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Abstract. The classical Bochner integral is compared with the McShane concept of in-
tegration based on Riemann type integral sums. It turns out that the Bochner integrable
functions form a proper subclass of the set of functions which are McShane integrable pro-
vided the Banach space to which the values of functions belong is infinite-dimensional. The
Bochner integrable functions are characterized by using gauge techniques.
The situation is different in the case of finite-dimensional valued vector functions.
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1. Partitions, systems and gauges

Let an interval [a, b] ⊂ �, −∞ < a < b < +∞ be given. A pair (τ, J) of a point
τ ∈ � and a compact interval J ⊂ � is called a tagged interval, τ is the tag of J .

A finite collection {(τj , Jj), j = 1, . . . , p} of tagged intervals is called an M-system
on [a, b] if

Int(Ji) ∩ Int(Jj) = ∅ for i �= j.

(Int(J) denotes the interior of an interval J .)
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Republic. The second author was supported as a postdoctoral fellow by the Peoples
Republic of China in the frame of the exchange programme between the Ministries of
Education of Peoples Republic of China and the Czech Republic.
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An M-system on [a, b] is called an M-partition of [a, b] if

k⋃

j=1

Jj = [a, b].

An M-partition {(τj , Jj), j = 1, . . . , k} for which

τj ∈ Jj , j = 1, . . . , k

is called a P-partition of [a, b].

Clearly every P-partition of [a, b] is also an M-partition of [a, b].

Given a positive function δ : [a, b] → (0,+∞) called a gauge on [a, b], a tagged
interval (τ, J) with τ ∈ [a, b] is said to be δ-fine if

J ⊂ (τ − δ(τ), τ + δ(τ)).

Using this concept we can speak about δ-fineM -partitions (or systems) and δ-fine
P -partitions {(τj , Jj), j = 1, . . . , k} of the interval [a, b] whenever (τj , Jj) is δ-fine

for every j = 1, . . . , k.

It is a well-known fact that given a gauge δ : [a, b]→ (0,+∞) there exists a δ-fine
P-partition of [a, b]. This result is called Cousin’s lemma, see e.g. [5], [9] and many

other monographs on Henstock-Kurzweil integration.

2. McShane integral, the classes S, S�

and the strong McShane integral

Assume that µ is a (nonnegative) measure on [a, b] (e.g. the Lebesgue measure)

and that X is a Banach space with a norm ‖·‖X .

Definition 1. A function f : [a, b] → X is said to be McShane integrable on

[a, b] if there is an element I ∈ X such that for every ε > 0 there exists a gauge δ on
[a, b] such that

∥∥∥∥
k∑

i=1

f(ti)µ(Ji)− I

∥∥∥∥
X

< ε

for every δ-fine M-partition {(ti, Ji), i = 1, . . . , k} of [a, b].

We denote I = (M)
∫ b

a
f dµ in this case.

Denote further byM =M([a, b];X) the set of functions f : [a, b]→ X which are
McShane integrable on [a, b].

820



Definition 2 (see [7]). By S� = S�([a, b];X) we denote the set of functions

f : [a, b]→ X such that for every ε > 0 there is a gauge δ on [a, b] such that

k∑

i=1

l∑

j=1

‖f(ti)− f(sj)‖Xµ(Ji ∩ Lj) < ε

for any δ-fine M-partitions {(ti, Ji), i = 1, . . . , k} and {(sj , Lj), j = 1, . . . , l} of [a, b].

Definition 3 (see [7]). By S = S([a, b];X) we denote the set of functions

f : [a, b]→ X such that for every ε > 0 there is a gauge δ on [a, b] such that

∥∥∥∥
k∑

i=1

f(ti)µ(Ji)−
l∑

j=1

f(sj)µ(Lj)

∥∥∥∥
X

< ε

for any δ-fine M-partitions {(ti, Ji), i = 1, . . . , k} and {(sj , Lj), j = 1, . . . , l} of [a, b].

Lemma 4. If f ∈ S� then f ∈ S, i.e. S� ⊂ S.
�����. If {(ti, Ji), i = 1, . . . , k} and {(sj , Lj), j = 1, . . . , l} are δ-fine

M-partitions of [a, b] we have

µ(Ji) =
l∑

j=1

µ(Ji ∩ Lj) and µ(Lj) =
k∑

i=1

µ(Ji ∩ Lj).

Hence
∥∥∥∥

k∑

i=1

f(ti)µ(Ji)−
l∑

j=1

f(sj)µ(Lj)

∥∥∥∥
X

=

∥∥∥∥
l∑

j=1

k∑

i=1

f(ti)µ(Ji ∩ Lj)−
k∑

i=1

l∑

j=1

f(sj)µ(Ji ∩ Lj)‖X

=

∥∥∥∥
l∑

j=1

k∑

i=1

(f(ti)− f(sj))µ(Ji ∩ Lj)

∥∥∥∥
X

�
l∑

j=1

k∑

i=1

‖f(ti)− f(sj)‖Xµ(Ji ∩ Lj)

and by Definitions 2 and 3 this yields the statement. �

Proposition 5.
(a) If f ∈ S then there is an element I ∈ X such that for every ε > 0 there exists
a gauge δ on [a, b] such that

∥∥∥∥
k∑

i=1

f(ti)µ(Ji)− I

∥∥∥∥
X

< ε

for every δ-fine M-partition {(ti, Ji), i = 1, . . . , k} of [a, b], i.e. f ∈M.
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(b) If f ∈ M then f ∈ S.

�����. (a) Let ε > 0 be given and assume that δ is the gauge which corresponds

to ε/2 by the definition of the class of functions S.
Denote

S(ε) =

{
S(f, D) =

k∑

i=1

f(ti)µ(Ji); D = {(ti, Ji), i = 1, . . . , k}
an arbitrary δ-fine M-partition of [a, b]

}
.

The set S(ε) ⊂ X is nonempty because by Cousin’s lemma there exists a δ-fine
M-partition {(ti, Ji), i = 1, . . . , k} of [a, b]. Since by definition of S and δ we have

∥∥∥∥
k∑

i=1

f(ti)µ(Ji)−
l∑

j=1

f(sj)µ(Lj)

∥∥∥∥
X

<
ε

2

for any δ-fine M-partitions {(ti, Ji), i = 1, . . . , k} and {(sj , Lj), j = 1, . . . , l} of [a, b],

we have also
diamS(ε) <

ε

2

(by diamS(ε) the diameter of the set S(ε) is denoted). Further, evidently

S(ε1) ⊂ S(ε2),

provided ε1 < ε2. Hence the set

⋂

ε>0

S(ε) = I ∈ X

consists of a single point because the space X is complete (S(ε) denotes the closure

of the set S(ε) in X).
For the integral sum S(f, D) we get

∥∥∥∥
k∑

i=1

f(ti)µ(Ji)− I

∥∥∥∥
X

<
ε

2

whenever D = {(ti, Ji), i = 1, . . . , k} is an arbitrary δ-fine M-partition of [a, b].

(b) If f ∈ M then there is an I ∈ X such that for every ε > 0 there is a gauge δ

on [a, b] such that ∥∥∥∥
k∑

i=1

f(ti)µ(Ji)− I

∥∥∥∥
X

<
ε

2

whenever D = {(ti, Ji), i = 1, . . . , k} is an arbitrary δ-fine M-partition of [a, b].
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If we have two δ-fine M-partitions {(ti, Ji), i = 1, . . . , k} and {(sj , Lj), j = 1, . . . , l}
of [a, b] then

∥∥∥∥
k∑

i=1

f(ti)µ(Ji)−
l∑

j=1

f(sj)µ(Lj)

∥∥∥∥
X

�
∥∥∥∥

k∑

i=1

f(ti)µ(Ji)− I

∥∥∥∥
X

+

∥∥∥∥
l∑

j=1

f(sj)µ(Lj)− I

∥∥∥∥
X

< ε

and f ∈ S. �

Corollary 6. If f ∈ S∗ then f ∈M = S, i.e. S∗ ⊂M = S.

�����. This follows from Proposition 5 and Lemma 4. �

It is easy to show that the McShane integral has the usual properties, especially
we have:

If f, g : [a, b] → X and the integrals (M)
∫ b

a f dµ and (M)
∫ b

a g dµ exist then for

c1, c2 ∈ � the integral (M)
∫ b

a
(c1f + c2g) dµ exists and

(M)
∫ b

a

(c1f + c2g) dµ = c1(M)
∫ b

a

f dµ+ c2(M)
∫ b

a

g dµ.

If the integral (M)
∫ b

a
f dµ exists and [c, d] ⊂ [a, b] is an interval, then also the

integral (M)
∫ d

c f dµ exists.
This makes it possible to define the indefinite McShane integral F : [a, b]→ X by

the relation

F (t) = (M)
∫ t

a

f dµ, t ∈ [a, b]

and for an interval J = [c, d] ⊂ [a, b] the interval function

F [J ] = F (d)− F (c) = (M)
∫ d

c

f dµ.

Definition 7. A function f : [a, b]→ X is said to be strongly McShane integrable

on [a, b] if f is McShane integrable on [a, b] (f ∈ M) and if for every ε > 0 there
exists a gauge δ on [a, b] such that

k∑

i=1

‖f(ti)µ(Ji)− F [Ji]‖X < ε

for every δ-fine M-partition {(ti, Ji), i = 1, . . . , k} of [a, b].
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Denote by SM = SM([a, b];X) the set of functions f : [a, b] → X which are

strongly McShane integrable on [a, b].

Lemma 8. If f ∈ SM then f ∈ S∗.

�����. If f ∈ SM then by definition for every ε > 0 there is a gauge δ on [a, b]

such that
k∑

i=1

‖f(ti)µ(Ji)− F [Ji]‖X <
ε

2

for every δ-fine M-partition {(ti, Ji), i = 1, . . . , k} of [a, b]. If we have two δ-fine

M-partitions {(ti, Ji), i = 1, . . . , k} and {(sj , Lj), j = 1, . . . , l} of [a, b] then

k∑

i=1

l∑

j=1

‖f(ti)− f(sj)‖Xµ(Ji ∩ Lj) =
k∑

i=1

l∑

j=1

‖f(ti)µ(Ji ∩ Lj)− f(sj)µ(Ji ∩ Lj)‖X

=
k∑

i=1

l∑

j=1

‖f(ti)µ(Ji ∩ Lj)− F [Ji ∩ Lj] + F [Ji ∩ Lj]− f(sj)µ(Ji ∩ Lj)‖X

�
k∑

i=1

l∑

j=1

‖f(ti)µ(Ji ∩ Lj)− F [Ji ∩ Lj]‖X

+
k∑

i=1

l∑

j=1

‖F [Ji ∩ Lj]− f(sj)µ(Ji ∩ Lj)‖X < ε

because evidently {(ti, Ji ∩ Lj), i = 1, . . . , k, j = 1, . . . , l} and {(sj, Ji ∩ Lj), j =
1, . . . , l, i = 1, . . . , k} are δ-fine M-partitions of [a, b].

Hence f ∈ S∗. �

Lemma 9. If f ∈ S∗ then f ∈ SM.

�����. If f ∈ S∗ then, by Definition 2, for every ε > 0 there is a gauge δ on

[a, b] such that
k∑

i=1

l∑

j=1

‖f(ti)− f(sj)‖Xµ(Ji ∩ Lj) <
ε

2

for any δ-fine M-partitions {(ti, Ji), i = 1, . . . , k} and {(sj , Lj), j = 1, . . . , l} of [a, b].

Assume that {(ti, Ji), i = 1, . . . , k} is an arbitrary δ-fine M-partition of [a, b].

By Corollary 6 we have f ∈ M and therefore f is McShane integrable over
every interval Ji, i = 1, . . . , k. Hence for the given ε > 0 there is a gauge δ′ on
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[a, b] such that δ′(t) � δ(t) for t ∈ [a, b] and such that for any δ′-fine M-partition

{(s(i)j , L
(i)
j ), j = 1, . . . , l(i)} of the intervals Ji we have

∥∥∥∥
l(i)∑

j=1

[
f(s(i)j )µ(L

(i)
j )− F [L(i)j

]
]

∥∥∥∥
X

<
ε

2k
.

Note that {(s(i)j , L
(i)
j ), j = 1, . . . , l(i), i = 1, . . . , k} is a δ-fine M-partition of the

interval [a, b] and that for any i = 1, . . . , k we have

f(ti)µ(Ji) =
l(i)∑

j=1

f(ti)µ(Ji ∩ L
(i)
j )

and, because of the additivity of the indefinite integral F , also

F [Ji] =
l(i)∑

j=1

F [Ji ∩ L
(i)
j ].

Hence

k∑

i=1

‖f(ti)µ(Ji)− F [Ji]‖X =
k∑

i=1

∥∥∥∥
l(i)∑

j=1

f(ti)µ(Ji ∩ L
(i)
j )−

l(i)∑

j=1

F [Ji ∩ L
(i)
j ]

∥∥∥∥
X

=
k∑

i=1

∥∥∥∥
l(i)∑

j=1

(f(ti)− f(s(i)j ))µ(Ji ∩ L
(i)
j ) +

l(i)∑

j=1

[
f(s(i)j )µ(Ji ∩ L

(i)
j )− F [Ji ∩ L

(i)
j ]

]∥∥∥∥
X

�
k∑

i=1

∥∥∥∥
l(i)∑

j=1

(f(ti)− f(s(i)j ))µ(Ji ∩ L
(i)
j )

∥∥∥∥
X

+
k∑

i=1

∥∥∥∥
l(i)∑

j=1

[
f(s(i)j )µ(Ji ∩ L

(i)
j )− F [Ji ∩ L

(i)
j ]

]∥∥∥∥
X

�
k∑

i=1

l(i)∑

j=1

‖(f(ti)− f(s(i)j ))µ(Ji ∩ L
(i)
j )‖X

+
k∑

i=1

∥∥∥∥
l(i)∑

j=1

[
f(s(i)j )µ(Ji ∩ L

(i)
j )− F [Ji ∩ L

(i)
j ]

]∥∥∥∥
X

<
ε

2
+

k∑

i=1

ε

2k
= ε.

This shows that f ∈ SM. �

Using Lemma 8 and 9 we immediately obtain

Corollary 10. f ∈ S∗ if and only if f ∈ SM, i.e. S∗ = SM.
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3. Comparison of various integrals

Our aim now is to compare the concepts of Bochner integral, McShane integral

described above and the variational McShane integral introduced in [8].
Denote by B the space of all Bochner integrable functions f : [a, b]→ X .

We use the concept of the Bochner integral as it is presented in the book [6] of S.
Lang and its slight modification from [7]. This concept is based on the elementary

definition of the integral of the so called simple functions and on the completion of the
linear space of simple functions on the interval [a, b] with respect to the L1-seminorm

given by ‖f‖1 =
∫ b

a ‖f‖ dµ for a simple function f . (For a more detailed account of
these well-known facts see [6] or [7]).

In [7] the following fact was shown.

Proposition 11. If f ∈ B then also f ∈ S� = SM ⊂M and

(B)
∫ b

a

f dµ = (M)
∫ b

a

f dµ.

So if X is a general Banach space then B ⊂ S� = SM ⊂M.
On the other hand, the following statement holds.

Proposition 12. If f ∈ S� then also f ∈ B and

(B)
∫ b

a

f dµ = (M)
∫ b

a

f dµ.

The proof of Proposition 12 can be found in [7]. Here we don’t repeat it.
From Propositions 11 and 12 we get

Corollary 13. f ∈ S∗ if and only if f ∈ B, i.e. S∗ = SM = B.

Now we recall the variational McShane integral introduced in [8].

Let I be a collection of all closed intervals that are contained in [a, b] and let
F1, F2 : I × [a, b]→ X be interval-point functions.

Functions F1, F2 : I × [a, b]→ X are said to be McShane variationally equivalent
if VM (F1 − F2) = 0, where

VM (F1 − F2) = inf
δ
sup

T

k∑

j=1

‖F1(τi, Ji)− F2(τi, Ji)‖

(the sup is taken over all McShane δ-fine partitions T = {(τj , Jj), j = 1, . . . , k} and
the inf is taken over all gauges δ on [a, b]).
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Definition 14. A function f : [a, b] → X is called McShane variationally

integrable (MV-integrable) on [a, b] if there exists an additive interval function
F : I → X such that the interval-point function f(t)µ(I) and F [I] are McShane
variationally equivalent, F [I] being the indefiniteMV-integral of f .

Theorem 15. If f : [a, b]→ X , then the following assertions are equivalent.

(1) f ∈ S�,

(2) f ∈ SM,
(3) the function f isMV-integrable on [a, b],

(4) f ∈ B.

�����. By Corollary 10 it follows that (1) and (2) are equivalent. By Corol-

lary 13, it follows that (1) and (4) are equivalent. By Theorem 2 from [8], it follows
that (4) and (3) are equivalent. So we obtain the statement of our theorem, i.e. we

have S� = SM = B =MV . �

In this way different definitions of Bochner integrability are obtained making in
fact a link to the McShane variational integral presented in [8] (MV) using the
McShane variational equivalence.
Moreover, the following result was proved in [7].

Proposition 16. If X is a finite dimensional Banach space, then S� = SM =
S =M.

In [7] (like Skvortsov and Solodov have done it in [8]) the results of Dvoretzky and
Rogers from [1] have been used to prove

Proposition 17. Given a Banach space X then S� = SM ⊂ S = M and

S� = SM = S =M if and only if the dimension of X is finite.

So with respect to the above considerations and to Theorem 15 we obtain

Theorem 18. If X is a Banach space then the classes of functions B, S�, SM,
MV andM coincide if and only if X is finite-dimensional.

In other words, this says that if X is a finite-dimensional Banach space then

the B-integral and the M-integral are equivalent (and this occurs if the integrand
belongs to the equivalent classes of functons S�, SM, MV). So we get various
characterizations of the Bochner integrable functions f : [a, b]→ X in this case.

Remark. All the integrals presented in this paper and also our results can be
generalized to the case of functions defined on intervals in �n , i.e. to the case when
f : I0 → X (I0 ⊂ �

n is an interval and X is a Banach space) because we don’t use
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any special property of the one dimensional space in the above statements. So this

generalization from �
1 to �n is very natural.
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