in a connected P_{3}-continuous graph.

Theorem 2.4. If G is a connected P_{3}-continuous graph with P_{3}-degree set $\{k, k+1\}$, then $k \in\{1,2,5\}$.

Proof. Since the vertices of G have two distinct P_{3}-degrees, G is not regular. Since $G \neq P_{3}$, it follows that the order of G is at least 4. Let u and v be vertices of G with $\operatorname{deg} u=\delta(G)=\delta$ and $\operatorname{deg} v=\Delta(G)=\Delta$, where $\delta<\Delta$. First we show that $P_{3} \operatorname{deg} v>P_{3} \operatorname{deg} u$. Assume, to the contrary, that

$$
\begin{equation*}
P_{3} \operatorname{deg} v \leqslant P_{3} \operatorname{deg} u \tag{2}
\end{equation*}
$$

Then, by (1), it follows that

$$
\binom{\Delta}{2}+\Delta(\delta-1) \leqslant P_{3} \operatorname{deg} v \leqslant P_{3} \operatorname{deg} u \leqslant\binom{\delta}{2}+\delta(\Delta-1),
$$

which yields the inequality $\Delta^{2}-3 \Delta \leqslant \delta^{2}-3 \delta$ or, equivalently, $(\Delta-\delta)(\Delta+\delta-3) \leqslant 0$. This implies that $\Delta+\delta=3$, so $(\delta, \Delta)=(1,2)$. So $G=P_{n}$ for $n \geqslant 4$ and $P_{3} \operatorname{deg} v>$ $P_{3} \operatorname{deg} u$, which contradicts (2). Hence, as claimed, $P_{3} \operatorname{deg} v>P_{3} \operatorname{deg} u$. Since the P_{3}-degree set of G is $\{k, k+1\}$, we must have $P_{3} \operatorname{deg} v=1+P_{3} \operatorname{deg} u$. So

$$
\binom{\Delta}{2}+\Delta(\delta-1) \leqslant P_{3} \operatorname{deg} v=1+P_{3} \operatorname{deg} u \leqslant 1+\binom{\delta}{2}+\delta(\Delta-1)
$$

which produces the inequality

$$
\begin{equation*}
(\Delta-\delta)(\Delta+\delta-3) \leqslant 2 \tag{3}
\end{equation*}
$$

The only pairs (δ, Δ) satisfying (3) are $(1,2),(1,3)$, and $(2,3)$.
If $(\delta, \Delta)=(1,2)$, then $P_{3} \operatorname{deg} u=1$ and by Lemma $2.2, G=P_{4}$, producing the P_{3}-degree set $\{1,2\}$. Assume that $(\delta, \Delta)=(1,3)$. Then $\operatorname{deg} u=1$. Let w be the neighbour of u. So $2 \leqslant \operatorname{deg} w \leqslant 3$. If $\operatorname{deg} w=2$, then $P_{3} \operatorname{deg} u=1$ and $G=P_{n}$ for $n \geqslant 4$ by Lemma 2.2 (b). This, however, is impossible since $\Delta=3$. Thus $\operatorname{deg} w=3$. Then $P_{3} \operatorname{deg} u=2$, which implies by Lemma 2.2 (b) that $G=K_{1,3}$. This gives the P_{3}-degree set $\{2,3\}$.

If $(\delta, \Delta)=(2,3)$, then, of course, every vertex of G has degree 2 or 3 . Since $P_{3} \operatorname{deg} u \leqslant\binom{ 2}{2}+2+2=5$ and $P_{3} \operatorname{deg} v \geqslant\binom{ 3}{2}+1+1+1=6$, a vertex of degree 3 can only be adjacent to vertices of degree 2 while a vertex of degree 2 can only be adjacent to vertices of degree 3 . Thus $k=5$ and the P_{3}-continuous graphs with P_{3}-degree set $\{5,6\}$ are the subdivision graphs of cubic graphs or cubic multigraphs.

In Lemma 2.2, we have described P_{3}-continuous graphs containing vertices with P_{3}-degree 1, 2 , or 3 . No vertex of a P_{3}-continuous graph can have P_{3}-degree 4 , however; suppose, to the contrary, that G is a P_{3}-continuous graph containing a vertex v with $P_{3} \operatorname{deg} v=4$. By (1), it follows that $1 \leqslant \operatorname{deg} v \leqslant 3$. If $\operatorname{deg} v=1$, then its neighbour u has degree 5 , so $P_{3} \operatorname{deg} u \geqslant 10$, contradicting the P_{3}-continuity of G. Thus $\operatorname{deg} v=2$ or $\operatorname{deg} v=3$. In either case, v cannot be adjacent to an end-vertex for such a vertex has P_{3}-degree at most 2 , again contradicting the P_{3}-continuity of G. Since a vertex v with $P_{3} \operatorname{deg} v=4$ and $\operatorname{deg} v=3$ in a P_{3}-continuous graph must be adjacent to an end-vertex, we are left with only one possibility, namely $\operatorname{deg} v=2$ and one neighbour of v, say u, has degree 3 and the other neighbour of v has degree 2 . Since $4 \leqslant P_{3} \operatorname{deg} u \leqslant 5$, it follows that u is adjacent to an end-vertex w. However, then, $P_{3} \operatorname{deg} w=2$, again a contradiction.

The following theorem provides us with additional information about the degrees of the vertices of a P_{3}-continuous graph.

Theorem 2.5. Every P_{3}-continuous graph is regular or has maximum degree at most 3 .

Proof. Let G be a P_{3}-continuous graph that is not regular. We show that $\Delta(G) \leqslant 3$. Assume first that $\delta(G)=1$. Let $\operatorname{deg} u=1$ and assume that v is adjacent to u. Then $\operatorname{deg} v \leqslant 3$. Therefore, $P_{3} \operatorname{deg} u=1$ or $P_{3} \operatorname{deg} u=2$. By Lemma 2.2, $G=P_{n}$ for some $n \geqslant 3$ or $G=K_{1,3}$ and so $\Delta(G) \leqslant 3$.

Hence we may assume that $\delta(G) \geqslant 2$. Assume, to the contrary, that $\Delta(G)=$ $\Delta \geqslant 4$. First we show that no vertex of degree 2 can be adjacent to a vertex of degree at least 4; assume, to the contrary, that u and w are adjacent vertices with $\operatorname{deg} u=2$ and $\operatorname{deg} w \geqslant 4$. Furthermore, we may assume that if v is another neighbour of u, then $\operatorname{deg} v \leqslant \operatorname{deg} w$. Then $P_{3} \operatorname{deg} u \leqslant\binom{ 2}{2}+2(\operatorname{deg} w-1)=2 \operatorname{deg} w-1$, while $P_{3} \operatorname{deg} w \geqslant\binom{\operatorname{deg} w}{2}+\operatorname{deg} w$. This implies that $P_{3} \operatorname{deg} w-P_{3} \operatorname{deg} u \geqslant 3$ as $\operatorname{deg} w \geqslant 4$. Thus a vertex of degree $\Delta \geqslant 4$ can be adjacent only to vertices of degree 3 or more. Let k be the smallest degree of a vertex that is adjacent to a vertex of degree Δ. Say $\operatorname{deg} x=k$ and $\operatorname{deg} y=\Delta$, where $x y \in E(G)$. Then $3 \leqslant k<\Delta$. Therefore, $P_{3} \operatorname{deg} y \geqslant\binom{\Delta}{2}+\Delta(k-1)$ and $P_{3} \operatorname{deg} x \leqslant\binom{ k}{2}+k(\Delta-1)$, so

$$
\begin{aligned}
P_{3} \operatorname{deg} y-P_{3} \operatorname{deg} x & \geqslant\binom{\Delta}{2}+\Delta(k-1)-\binom{k}{2}-k(\Delta-1) \\
& =\frac{1}{2}(\Delta-k)(\Delta+k-3) \geqslant 2
\end{aligned}
$$

This is a contradiction.
With the aid of Theorem 2.5, we now see that only certain P_{3}-degrees are possible for the vertices of a P_{3}-continuous graph.

Corollary 2.6. The only integers that can occur as the P_{3}-degrees of the vertices of a P_{3}-continuous graph are $1,2,3,5,6$, and $3\binom{r}{2}$, where $r \geqslant 3$.

Proof. Let G be a P_{3}-continuous graph. If G is r-regular, then we have already seen that G is P_{3}-regular of degree $3\binom{r}{2}$. Thus we may assume that $1 \leqslant \delta(G)=\delta<$ $\Delta(G)=\Delta$, where $\Delta \leqslant 3$ by Theorem 2.5. Hence the only possible pairs for (δ, Δ) for G are $(1,2),(1,3)$, and $(2,3)$. For $(\delta, \Delta)=(1,2), G=P_{n}$, which has P_{3}-degrees 1,2 , and 3 for its vertices. For $(\delta, \Delta)=(1,3), G=K_{1,3}$, which has P_{3}-degrees 2 and 3 for its vertices. For $(\delta, \Delta)=(2,3)$, each P_{3}-continuous graph is the subdivision of a cubic graph or a cubic multigraph. The P_{3}-degrees of the vertices of these graphs are 5 and 6 . Hence each of the numbers $1,2,3,5,6$ is realizable as the P_{3}-degree of some vertex in a P_{3}-continuous graph.

Corollary 2.7. The P_{3}-degree sets of a P_{3}-continuous graph are $\left\{3\binom{r}{2}\right\}$ for $r \geqslant 2$, $\{1,2\},\{2,3\},\{5,6\}$, and $\{1,2,3\}$. Furthermore, the only P_{3}-continuous graphs are regular graphs, P_{n} for $n \geqslant 3, K_{1,3}$, and the subdivisions of a cubic graph or a cubic multigraph.

3. Other results concerning F-CONTINUOUS Graphs

By Corollary 2.7, the only P_{3}-continuous graphs are regular graphs, the paths P_{n} for $n \geqslant 3$, the star $K_{1,3}$, and the subdivisions of cubic graphs or cubic multigraphs. Certainly, every vertex of $K_{1,3}$ has degree 1 or 3 ; hence $K_{1,3}$ is not P_{2}-continuous. If G is a subdivision of a cubic graph or a cubic multigraph, then every vertex of degree 3 in G has P_{4}-degree 12, while every vertex of degree 2 in G has P_{4}-degree 6 . These observations give the following result.

Corollary 3.1. If G is a connected graph of order $n \geqslant 2$ that is F-continuous for every nontrivial connected graph F, then either G is regular or $G=P_{n}$.

Although the paths $P_{n}, n \geqslant 2$, are F-continuous for every nontrivial connected graph F, the converse of Corollary 3.1. is not true as there are many nontrivial connected graphs F for which there exist regular graphs that are not F-continuous. Of course, vertex-transitive graphs are F-regular for every nontrivial connected graph F, so they are F-continuous as well. Also, regular graphs that are not K_{2}-regular clearly do not exist. Since every regular graph is P_{3}-regular, there is no regular graph that is not P_{3}-continuous. The paths P_{2} and P_{3} are also both stars. Indeed, if G is an r-regular graph and $F=K_{1, k}, k \geqslant 2$, then every vertex of G has F-degree $(k+1)\binom{r}{k}$ and is consequently F-regular and so F-continuous.

The situation is different, however, if $F=P_{4}$. Indeed, if v is a vertex of an r-regular graph, then

$$
\begin{equation*}
P_{4} \operatorname{deg} v=2 r(r-1)^{2}-4 \dot{K}_{3} \operatorname{deg} v . \tag{4}
\end{equation*}
$$

By (4), if G is a regular graph not all of whose vertices belong to the same number of triangles, then G is not P_{4}-continuous. Indeed (4) shows us that an r-regular graph G is P_{4}-continuous if and only if G is K_{3}-regular. A regular graph that is not P_{4}-continuous is shown in Fig. 1, where its vertices are labeled with their P_{4}-degrees.

Fig. 1
This suggests the problem of determining those graphs F for which there exists a regular graph G that is not F-continuous. If F is 2 -connected, then we have a solution to this problem. Before presenting this solution, it is useful to make a few preliminary remarks. If G is a graph with cycles, then its circumference $c(G)$ is the length of its largest cycle, while its girth $g(G)$ is the length of its smallest cycle. It was shown by Erdös and Sachs [4] that for every two integers $r \geqslant 2$ and $g \geqslant 3$, there exists an r-regular graph having girth g. An r-regular graph having girth g of minimum order is called an (r, g)-cage.

Theorem 3.2. For every 2 -connected graph F, there exists a regular graph that is not F-continuous.

Proof. Let F have order n, and let H be the graph obtained by identifying three copies F_{1}, F_{2}, F_{3} of F at the same vertex v, where $\operatorname{deg}_{F} v=\Delta(F)=\Delta$. Thus $F \operatorname{deg}_{H} v=3$ and $F \operatorname{deg}_{H} x=1$ for $x \neq v$. Hence H is not F-continuous and $\Delta(H)=3 \Delta$. If either Δ or n is even, let $r=3 \Delta$; otherwise, let $r=3 n+1$. We construct an r-regular graph G that is not F-continuous. Observe that

$$
\begin{equation*}
\sum_{u \in V(H)}\left(r-\operatorname{deg}_{H} u\right)=r(3 n-2)-\sum_{u \in V(H)} \operatorname{deg}_{H} u=2 q \tag{5}
\end{equation*}
$$

is even. Let c denote the circumference of F. Hence the circumference of H is c as well. Let J denote an r-regular cage of girth $c+1$. Certainly F is not a subgraph
of J. Let $J_{1}, J_{2}, \ldots, J_{q}$ be q copies of J and delete the same edge, say $y z$, in each copy. Necessarily, the edge $y z$ lies on some cycle (of length at least $c+1$). We now join y and z in each graph $J_{i}-y z(1 \leqslant i \leqslant q)$ to distinct vertices of H in such a way that the resulting graph G is r-regular. No copy of F contains these two edges since the length of the smallest cycle in G containing these edges exceeds c. Hence the only copies of F in G are F_{1}, F_{2}, and F_{3}. Thus, $F \operatorname{deg}_{G} v=3, F \operatorname{deg}_{G} x=1$ for $x \in V\left(F_{i}-v\right), 1 \leqslant i \leqslant 3$, and $F \operatorname{deg}_{G} x=0$ for $x \in V\left(J_{i}\right), 1 \leqslant i \leqslant q$. Therefore, the graph G has the desired properties.

Although we have seen that regular graphs exist that are not P_{4}-continuous, we know of no general construction that shows that regular graphs exist which are not F-continuous when F is not a star. However, we believe that this is the case.

Conjecture 3.3. For every nontrivial connected graph F different from the star $K_{1, k}, k \geqslant 1$, there exists a regular graph that is not F-continuous.

Fig. 2 shows the graph of Fig. 1 again, but this time the K_{3}-degrees of its vertices are shown.

Fig. 2
As we can see from Fig. 2, there exist regular, K_{3}-continuous graphs that are not K_{3}-regular. This statement is true if K_{3} is replaced by any nontrivial complete graph. For $n \geqslant 4$, the graph of Fig. 3 describes a construction of a regular, K_{n}-continuous graph that is not K_{n}-regular. It is obtained by removing an edge from each of two copies of K_{n+1} and joining the corresponding vertices.

Fig. 3
A regular, C_{4}-continuous graph that is not C_{4}-regular is shown in Fig. 4. The C_{4}-degrees of its vertices are indicated in the figure. We state the following problems.

Fig. 4
Problem 3.4. For every nontrivial connected graph F different from the star $K_{1, k}, k \geqslant 1$, does there exist a regular, F-continuous graph that is not F-regular?

Problem 3.5. Is it true that every regular graph G that is not vertex-transitive is not F-continuous for some nontrivial connected graph F ?

A well known theorem of König [6] states that for every graph H, there exists a regular graph G containing H as an induced subgraph. Certainly, such a graph G is K_{2}-continuous as well. In the case of 2-connected graphs F, we can extend this result to F-continuous graphs.

Theorem 3.6. For every graph H and every 2-connected graph F, there exists an F-continuous graph G containing H as an induced subgraph.

Proof. Let H be a g raph and let $\Delta_{F}=\max _{v \in V(H)}\left(F \operatorname{deg}_{H} v\right)$. If $\Delta_{F} \leqslant 1$, then let $G=H$, which has the desired properties. So we may assume that $\Delta_{F} \geqslant 2$. For each vertex v in H, if $F \operatorname{deg}_{H} v=i$, then we attach $\Delta_{F}-i$ copies $F_{v, j}\left(1 \leqslant j \leqslant \Delta_{F}-i\right)$ of F to H at v by identifying v and a vertex in each graph $F_{v, j}$ for all j. Denote the resulting graph by G_{1}. Then H is a induced subgraph of G_{1} and every vertex in H is a cut-vertex in G_{1}.

Since F is 2-connected, every copy of F in G_{1} is either a subgraph of H or is some graph $F_{u, j}$ for $u \in V(H)$ and $1 \leqslant j \leqslant \Delta_{F}-F \operatorname{deg}_{H} u$. Thus $F \operatorname{deg}_{G_{1}} v=\Delta_{F}$ for $v \in V(H)$ and $F \operatorname{deg}_{G_{1}} v=1$ for all $v \in V\left(G_{1}\right)-V(H)$. If $\Delta_{F}=2$, then G_{1} is F-continuous and $G=G_{1}$ has the desired properties. Otherwise, we construct a graph G_{2} from G_{1} by attaching $\Delta_{F}-2$ copies of F to G_{1} at v for each $v \in V\left(G_{1}\right)-$ $V(H)$ as above. Again, H is an induced subgraph of G_{2} and every vertex in G_{1} is a cut-vertex of G_{2}. Hence, $F \operatorname{deg}_{G_{2}} v=\Delta_{F}$ for all $v \in V(H), F \operatorname{deg}_{G_{2}} v=\Delta_{F}-1$ for all $v \in V\left(G_{1}\right)-V(H)$, and $F \operatorname{deg}_{G_{2}} v=1$ for all $v \in V\left(G_{2}\right)-V\left(G_{1}\right)$. If G_{2} is F-continuous, then $G=G_{2}$ has the desired properties. Otherwise, we repeat the procedure described above for each k with $3 \leqslant k \leqslant \Delta_{F}-1$ to obtain the graph G_{k}. In the F-continuous graph $G=G_{\Delta_{F}-1}$, the graph H is an induced subgraph of G, as desired.

The F-degree set of the graph G constructed in the proof of Theorem 3.6 is $\left\{1,2, \ldots, \Delta_{F}\right\}$. So we have the following consequence of the proof of Theorem 3.6.

Corollary 3.7. For every 2 -connected graph F and integer $s \geqslant 1$, there exists an F-continuous graph G whose F-degree set is $\{1,2, \ldots, s\}$.

Proof. Let G_{1} be obtained by identifying s copies of F at a vertex u. Then $F \operatorname{deg}_{G_{1}} u=s$ and $F \operatorname{deg}_{G_{1}} v=1$ for all $v \in V\left(G_{1}\right)-\{u\}$. We repeat the procedure in the proof of Theorem 3.6 to construct a sequence $G_{1}, G_{2}, \ldots, G_{s}$ of graphs. Then $G=G_{s}$ has the desired properties.

References

[1] G. Chartrand, L. Eroh, M. Schultz and P. Zhang: An introduction to analytic graph theory. Utilitas Math. To appear.
[2] G. Chartrand, K.S. Holbert, O. R. Oellermann and H. C. Swart: F-degrees in graphs. Ars Combin. 24 (1987), 133-148.
[3] G. Chartrand and L. Lesniak: Graphs \& Digraphs (third edition). Chapman \& Hall, New York, 1996.
[4] P. Erdös and H. Sachs: Reguläre Graphen gegebener Taillenweite mit minimaler Knotenzahl. Wiss Z. Univ. Halle, Math-Nat. 12 (1963), 251-258.
[5] J. Gimbel and P. Zhang: Degree-continuous graphs. Czechoslovak Math. J. To appear.
[6] D. König: Über Graphen und ihre Anwendung auf Determinantheorie und Mengenlehre. Math. Ann. 77 (1916), 453-465.

Authors' addresses: G. Chartrand, Department of Mathematics and Statistics, Western Michigan University, Kalamazoo, MI 49008, USA, e-mail chartrand@wmich.edu; E. B. Jarrett, Engineering, Mathematics and Physical Sciences Division, Modesto Junior College, Modesto, CA 95350, USA, e-mail enya505@aol.com; F. S a b a, Department of Mathematics and Computer Science, University of Detroit Mercy, Detroid, MI 48219, USA, e-mail drsaba@hotmail.com; E. Salehi, Department of Mathematics Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA, e-mail salehi@nevada.edu; P. Zhang, Department of Mathematics and Statistics, Western Michigan University, Kalamazoo, MI 49008, USA, e-mail zhang@math-stat.wmich.edu.

