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CONVOLUTION OF DISTRIBUTIONS AND

THE EXCHANGE FORMULA

Adem Kılıçman, Malaysia
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Abstract. Let f̃ , g̃ be ultradistributions in Z ′ and let f̃n = f̃ ∗ δn and g̃n = g̃ ∗ σn where
{δn} is a sequence in Z which converges to the Dirac-delta function δ. Then the neutrix
product f̃ � g̃ is defined on the space of ultradistributions Z ′ as the neutrix limit of the
sequence {12 (f̃ng̃ + f̃ g̃n)} provided the limit h̃ exist in the sense that

N-lim
n→∞

1
2
〈f̃ng̃ + f̃ g̃n, ψ〉 = 〈h̃, ψ〉

for all ψ in Z . We also prove that the neutrix convolution product f ♦∗ g exist in D ′, if and
only if the neutrix product f̃ � g̃ exist in Z ′ and the exchange formula

F (f ♦∗ g) = f̃ � g̃

is then satisfied.

Keywords: distributions, ultradistributions, delta-function, neutrix limit, neutrix prod-
uct, neutrix convolution, exchange formula
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In the following, D denotes the space of infinitely differentiable functions with
compact support and D ′ denotes the space of distributions defined on D .

The convolution product of certain pairs of distributions in D ′ is usually defined
as follows, see for example Gel’fand and Shilov [5].

Definition 1. Let f and g be distributions in D ′ satisfying either of the following

conditions:
(a) either f or g has bounded support,
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(b) the supports of f and g are bounded on the same side. Then the convolution

product f ∗ g is defined by the equation

(1) 〈(f ∗ g)(x), ϕ(x)〉 = 〈g(y), 〈f(x), ϕ(x + y)〉〉

for arbitrary test function ϕ in D .

It follows that if the convolution product f ∗ g exists by Definition 1 then the
following equations hold:

(2) f ∗ g = g ∗ f,

(3) (f ∗ g)′ = f ∗ g′ = f ′ ∗ g.

Definition 1 is rather restrictive and in order to define further convolution products

of distributions, Jones in [6] gave the following definition.

Definition 2. Let f and g be distributions in D ′ and let τ be an infinitely
differentiable function satisfying the following conditions:

(i) τ(x) = τ(−x),
(ii) 0 � τ(x) � 1,
(iii) τ(x) = 1, |x| � 1

2 ,
(iv) τ(x) = 0, |x| � 1.
Let

fn(x) = f(x)τ(x/n), gn(x) = g(x)τ(x/n)

for n = 1, 2, . . .. Then the convolution product f ∗ g is defined as the limit of the
sequence {fn ∗ gn}, providing the limit h exists in the sense that

lim
n→∞

〈fn ∗ gn, ϕ〉 = 〈h, ϕ〉

for all ϕ in D .

Note that in this definition the convolution product fn ∗ gn exists in the sense
of Definition 1 since fn and gn both have bounded supports. It is clear that if the

convolution product f ∗g exists by this definition, then equation (2) holds. However,
equations (3) need not necessarily hold since Jones proved that

1 ∗ sgnx = x = sgnx ∗ 1

and

(1 ∗ sgnx)′ = 1, 1′ ∗ sgnx = 0, 1 ∗ (sgnx)′ = 2.
Many convolution products could still not be defined in the sense of Definition 2

and the following modification of Definition 2 was given in [2]:
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Definition 3. Let f and g be distributions in D ′, let

τn(x) =





1, |x| � n,

τ(nnx− nn+1), x > n,

τ(nn + nn+1), x < −n,

where τ is as in Definition 2 and let fn = fτn. Then the neutrix convolution product
f ∗ g is defined to be the neutrix limit of the sequence {fn ∗ gn}, provided the limit
h exists in the sense that

N-lim
n→∞

〈fn ∗ gn, ϕ〉 = 〈h, ϕ〉

for all ϕ in D , where N is the neutrix, see van der Corput [1], having domain

N ′ = {1, 2, . . . , n, . . .} and range the real numbers with negligible functions finite
linear sums of the functions

nλ lnr−1 n, lnr n (λ > 0, r = 1, 2, . . .)

and all functions which converge to zero as n tends to infinity.

The convolution product fn∗gn in this definition is again in the sense of Definition
1, the supports of fn and gn being bounded. The neutrix convolution product

f ∗ g clearly satisfies equation (2) if it exists, although it does not necessarily satisfy
equations (3). A non-commutative neutrix convolution product, denoted by f � g

was defined in [2].
In the following definition we will also give commutative neutrix convolution prod-

uct which differs from Definition 3.

Definition 4. Let f and g be distributions in D ′, let

τn(x) =





1, |x| � n,

τ(nnx− nn+1), x > n,

τ(nn + nn+1), x < −n,

where τ is as in Definition 2 and let fn = fτn, gn = gτn. Then the neutrix convolution
product f ♦∗ g is defined to be the neutrix limit of the sequence 12{fn ∗ g + gn ∗ f},
provided the limit h exists in the sense that

N-lim
n→∞

1
2
〈fn ∗ g + gn ∗ f, ϕ〉 = 〈h, ϕ〉

for all ϕ in D . The neutrix convolution product f ♦∗ g clearly commutative and
satisfies equations (2) and (3) if it exists.
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It can be shown that if the convolution product f∗g exists in the sense of Definition
1, then the neutrix convolution product f ♦∗ g exists and

2f ∗ g = f ♦∗ g.

As in Gel’fand and Shilov [5], we define the Fourier transform of a function ϕ in
D by

F (ϕ)(σ) = ϕ̃(σ) =
∫ ∞

−∞
ϕ(x)eixσ dx.

Here σ = σ1 + iσ2 is a complex variable and it is well known that ϕ̃(σ) is an entire

analytic function with the property

(4) |σ|q|ϕ̃(σ)| � Cqe
a|σ2|

for some constants Cq and a depending on ϕ̃. The set of all analytic functions Z

with property (4) is in fact the space

F (D) = {ψ : ∃ϕ ∈ D , F (ϕ) = ψ}.

The Fourier transform f̃ of a distribution f in D ′ is an ultradistribution in Z ′,

i.e. a continuous linear functional on Z . It is defined by Parseval’s equation

〈f̃ , ϕ̃〉 = 2�〈f, ϕ〉.

The exchange formula is the equality

(5) F (f ∗ g) = F (f) · F (g).

It is well known that the exchange formula holds for all convolution products of

distributions f and g satisfying Definition 1, provided f and g both have compact
support, see for example Treves [7].

We now consider the problem of defining multiplication in Z ′. To do this we need
the Fourier transform F (τn) of τn and write

δn(σ) =
1
2�
F (τn),

which is a function in Z . Putting ψ = ϕ̃, we have from Parseval’s equation

〈τn, ϕ〉 =
1
2�

〈F (τn), F (ϕ)〉 = 〈δn, ψ〉.
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Since

lim
n→∞

〈τn, ϕ〉 = lim
n→∞

∫ ∞

−∞
τn(x)ϕ(x) dx =

∫ ∞

−∞
ϕ(x) dx = 〈1, ϕ〉

for all ϕ in D and since F (1) = 2�δ, we obtain

lim
n→∞

〈δn, ψ〉 = 〈δ, ψ〉

for all ψ inZ . Thus {δn} is a sequence inZ converging to the Dirac delta function δ.

If f is an arbitrary distribution in D ′, then since δn is a function in Z , the
convolution product f̃ ∗ δn is defined by

(6) 〈(f̃ ∗ δn)(σ), ψ(σ)〉 = 〈f̃(ν), 〈δn(σ), ψ(σ + ν)〉〉

for arbitrary ψ in Z . If ψ = ϕ̃, we have

ψ(σ + ν) = F [eixνϕ(x)]

and it follows from Parseval’s equation that

〈δn(σ), ψ(σ + ν)〉 =
1
2�

〈F (τn)(σ), F (eixνϕ)(σ)〉 = 〈τn(x), eixνϕ(x)〉

=
∫ ∞

−∞
τn(x)e

ixνϕ(x) dx(7)

→
∫ ∞

−∞
eixνϕ(x) dx = ψ(ν).

Thus

lim
n→∞

〈f̃ ∗ δn, ψ〉 = 〈f̃ , ψ〉

for arbitrary ψ inZ and it follows that {f̃∗δn} is a sequence of infinitely differentiable
functions converging to f̃ in Z ′.

This leads us to the following definition:

Definition 5. Let f and g be distributions in D ′ having Fourier transforms f̃
and g̃ respectively in Z ′ and let f̃n = f̃ ∗ δn and g̃n = g̃ ∗ δn. Then the neutrix
product f̃ � g̃ is defined to be the neutrix limit of the sequence 12{f̃n · g̃ + g̃n · f̃},
provided the limit h̃ exists in the sense that

N-lim
n→∞

1
2
〈f̃n · g̃ + g̃n · f̃ , ψ〉 = 〈h̃, ψ〉

for all ψ in Z .
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In this definition we use f̃�g̃ to denote the neutrix product of f̃ and g̃ to distinguish
it from the usual definition of the product 12{f̃n · g̃ + g̃n · f̃}. If

lim
n→∞

1
2
〈f̃n · g̃ + g̃n · f̃ , ψ〉 = 〈h̃, ψ〉

for all ψ in Z , we simply say that the product f̃ · g̃ exists and equals h̃. We then of
course have

f̃ � g̃ = f̃ · g̃.

It is immediately obvious that if the neutrix product f̃ � g̃ exists then the neutrix
product is commutative.
The product of ultradistributions in Z ′ also has the following property:

Theorem 1. Let f̃ and g̃ be ultradistributions inZ ′ and suppose that the neutrix

products f̃ � g̃ and f̃ � g̃′ (or f̃ ′ � g̃) exist. Then the neutrix product f̃ ′ � g̃ (or f̃ � g̃′)
exists and

(8) (f̃ � g̃)′ = f̃ ′ � g̃ + f̃ � g̃′.

�����. Let ψ be an arbitrary function in Z . Then

〈f̃ ′ � g̃, ψ〉 = N-lim
n→∞

1
2
〈f̃ ′n · g̃ + g̃n · f̃ ′, ψ〉, 〈f̃ � g̃′, ψ〉 = N-lim

n→∞
1
2
〈f̃n · g̃′ + g̃′n · f̃ , ψ〉.

Further,

〈(f̃ � g̃)′, ψ〉 = − 〈f̃ � g̃, ψ′〉

= −N-lim
n→∞

1
2
〈f̃n · g̃ + g̃n · f̃ , ψ′〉

= −N-lim
n→∞

1
2
{〈f̃n, g̃ψ

′〉+ 〈g̃n, fψ
′〉}

= −N-lim
n→∞

1
2
〈f̃n, (g̃ψ)′〉 −N-lim

n→∞
1
2
〈g̃n, (f̃ψ)′ − g̃′ψ〉

= N-lim
n→∞

1
2
〈f̃n · g̃′ + f̃ ′n · g̃, ψ〉+N-lim

n→∞
1
2
〈g̃′n · f̃ + g̃n · f̃ ′, ψ〉

and so
N-lim
n→∞

1
2
〈f̃ ′n · g̃ + g̃n · f ′, ψ〉 = 〈(f̃ � g̃)′, ψ〉 − 〈f̃ � g̃′, ψ〉.

Hence the neutrix product f̃ ′ � g̃ exists and equation (8) follows.
It follows similarly that if f̃ ′ � g̃ exists then f̃ � g̃′ exists. �
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We can now prove the exchange formula.

Theorem 2. Let f and g be distributions in D ′ having Fourier transforms f̃ and

g̃ respectively in Z ′. Then the neutrix convolution product f ♦∗ g exists in D ′, if and

only if the neutrix product f̃ � g̃ exists in Z ′ and the exchange formula

F (f ♦∗ g) = f̃ � g̃

is then satisfied.

�����. We have from equation (7) that

〈δn(σ), ψ(σ + ν)〉 = F (τnϕ)

and then from equation (6) that

〈f̃n, ψ〉 = 〈f̃ ∗ δn, ψ〉 = 〈f̃ , F (τnϕ)〉 = 2�〈f, τnϕ〉
= 2�〈fn, ϕ〉 = 〈F (fn), ψ〉.

Analogusly we have,

〈g̃n, ψ〉 = 〈g̃ ∗ δn, ψ〉 = 〈g̃, F (τnϕ)〉 = 2�〈g, τnϕ〉
= 2�〈gn, ϕ〉 = 〈F (gn), ψ〉

on using Parseval’s equation twice. It follows that F (fn) = f̃n. Similarly, we have

F (gn) = g̃n. Now since the convolution product 12 [fn ∗ g+ gn ∗ f ] exists in the sense
of Definition 1 and fn and gn both have compact support

F (
1
2
(fn ∗ g + gn ∗ f)) = 1

2
[F (fn) · F (g) + F (gn) · F (f)] =

1
2
{f̃n · g̃ + g̃n · f̃}

and so on using Parseval’s equation again

�〈fn ∗ g + gn ∗ f, ϕ〉 = 1
2
〈F (fn ∗ g + gn ∗ f), ψ〉 = 1

2
〈f̃n · g̃ + g̃n · f̃ , ψ〉

Suppose the neutrix convolution product f ♦∗ g exists. Then

2�〈f ♦∗ g, ϕ〉 = N-lim
n→∞

�〈fn ∗ g + gn ∗ f, ϕ〉

= N-lim
n→∞

1
2
〈F (fn ∗ g + gn ∗ f), ψ〉

= N-lim
n→∞

〈f̃n · g̃ + g̃n · f̃ , ψ〉 = 〈f̃ � g̃, ψ〉

for arbitrary ϕ in D and Fϕ in Z , proving the existence of the neutrix product f̃ � g̃
and the exchange formula.
Conversely, if the neutrix product f̃ � g̃ exists then the argument can be reversed

to prove the existence of the neutrix convolution product f ♦∗ g and the exchange
formula. This completes the proof of the theorem. �
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The following Definition and Theorems were given in [4].

Definition 6. Let f and g be distributions in D ′ having Fourier transforms f̃

and g̃ respectively in Z ′ and let f̃n = f̃ ∗ δn and g̃n = g̃ ∗ δn. Then the neutrix
product f̃ � g̃ is defined to be the neutrix limit of the sequence {f̃n.g̃n}, provided
the limit h̃ exists in the sense that

N-lim
n→∞

〈f̃n.g̃n, ψ〉 = 〈h̃, ψ〉

for all ψ in Z .

Theorem 3. Let f̃ and g̃ be ultradistributions inZ ′ and suppose that the neutrix

products f̃ � g̃ and f̃ � g̃′ (or f̃ ′ � g̃) exist. Then the neutrix product f̃ ′ � g̃ (or

f̃ � g̃′) exists and

(9) (f̃ � g̃)′ = f̃ ′ � g̃ + f̃ � g̃′.

Theorem 4. Let f and g be distributions in D ′ having Fourier transforms f̃ and

g̃ respectively in Z ′. Then the neutrix convolution product f ∗ g exists in D ′, if and

only if the neutrix product f̃ � g̃ exists in Z ′ and the exchange formula

F (f ∗ g) = f̃ � g̃

is then satisfied.

We finally give an example where the two commutative neutrix products differ
It was proved in [3] that

(10) xs ∗ xr
+ = (−1)r+s+1B(r + 1, s+ 1)xr+s+1

−

for r, s = 0, 1, . . ., where B denotes the Beta function and it can be proved easily
that

(11) xs ♦∗ xr
+ =

r!s!
(r + s+ 1)!

xr+s+1

for r, s = 0, 1, . . .. It follows from Definition 5 and Definition 6 respectively that

ieir�/2(σ + i0)−r−1 � δ(s)(σ) = (−i)r+1s!
(r + s+ 1)!

δ(r+s+1)(σ)(12)

iei(2r+s)�/22�(−i)s(σ + i0)−r−1 � δ(s)(σ) =
(−1)r+s+1s!
(r + s+ 1)!

(σ + i0)−r−s−2(13)
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for r, s = 0, 1, 2, . . ., since F (xs) = 2(−i)s�δ(s)(σ),

F (xr
+) = ie

ir�/2Γ(r + 1)(σ + i0)−r−1

and

F (xr+s+1
− ) = (−i)e−i(r+s)�/2Γ(r + 1)(σ − i0)−r−s−2

for r, s = 0, 1, 2, . . ., see Gel’fand and Shilov [5].
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