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FINITELY VALUED f -MODULES, AN ADDENDUM
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Abstract. In an �-groupM with an appropriate operator set Ω it is shown that the Ω-value
set ΓΩ(M) can be embedded in the value set Γ(M). This embedding is an isomorphism if
and only if each convex �-subgroup is an Ω-subgroup. If Γ(M) has a.c.c. and M is either
representable or finitely valued, then the two value sets are identical. More generally, these
results hold for two related operator sets Ω1 and Ω2 and the corresponding Ω-value sets
ΓΩ1(M) and ΓΩ2(M). If R is a unital �-ring, then each unital �-module over R is an f -
module and has Γ(M) = ΓR(M) exactly when R is an f -ring in which 1 is a strong order
unit.
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Let M be a lattice-ordered group (�-group) and let x be an element of M . A

convex �-subgroup of M that is maximal with respect to not containing x is called
a value of x. With respect to inclusion the set Γ of all of the values of the elements

in M is a rooted partially ordered set (poset); that is, the elements in Γ that exceed
a given element form a chain. Γ is called the value set of M . A good portion of

the theory of l-groups is intimately connected with values—see [5], [6], [8] and [1].
Now, suppose that M is also an Ω-group; thus, Ω is a set and there is a function

Ω→ End(M) from Ω to the set of group endomorphisms of M . We will occasionally
identify Ω with its image in End(M). M is called an Ω-�-group if M+ω ⊆ M+ for

each ω ∈ Ω where M+ = {x ∈ M : x � 0} is the positive cone of M , and M is
called an Ω-d-group if each ω ∈ Ω induces a lattice endomorphism of M . M is an

Ω-f -group if

∀ω ∈ Ω, ∀x, y ∈ M, x ∧ y = 0⇒ xω ∧ y = 0.

In [7] an endomorphism ω of this type is called a p-endomorphism and in [2] it
is called a positive orthomorphism. For example, if M is a right R-module over the
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partially ordered ring R and M is also an �-group, then M is an �-module over R

iff it is an R+-l-group; and it is an f -module iff it is an R+-f -group. It is known
[10, Theorem 1.1) that when R is directed (i.e., R = R+ − R+) the �-module MR

is an f -module precisely when it can be embedded into the product of a family of

totally ordered R-�-modules. More generally, recall that an �-group is representable
if it can be embedded into a product of totally ordered groups. In the �-group M ,

let N = {a ∈ M : x ∧ y = 0 ⇒ (−a + x + a) ∧ y = 0}. Then N is a normal
l-subgroup of M , and M is always an N -f -group and an M -d-group (the action

is by conjugation). M is representable if and only if N = M [1, Theorem 4.1.1].
Now suppose that M is an Ω-�-group. Then M is a representable l-group and an

Ω-f -group if and only if it can be embedded (as an Ω-�-group) into the product of a
family of totally ordered Ω-�-groups.

Perhaps it should be reiterated here that, as stated in the introduction to [10],

almost all of the results and the arguments presented in the first two sections of that
paper are valid for an Ω-f -group even though they are presented in the context of an

f -module. The only change that needs to be taken into account, aside from the loss
of normality of a subgroup, is the technical description of the convex �-Ω-subgroup

generated by an element (or a subset). If M is an Ω-group and ω1, . . . , ωk ∈ Ω and
a ∈ M we denote aω1 . . . ωk by aW and say W = ω1 . . . ωk ∈ Ω∞; if k = 0 then
aW = a. Now if M is an Ω-d-group then the convex �-Ω-subgroup generated by

a ∈ M is

CΩ(a) = {x ∈ M : |x| � |a|W1 + . . .+ |a|Wn, Wi ∈ Ω∞}.

We denote the lattice of convex �-Ω-subgroups of M by CΩ(M).
Recall that the function α : X −→ Y between two posets X and Y is isotone if

a � b in X implies that α(a) � α(b) in Y ; and if a � b iff α(a) � α(b) then α is an

embedding of X into Y .

An Ω-value of the element x in the Ω-�-groupM is a convex �-Ω-subgroup that is

maximal with respect to excluding x. In [10, Theorem 2.2] it is shown that for each x

in the Ω-f -group M there is a bijection between the set ΓΩ(x) of the Ω-values of x

and the set Γ(x) of its values. At the time that [10] was written we had thought that
the rooted poset ΓΩ of Ω-values of the Ω-f -group M could be embedded naturally

in Γ, but we couldn’t verify it. Several years ago we saw the simple verification.
However, since this fact still does not seem to be known we present this embedding

(actually, these embeddings) in this addendum. We also show that this embedding is
an isomorphism if and only if each convex �-subgroup is an Ω-subgroup. This is the

case if Γ satisfies the ascending chain condition (a.c.c.) andM is either representable
or finitely valued.
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A convex �-subgroup P of an �-group M is called prime if a ∧ b = 0 implies that

a ∈ P or b ∈ P . It is well-known that P is prime iff the poset of convex �-subgroups
that contain P is a chain iff P is finitely meet irreducible in the lattice C(M) of
all convex �-subgroups of M [1, Theorem 1.2.10]; also, it is a consequence of [10,

Corollary 1.3] that each Ω-value in an Ω-f -group is prime.

Let M be an Ω-po-group; that is, M is an Ω-group, a po-group and M+ω ⊆ M+

for each ω ∈ Ω. If A is a subgroup of M let AΩ denote the subgroup of A that is

generated by the family of all those Ω-subgroups of M that are contained in A. It is
obvious that AΩ is the largest Ω-subgroup of M that is contained in A. Moreover,

we have the following.

(i) (∩iAi)Ω = ∩i(Ai)Ω.

(ii) If B is an Ω-subgroup of M then the convex subgroup C(B) generated by B is
an Ω-subgroup; if B is an Ω-�-subgroup of the Ω-�-group M then C(B) is an

Ω-�-subgroup.

(iii) If A is an �-subgroup (respectively, convex �-subgroup) of the Ω-d-groupM then
AΩ is an Ω-�-subgroup (respectively, convex �-Ω-subgroup) of M .

(iv) If A is a prime subgroup of the Ω-f -group M then AΩ is a prime subgroup.
(This follows from [10, Corollary 1.3].)

(v) For an element x in the Ω-f -groupM the bijection of value sets Γ(x) −→ ΓΩ(x)
is given by A �→ AΩ ([10, Theorem 2.2]).

Now, suppose thatM is both an Ω1-f -group and an Ω2-f -group; more briefly,M is
an Ω1-Ω2-f -group. We are interested in the relation between the value sets ΓΩ1(M)

and ΓΩ2(M). We write Ω1 �M Ω2 if AΩ2 ⊆ AΩ1 for each convex �-subgroup A ofM .
For example, if Ω1 = {1}, or if M is abelian and Ω1 ⊆ �, then Ω1 �M Ω2 for any

Ω2; or if Ω1 ⊆ Ω2 then Ω1 �M Ω2.

Lemma 1. LetM be an Ω1-f -group and an Ω2-f -group. The following statements
are equivalent.

(a) Ω1 �M Ω2.

(b) Each convex �-Ω2-subgroup is an Ω1-subgroup.

(c) If A ∈ Γ(M), then AΩ2 ⊆ AΩ1 .

(d) For each a ∈ M , CΩ1(a) ⊆ CΩ2(a).

(e) If A ∈ Γ(M) then (AΩ1 )Ω2 = AΩ2 .

(f) If A is a convex �-subgroup of M then (AΩ1 )Ω2 = AΩ2 .

(g) For each x ∈ M , if A ∈ ΓΩ1(x) then AΩ2 ∈ ΓΩ2(x). (Thus, the mapping
ΓΩ1(x) −→ ΓΩ2(x) given by A �→ AΩ2 is a bijection.)

�����. For (a) ⇒ (b), if A ∈ CΩ2(M) then A = AΩ2 ⊆ AΩ1 ⊆ A; so A = AΩ1 .
The equivalences of (b) with (d) and of (c) with (e) and the implication (b) ⇒ (c)
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are equally obvious. That (c) ⇒ (a) and that (e) and (f) are equivalent follow

from (i) and the fact that each convex �-subgroup is an intersection of a set of
values. To see that (e) ⇒ (g), let αi : Γ(x) −→ ΓΩi(x) be the bijection given by (v)
and let β = α2α

−1
1 : ΓΩ1(x) −→ ΓΩ2(x). If A ∈ ΓΩ1(x) and α1(B) = BΩ1 = A,

then β(A) = α2(B) = BΩ2 = (BΩ1)Ω2 = AΩ2 by (e). To see that (g) ⇒ (e) take
B ∈ Γ(M); so B ∈ Γ(x) for some x ∈ M . Then A = BΩ1 ∈ ΓΩ1(x) and hence
(BΩ1)Ω2 = AΩ2 ∈ ΓΩ2(x). But then (BΩ1)Ω2 = BΩ2 since they are comparable
Ω2-values of x. �

The embedding of ΓΩ(M) into Γ(M) will follow from

Lemma 2. Let X and Y be rooted subsets of some poset and suppose that

X
�→ Y is an order preserving onto mapping such that �(x) � x for each x in X .

Then each of the right inverses of � is an embedding of Y into X .

�����. If �(x1) < �(x2) then since �(xi) � xi, x1 and x2 are comparable. But
then x1 < x2 since � is isotone. Thus, each right inverse ϕ of � is also isotone. If

ϕ(y1) < ϕ(y2), then y1 = �ϕ(y1) < �ϕ(y2) = y2; so ϕ is an embedding. �

Theorem 3. Let M be an Ω1-Ω2-f -group and suppose that Ω1 �M Ω2. Then

there is a natural embedding of posets ΓΩ2(M) −→ ΓΩ1(M) given by: for each
B ∈ ΓΩ2(M) choose A ∈ ΓΩ1(M) with B = AΩ2 .

�����. By (g) of Lemma 1 the assignment A �→ AΩ2 is an isotone map of
ΓΩ1(M) = ∪xΓΩ1(x) onto ΓΩ2(M) = ∪xΓΩ2(x). By Lemma 2 each right inverse of

this mapping embeds ΓΩ2(M) into ΓΩ1(M). �

Since each convex �-Ω-subgroup is the intersection of a set of Ω-values it is clear

that ΓΩ1(M) = ΓΩ2(M) if and only if CΩ1(M) = CΩ2(M) for an Ω1-Ω2-f -group M .
If ΓΩ1 = ΓΩ2 then the embedding given in Theorem 3 is the identity. The same

conclusion holds if this embedding is an isomorphism, as we will now show. If K is
an Ω-value (or a value) inM we will denote its cover in the lattice CΩ(M) (or C(M))
by K∗. Of course, K ∈ ΓΩ(x) (or K ∈ Γ(x)) exactly when x ∈ K∗ \K.

Lemma 4. Suppose that M is an Ω1-Ω2-f -group with Ω1 �M Ω2 and K ∈
ΓΩ1(M). Then
(a) K∗ ⊆ (KΩ2)∗.
(b) Either (K∗)Ω2 = KΩ2 or (K

∗)Ω2 = (KΩ2)
∗ = K∗.

�����. (a) If x ∈ K∗ \K then x ∈ (KΩ2)∗ \KΩ2, by (g) of Lemma 1, and hence

x ∈ (KΩ2)∗ \K. Now, K and (KΩ2)
∗ are comparable since they both contain KΩ2 ;

so K ⊂ (KΩ2)∗ and K∗ ⊆ (KΩ2)∗.
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(b) If the containment KΩ2 ⊆ (K∗)Ω2 is proper then (KΩ2)
∗ ⊆ (K∗)Ω2 . Thus,

(K∗)Ω2 ⊆ K∗ ⊆ (KΩ2)∗ ⊆ (K∗)Ω2 and (b) follows. �

Corollary 5. The following statements are equivalent for the Ω1-Ω2-f-group M

with Ω1 �M Ω2.

(a) The mapping ΓΩ1(M) −→ ΓΩ2(M) given by K �→ KΩ2 is an isomorphism.

(b) K∗ \K = (KΩ2)
∗ \KΩ2 for each K ∈ ΓΩ1(M).

(c) ΓΩ1(M) = ΓΩ2(M).

(d) (KΩ2)
∗ = (K∗)Ω2 for each K in ΓΩ1(M).

�����. (a) ⇒ (b). That K∗ \K ⊆ (KΩ2)∗ \KΩ2 follows from (g) of Lemma 1
(or (a) of Lemma (4)). Let x ∈ (KΩ2)∗ \KΩ2 ; then x has an Ω1-value L which con-

tains KΩ2 since KΩ2 is an Ω1-subgroup. Since LΩ2 ⊇ KΩ2 and x �∈ LΩ2 , necessarily
LΩ2 = KΩ2 . Thus L = K and x ∈ K∗ \K.

(b) ⇒ (c). Suppose that K ∈ ΓΩ1 and x ∈ K \KΩ2 . Then x has an Ω2-value A

that contains KΩ2 . Since A and K are comparable A ⊂ K and hence A = KΩ2 .

So x ∈ (KΩ2)∗ \ KΩ2 = K∗ \ K. This contradiction gives that K = KΩ2 . Thus,
CΩ1(M) = CΩ2(M).
(c) ⇒ (d). This is trivial.
(d) ⇒ (a). Suppose that K, L ∈ ΓΩ1 with KΩ2 = LΩ2 . If K ⊂ L then K∗ ⊆ L.

But then L∗ = (LΩ2)
∗ = (KΩ2)

∗ = K∗ ⊆ L by Lemma 4. Since K and L are

comparable, necessarily K = L. �

Corollary 6. Let M be an Ω-f -group. There is a natural embedding of posets

ΓΩ(M) −→ Γ(M) given by: for each B ∈ ΓΩ(M) choose A ∈ Γ(M) with B = AΩ.

This embedding is an isomorphism iff it is the identity iff (A∗)Ω = (AΩ)∗ for each

A ∈ Γ(M).

We next consider a finite condition on an Ω-f -group. Recall that the �-group M

is finitely valued if Γ(x) is finite for each x in M . If M is finitely valued or is
representable then A is normal in A∗ for each A in Γ(M); that is, M is normal-

valued [1, p. 29 and Proposition 10.11].

Theorem 7. LetM be an Ω1-Ω2-f -group which satisfies the following conditions.

(a) Ω1 �M Ω2.

(b) For each ω1 ∈ Ω2 and each ω2 ∈ Ω1 there is an ω1 ∈ Ω1 such that ω2ω1 � ω1ω2;

that is xω2ω1 � xω1ω2 for each x ∈ M+.

(c) If A ∈ ΓΩ1 then A � A∗.

(d) M is representable or finitely valued.

If ΓΩ1(M) satisfies a.c.c. then ΓΩ1(M) = ΓΩ2(M).
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�����. We first show that if 0 < a ∈ M has a single value (i.e., a is special),

then CΩ1(a) = CΩ2 (a). Suppose that aω2 �∈ CΩ1(a) for some ω2 ∈ Ω2. Then
C(a) ⊆ CΩ1 (a) ⊂ CΩ2(a) and hence aω2 > CΩ1 (a) by [10, Corollary 2.8]. We claim
that aωn

2 � CΩ1 (aωn−1
2 ) for each n ∈ �. First, note that if W = α1 . . . αt ∈ Ω∞1

then there exists W = β1 . . . βt ∈ Ω∞1 such that ω2W � Wω2. Now if, inductively,
aωn
2 � CΩ1 (aωn−1

2 ), and W1, . . . , Wt ∈ Ω∞ then

aωn
2W1 + . . .+ aωn

2Wt � (aωn−1
2 W 1 + . . .+ aωn−1

2 W t)ω2 � aωn+1
2 .

So aωn+1
2 � CΩ1(aωn

2 ). The chain

0 < a < aω < aω2 < . . .

gives rise to an increasing sequence in ΓΩ1 . Let A0 be an Ω1-value of a; let A1

be an Ω1-value of aω which contains A0, and, in general, let An+1 be an Ω1-value
of aωn+1 which contains An. Then for some n An = An+1 = . . .. But A∗n/An =(
CΩ2(aωn

2 )+An

)
/An is a nonzero totally ordered Ω1-f -group with the upper bound

aωn+1
2 +An. Thus, aω2 ∈ CΩ1 (a) for each ω2 ∈ Ω2 and CΩ1 (a) = CΩ2(a).

IfM is finitely valued, then, for each a inM , there is a finite set of special elements
{a1, . . . , an} such that CΩ1(a) = CΩ1 (a1)⊕ . . .⊕CΩ1(an) by [5, Theorem 3.7] and [10,

Theorem 2.9]. Thus, CΩ1 (a) = CΩ2(a) and CΩ1(M) = CΩ2(M). IfM is representable
and A ∈ ΓΩ1 let P be a minimal prime subgroup contained in A. Then P is a normal
Ω1-Ω2-subgroup ofM by [1, Theorem 4.1.1] and [2, Proposition 1.1] or [7, 2.1]. Since

M/P is totally ordered, and hence finitely valued, A is an Ω2-subgroup of M ; but
then CΩ1(M) = CΩ2(M). �

The following corollary generalizes [9, Lemma 1.6 and its corollary].

Corollary 8. Let M be an Ω-f -group for which Γ(M) satisfies a.c.c. If M is

either finitely valued or representable, then Γ(M) = ΓΩ(M).

Let R and F be directed po-rings with F commutative and suppose that R is an

algebra over F . Recall that R is a po-algebra over F if it is an F -po-module, that
is, F+R+ ⊆ R+; and M is an algebra R-module if it is both an R-module and an

F -module and (xα)r = (xr)α = x(αr) for each x ∈ M , α ∈ F and r ∈ R. An
f -module M over R is understood to also be an f -module over F .

Corollary 9. Let M be a unital algebra f -module over the directed po-F -

algebra R. If ΓF (M) has a.c.c. then ΓF (M) = ΓR(M).

If Γ has d.c.c. instead of a.c.c. then Corollary 8 is no longer true. For example,
let R = �[x] be the totally ordered polynomial ring over the rationals with positive
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cone R+ = {p0 + p1x + . . . + pnxn : pn > 0}, and let M = RR. Then the proper

convex subgroups of R are 0 ⊂ P0 ⊂ P1 ⊂ . . . ⊂ Pn ⊂ . . . where Pn is the subgroup
of all polynomials of degree at most n. Hence, Γ is countable and satisfies d.c.c. but
ΓR = {0}.
If the elements of Ω only induce �-endomorphisms of M , then Corollary 8 need

not hold. As an example let M = �⊕ � be the direct sum of two copies of the
integers with positive cone M+ = {(x, y) : x � 0 and y � 0}, and let Ω = {ω}
where (x, y)ω = (y, x). Then Γ is the two element trivially ordered poset and ΓΩ is
a singleton.

It is easy to give examples of archimedean Ω-f -groups M for which Γ(M) �=
ΓΩ(M). For example, let M be the direct product of infinitely many copies of the

reals with Ω =M+ acting by multiplication. It is well-known (and easy to see) that
if M is hyperarchimedean, that is each �-homomorphic image of M is archimedean,

then Γ(M) = ΓΩ(M) if M is an Ω-f -group (see [7, Lemma 2.7]).

Let R be an �-ring which has the property that each �-module MR has Γ(M) =

Γ(MR). If S is the �-ring obtained by freely adjoining � to R (S = R⊕� as �-groups),
then Γ(S) = ΓR(SR) yields that R = 0. However, the situation is different for unital

modules. The �-module M over the �-ring R is called a strong l-module if for each
x ∈ M+ and all r, s ∈ R, x(r ∨ s) = xr ∨ xs. Each �-module over a totally ordered

ring is strong, and if R is the direct sum of a finite number of nonzero totally ordered
unital rings then each unital �-module over R is strong. M is a strict �-module if

0 < xr whenever 0 < x ∈ M and 0 < r ∈ R. If R has a nonzero strict �-module then
R is itself strict; that is, R is an �-domain.

Theorem 10. The following statements are equivalent for the unital �-ring R.

(a) 1 ∈ R+ and R = C(1).

(b) Γ(R) = ΓR(RR).

(c) Each unital right �-module M has Γ(M) = ΓR(M).

Moreover, if R is an �-domain then each of these statements is equivalent to

(d) R has a non-zero strict and strong right �-moduleM for which Γ(M) = ΓR(M).

�����. (a) ⇒ (c). If 0 � y ∈ C(x) ⊆ M and r ∈ R+, then y � n|x| and r � m

give yr � nm|x|. So C(x) = CR(x) is a submodule.

(b) ⇒ (a). Since each convex �-subgroup is a right ideal R = C(1) and RR is an
f -module. By considering the totally ordered homomorphic images of the f -module

RR it can easily be seen and is well-known that 1 ∈ R+.

(d) ⇒ (a). If 0 < a ∈ M and r ∈ R+, then 0 � ar � na for some integer n; so

0 = (na − ar)− = a(n − r)− and 0 � r � n. Thus R = C(1) is a totally ordered
domain. �
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Clearly, “right” may be replaced by “left” in (b), (c) and (d). The �-rings in

Theorem 10 are f -rings and have the property that each of their unital �-modules is
an f -module, but not every such f -ring has R = C(1).
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