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1. Introduction

We apply the notion of a vector lattice in the same sense as in Birkhoff [2] and

Conrad [3]. In the monograph Luxemburg and Zaanen [11] vector lattices are called
Riesz spaces. In Russian literature (cf., e.g., Vulikh [18], Kantorovich, Vulikh and

Pinsker [9]) the term K-lineal is used.

Let G be an archimedean lattice ordered group. Lapellere and Valente [10] dealt
with the possibility of embedding G into a complete vector lattice.

Pinsker [14] proved that if G is complete, then it can be embedded into a complete
vector lattice; by applying the Dedekind completion we get that this result is valid

for any archimedean lattice ordered group. A shorter and simpler proof of this fact
was given by the author [5].

By applying the quoted theorem on the embedding and by using the well-known re-

sult on the representation of complete vector lattices (cf. Vulikh [18], Theorem V.4.2;
for related results cf. also Maeda and Ogasavara [12] and Yosida [19]) we obtain a

representation of archimedean lattice ordered groups by real functions admitting also
the values +∞ and −∞ (this was pointed out already in [5]).

889



A direct proof concerning the representation of archimedean lattice ordered groups

(without applying vector lattices) was given by Bernau [1].

Let α and β be cardinals. The notion of (α, β)-distributivity (and, in particular,
of complete distributivity) for lattices, Boolean algebras and lattice ordered groups

was investigated by several authors (cf., e.g., Pierce [13], Smith and Tarski [17],
Redfield [15]).

Let G be an archimedean lattice ordered group. We denote by S(G) the set of all

singular elements of G. In the present paper we prove the following results:

(A) Assume that the set S(G) is finite. Then the following conditions are equivalent:

(i) G is completely distributive.

(ii) There exists a complete vector lattice V such that G is regularly embedded
into V and V is completely distributive.

(B) Let α and β be infinite cardinals. Assume that the set S(G) is finite and that

card[0, g] � β for each 0 < g ∈ G. Then the following conditions are equivalent:

(i) G is (α, β)-distributive.

(ii) There exists a complete vector lattice V such that G is regularly embedded

into V and V is (α, β)-distributive.

2. Preliminaries

For lattice ordered groups we apply the notation and terminology as in [2] and [3].

Let G be a lattice ordered group and let α, β be nonzero cardinals. G is called

(α, β)-distributive if, whenever (gij)i∈I,j∈J is an indexed system of elements of G

with card I � α, cardJ � β then the relation

∧

i∈I

∨

j∈J

gij =
∨

f∈JI

∧

i∈I

giϕ(i)

is valid provided the indicated joins and intersections exist.

G is completely distributive if it is (α, β)-distributive for any nonzero cardinals α

and β.

Assume that G is an �-subgroup of a lattice ordered group H such that

(i) whenever (gi)i∈I is an indexed system of elements of G and
∨
i∈I

gi = g is valid

in G, then g is the supremum of (gi)i∈I in H as well;

(ii) the condition dual to (i) is satisfied.

Then we say that G is regularly embedded into H .

We remark that the term ‘regular embedding’ is used in an analogous way for
Boolean algebras by Sikorski [16].
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An element 0 < s ∈ G is called singular if the interval [0, s] of G is a Boolean

algebra (or, equivalently: if x ∧ (s− x) = 0 for each x ∈ [0, s]). (Cf. Conrad [3].)
Let S(G) be as in Section 1. If x, y ∈ G, 0 < x � y and if y ∈ S(G), then

x ∈ S(G). We denote by A(G) the set of all atoms of the lattice G+. Each element
of A(G) belongs to S(G). If S(G) is finite, then for each 0 < s ∈ S(G) there exists

a ∈ A(G) with a � s.

In what follows we assume that G is an archimedean lattice ordered group.

Let us consider expressions of the form x/n, where x ∈ G and n is a positive

integer. For x/n and y/m we put x/n � y/m if mx � ny; if mx = ny, then we
set x/n = y/m. Let Gd be the set of all such expressions (under the mentioned

equality); then � is a partial order on Gd. We define the operation + in Gd by the
usual rule

x

n
+

y

m
=

mx+ ny

nm
.

Then Gd turns out to be a divisible archimedean lattice ordered group. We identify
the element x/1 with x. Under this identification, G is regularly embedded into Gd;

cf., e.g., [5]. (We correct a mistake in [5]: on p. 268 it should be “integrally closed
partially ordered group” instead of “abelian partially ordered group”.)

Gd is called the divisible hull of G.

The above mentioned embedding of G into Gd is regular. In fact, if
∨
i∈I

gi = g is

valid in G and if h ∈ G, gi � h/n < g for each i ∈ I, then ngi � h < ng for each

i ∈ I; but
∨
i∈I

ngi = ng, and so we arrive at a contradiction. For
∧
i∈I

gi we proceed

analogously.

2.1. Theorem (cf. [3], [4]). There exists a complete lattice ordered group GD

with the following properties:

1) G is regularly embedded into GD;

2) if h ∈ GD, then h =
∨{g ∈ G : g � h};

3) if H is any complete lattice ordered group with the properties 1) and 2), then
there exists a unique isomorphism σ of GD onto H such that gσ = g for all

g ∈ G;

4) if G contains no singular elements then GD is a vector lattice;

5) if G is dense in a complete lattice ordered group H then GD is the �-ideal of H

generated by G.

GD is called the Dedekind completion of G.

It is obvious that Gd has no singular elements; hence in view of 2.1, GdD is a vector

lattice and G is regularly embedded into GdD. Thus we obtain as a corollary the
main result of [10] (Theorem 2.1) saying that for each archimedean lattice ordered
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group G there exists a complete vector lattice V such that G is regularly embedded

into V .

3. Direct product decompositions

Let G be as above. For X ⊆ G we put

Xδ = {g ∈ G : |g| ∧ |x| = 0 for each x ∈ X};

Xδ is called the polar of G corresponding to the subset X . Each polar is a convex
�-subgroup of G.

The direct product of lattice ordered groups is defined in the usual way. For
the direct product of lattice ordered groups G1, G2, . . . , Gn we apply the notation

G1 ×G2 × . . .×Gn.
The following result is well-known.

3.1. Lemma. Let A be a convex �-subgroup of G. Then A is a direct factor of G

if and only if for each 0 � x ∈ G there exists x1 ∈ A such that

x1 =
∨
{t ∈ A+ : t � x}.

If this condition is satisfied, then we have a direct product decomposition

G = A×Aδ

and x1 is the component of the element x in the direct factor A; further, A = Aδδ.

3.2. Lemma. Assume that we have a direct product decomposition

(1) G = A×B.

Then Gd = Ad ×Bd.

�����. a) It is obvious that Ad is a subgroup of the group Gd. We consider

the partial order on Ad which is inherited from Gd. Let x/m ∈ Ad. Put y = x ∨ 0,
z = x ∧ 0. Then y, z ∈ A, hence y/n, z/n ∈ Ad. We have

z

n
� 0 � y

n
,

z

n
� x

n
� y

n
.

Therefore Ad is a directed group.
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b) Let x ∈ A, g ∈ G, and m, n ∈ �. Assume that

0 � g

m
� x

n
.

Then 0 � g, 0 � x and
g � m

x

n
� mx,

whence g ∈ A and g
m ∈ Ad. This yields that Ad is a convex subgroup of Gd.

c) From a) and b) we infer that Ad is a convex �-subgroup of Gd.

d) Let 0 � x/n ∈ Gd. Hence 0 � x. In view of 3.1 there exists x1 ∈ G+ such that
x1 is the largest element of the set {a ∈ A+ : a � x}.
We have 0 � x1/n � x/n, x1/n ∈ Ad. Let 0 � y/m ∈ Ad, y/m � x/n. Hence

0 � y and

(2) ny � mx.

Thus 0 � ny ∈ A.
For each t ∈ G we denote by t(A) the component of t in the direct factor A. Thus

x(A) = x1 and y(A) = y. Therefore in view of (2) we obtain

ny(A) = (ny)(A) � (mx)(A) = mx(A),

ny � mx1,
y

m
� x1

n
.

According to 3.1 we conclude that Ad is a direct factor of Gd. Analogously, Bd is a

direct factor of Gd.
e) For Z ⊆ Gd we put

Zδ1 = {h ∈ Gd : |h| ∧ |z| = 0 for each z ∈ Z}.

Let 0 � x/n ∈ Ad, 0 � y/m ∈ Bd. Then 0 � x ∈ A, 0 � y ∈ B, whence x∧ y = 0.
Since x/n � x, y/m � y, we get

x

n
∧ y

m
= 0.

This yields that Bd ⊆ (Aδ)δ1 .

Let 0 � y/m ∈ (Ad)δ1 . The polar (Ad)δ1 of Gd is an �-subgroup of Gd, hence

y = m
y

m
∈ (Ad)δ1 .

Let 0 < x ∈ A. Then x ∈ Ad, thus x ∧ y = 0. We obtain y ∈ Aδ, therefore y ∈ B

and y/m ∈ Bd. Summarizing, Bd = (Ad)δ1 . Thus Gd = Ad ×Bd. �
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3.3. Proposition (cf. [11]). Let (1) be valid. Then GD = AD ×BD.

3.4. Lemma. Suppose that the set S(G) is finite. LetA be the convex �-subgroup

of G which is generated by S(G). Then

(i) A is a direct product of a finite number of linearly ordered groups;

(ii) G = A×Aδ.

�����. If S(G) = ∅, then the assertion is trivial. Suppose that S(G) is
nonempty, S(G) = {y1, y2, . . . , yn}. In this case the set A(G) is also nonempty,

A(G) = {x1, x2, . . . , xn}, n � m.

In view of [6], for each i ∈ {1, 2, . . . , n} there exists a linearly ordered group Ai

such that

(i1) Ai is a convex �-subgroup of G which is generated by xi,

(ii1) G = A1 ×A2 × . . .×An ×B, where B = {x1, x2, . . . , xn}δ.

It is clear that A1×A2× . . .×An is the convex �-subgroup of G which is generated
by S(G) and that B = (A1 ×A2 × . . .×An)δ. �

4. Proofs of (A) and (B)

The following lemma is easy to verify, the proof will be omitted.

4.1. Lemma. Let X be an archimedean linearly ordered group. Then both Xδ

and XD are linearly ordered.

It is well-known that each linearly ordered group is completely distributive. Hence

each direct product of linearly ordered groups is completely distributive as well.

Let G be as above.

4.2. Proposition. If G is completely distributive, then GD is completely dis-

tributive as well.

�����. This is a consequence of Theorem 2.2 in [8]. �

����� �� (A). Let G be an archimedean lattice ordered group such that the

set S(G) is finite.

a) The implication (ii)⇒ (i) is obviously valid.
b) Assume that the condition (i) is satisfied.

First suppose that the set S(G) is empty. Then in view of 2.1, GD is a vector

lattice. Also, G is regularly embedded into GD. Moreover, in view of 4.2, GD is
completely distributive. Thus (ii) holds.
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Now suppose that S(G) �= ∅. Hence A(G) is nonempty and finite. Let us apply

the same notation as in the proof of 3.4. Put AD
i = Ai1 (i = 1, 2, . . . , n), B0 = B1.

In view of 3.3 we have

GD = A11 ×A21 × . . .×An1 ×B1.

According to 4.1 and 4.2, GD is completely distributive. Next, G is regularly em-

bedded into GD.
We set Ad

i1 = Ai2 (i = 1, 2, . . . , n). Hence in view of 4.1, all Ai2 are linearly

ordered groups. Since B1 is a vector lattice, we have Bd
1 = B1. Then Lemma 3.2

yields

GDd = A12 ×A22 × . . .×An2 ×B1.

Further, GDd is completely distributive and G is regularly embedded into GDd.

Since GDd is divisible, in view of 2.1 we obtain that V = GDdD is a complete
vector lattice. G is regularly embedded into V . According to 3.3,

V = AD
12 ×AD

22 × . . .×AD
n2 ×B1

since BD = B1. By 4.1, V is completely distributive. �

Now let α and β be infinite cardinals. Consider the following condition for a lattice

ordered group X :
(c(β)) If 0 < x ∈ X , then card[0, x] � β.

4.3. Lemma. Let X be an archimedean lattice ordered group satisfying the

condition c(β). Then Xd satisfies this condition as well.

�����. This is an immediate consequence of the construction of Xd (cf. Sec-
tion 2). �

4.4. Proposition. Let X be an archimedean lattice ordered group. Assume

that X is (α, β)-distributive and satisfies the condition c(β). Then XD is (α, β)-
distributive.

�����. This is a particular case of Theorem 2.2 in [8]. �

����� �� (B).
We proceed analogously as in the proof of (A) and apply the same notation.

Clearly (ii)⇒ (i). Suppose that (i) holds.
If S(G) = ∅, then it suffices to put V = GD and apply 4.4.

Let S(G) �= ∅. Then B satisfies the condition c(β) and is (α, β)-distributive.
Hence according to 4.4, B1 is (α, β)-distributive.

Let V be as in the proof of (A). Thus V is a complete vector lattice, it is (α, β)-
distributive and G is regularly embedded into V . Therefore (ii) holds. �
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We remark that (B) could be applied for establishing a new version of the proof

of (A).
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