
Czechoslovak Mathematical Journal

P. M. G. Manchón
Hypersurfaces in Rn and critical points in their external region

Czechoslovak Mathematical Journal, Vol. 52 (2002), No. 1, 1–9

Persistent URL: http://dml.cz/dmlcz/127696

Terms of use:
© Institute of Mathematics AS CR, 2002

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/127696
http://dml.cz


Czechoslovak Mathematical Journal, 52 (127) (2002), 1–9

HYPERSURFACES IN �
n AND CRITICAL POINTS

IN THEIR EXTERNAL REGION

P. M. G. Manchón, Madrid

(Received July 7, 1997)

Abstract. In this paper we study the hypersurfaces Mn given as connected compact
regular fibers of a differentiable map f : �n+1 → �, in the cases in which f has finitely
many nondegenerate critical points in the unbounded component of �n+1 −Mn.
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1. Introduction

Let f : �n+1 → � be a differentiable map (throughout this paper differentiable
means differentiable of class C∞) and let Mn be a connected compact regular fiber

of f . By the Jordan-Brouwer Separation Theorem ([3]) Mn bounds a compact
cobordism and if f is a Morse function, we can study the hypersurface Mn through

the critical points in this cobordism. But what happens if f has degenerate critical
points in the bounded cobordism, and f has finitely many critical points in the

external region of �n+1 −Mn and all of them are nondegenerate? (This possibility
is not odd: see Example in Section 2.) In this case, Classical Morse Deformation

Theory does not work in the external region: this cobordism is not compact and it
does not have a known first level.

The purpose of this paper is to solve this problem. To explain the answer, suppose

f (or a good enough modification of f) extends to Sn+1 = �
n+1 ∪ {∞} through a

maximal point∞. Then, the nonempty inverse image of a regular value greater than

The results in this paper are contained in the author’s Ph. D. Thesis, written under the
direction of Professor E. Outerelo.
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any critical value (of the map f defined on �n+1 ) would be the sphere Sn and we

would have a Morse function on a compact cobordism in the external region with Sn

as a first level. Although this is the solution, our approach is necessarily different
because, in general, we can not extend the function f to Sn+1. We prove:

Theorem 2. Let Mn be a connected compact hypersurface in �n+1 (n � 2),
and let f : �n+1 → � be a differentiable map with Mn = f−1(0) and 0 a regular
value of f . Suppose f satisfies the condition of Palais-Smale or has compact fibers.

Then, if f does not have critical points in the unbounded connected component of

�
n+1 −Mn, we have that:

i) Mn is a homotopy 3-sphere if n = 3.

ii) Mn is homeomorphic to S4 if n = 4.
iii) Mn is diffeomorphic to Sn if n � 5 or n = 2.

We recall that a differentiable map f : �n+1 → � satisfies the condition of Palais-
Smale if for any sequence {xn}n∈� ⊂ �

n+1 such that {‖Df(xn)‖}n∈� tends to 0
and {f(xn) | n ∈ �} is a bounded set, we have that {xn}n∈� has a convergent
subsequence (see [10]).

Lemma 2. Let f : �n+1 → � be a differentiable map with compact fibers (n ∈ �).
Then, if λ ∈ � is a regular value of f which is greater than any critical value of f ,

we have that f−1(λ) is connected (perhaps empty).

Lemma 2 is a generalization of Theorem 3 in [2]. We can use this lemma as

well for proving the connectedness of the fibers of the model function g(x, y) =
x4

4 +
x3

3 − x2 + y2 used in the characterization of the disk (see [4], p. 195).

Let now f : �n+1 → � be a proper differentiable function, and let Mn = f−1(0)
be a regular level hypersurface. Suppose f has only finitely many critical points

in the external region, and all of them are nondegenerate. As f is proper, f is
unbounded. Assume for example that f is not bounded from above. Choose a

regular value λ which is an upper bound of the set of the critical values. It is clear
that

(
f−1([0, λ]);Mn, f−1(λ)

)
is a compact cobordism and f |f−1([0,λ]) : f−1([0, λ])→

[0, λ] is a Morse function on this cobordism. Now, by Lemma 2 the fiber f−1(λ) is
connected, and by Theorem 2 it is the sphere (differentiable if n = 2 or n � 5). Thus
we know the first level of the cobordism and hence we can study Mn by means of
the Classical Morse Deformation Theory. For example, we deduce:

Corollary 1. Let S be a connected surface in �3 obtained as the zero set of a
proper and differentiable function f : �3 → � where 0 is a regular value of f . Then,

if f has only one critical point in the unbounded connected component of �3 − S,

and it is nondegenerate, S is diffeomorphic to the torus.
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Corollary 2. Let Mn be a compact and connected hypersurface in �n+1 with

n � 5. Then the following statements are equivalent:
i) Mn is diffeomorphic to Sn.

ii) There exists a differentiable map f : �n+1 → � such that 0 is a regular value

of f , Mn = f−1(0), f does not have critical points in the unbounded connected
component of �n+1 −Mn, and f satisfies the condition of Palais-Smale.

Moreover, the result also holds true if in ii) we substitute “f satisfies the condition

of Palais-Smale” by either the condition “f has compact fibers” (statement iii)) or
the condition ”f is a proper map” (statement iv)).

First of all, we prove that every compact hypersurface (not necessarily connected)

is a regular level set of a function with the nice properties of Theorem 2:

Theorem 1. Let Mn be a compact hypersurface in �n+1 . Then there exists a

proper Morse function f : �n+1 → � with finitely many critical points, and such

that 0 is a regular value of f and Mn is its inverse image.

In the proofs of the theorems and of Lemma 2 we will need the following topological
result about proper maps:

Lemma 1. Let f : �n+1 → � be a continuous map with n � 1. Suppose f has
compact fibers and is not bounded from above. Then f is bounded from below and

proper.

2. Proofs

We begin with the proof of Lemma 1 for differentiable maps (recall that differen-
tiable means differentiable of class C∞), since this is the case we will need and it

illustrates better the situation of the fibers of the map. The proof of Lemma 1 can
be found in [6].

Proposition 1. Let f : �n+1 → � be a differentiable map with n � 1. Suppose
f has compact fibers and is not bounded from above. Then f is bounded from below

and proper.

�����. As the map f is of class C∞, the set of the regular values of f is dense

in � by the Second Theorem of Sard ([5], 8.3.10). In particular there exists a sequence
{tm}m∈� ⊂ � of regular values of f which converges to +∞, and we can suppose
that the fibers of these points f−1(tm) are nonempty because f is not bounded from
above. As f has also compact fibers, f−1(tm) is a nonempty compact differentiable
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submanifold (without boundary) of �n+1 , and by the Jordan-Brouwer Separation

Theorem, �n+1 − f−1(tm) has finitely many connected components, all bounded
except one which is unbounded, and all are open (here we need the hypothesis
n ∈ �). Let Am be the unbounded connected component of �n+1 − f−1(tm). Then

f(Am) ⊂ (tm,+∞) since f is not bounded from above and �n+1 −Am is compact.
That f is bounded from below follows then from the facts that f(Am) is (by tm) and
that �n+1 − Am is compact. (Note that we have only used one regular value of f
with compact and nonempty fiber.)

We see now that f is proper, proving that for every µ ∈ �, µ > 0, there exists a
natural number N such that if ‖x‖ > N , then |f(x)| > µ. As the sequence {tm}m∈�
converges to +∞, there exists m0 ∈ � such that tm0 > µ, and since �n+1 − Am0
is compact, there exists N > 0 with �n+1 − Am0 ⊂ B[0, N ] = {x ∈ �

n+1 | ‖x‖ �
N}. Then, if x ∈ �

n+1 is such that ‖x‖ > N , x /∈ B[0, N ], so x /∈ �
n+1 − Am0 ,

that is x ∈ Am0 , and hence |f(x)| � f(x) > tm0 > µ. This finishes the proof of

Proposition 1. �

����� of Theorem 1. Suppose first that the hypersurface is connected: we can
assume that the hypersurface in �n+1 is a hypersurface in Sn+1, the Alexandroff

compactification of the Euclidean Space, and that it divides the sphere into two
connected components with the hypersurface as common boundary. The closure of

each component is a cobordism, and admits a Morse function (with the hypersurface
as the zero level set of both Morse functions). By the compactness of the cobordisms,

the Morse functions have finitely many critical points.

Now we can paste the Morse functions to obtain a Morse function on the sphere,

keeping exactly the critical points of the original functions and with the hypersurface
as the inverse image of zero. The details of this construction are along the line

of Theorem 3.4 of [7], using strongly the uniqueness in Theorem 1.4 of the same
reference.

By the Morse Lemma, we can obtain the above function with only an absolute

maximal point and an absolute minimal point, and by the Thom Isotopy Extension
Theorem ([4]) we can assume that the maximal point is the one used for the Alexan-

droff compactification of �n+1 . In this way we get a Morse function on �n+1 with
finitely many critical points such that 0 is a regular value, the hypersurface is its

inverse image, and all the fibers of the map are compact.

However, the function we have obtained is not necessarily proper. In any case the
supremum b > 0 of the function is not in the image and we then compose the function

with an appropriate diffeomorphism of (−∞, b) onto (−∞,+∞). By Proposition 1
the composite map is then a solution to the theorem in the connected case.
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Although the proof of the disconnected case is similar, some remarks are neces-

sary: first of all, by a generalization of the Jordan-Brouwer Separation Theorem the
hypersurface divides the sphere into one more connected component than those of
the hypersurface, and each component of the hypersurface will be a component of

the boundary of exactly two of these components. Secondly, if A is a connected
component of the hypersurface Mn and X and Y are the two cobordisms with

∂X = A = ∂Y (adjacent cobordisms), the chosen Morse function for X will be neg-
ative if for Y it is positive. Note that this is possible even though the cobordisms

may have many connected components of Mn in the boundary. The remainder of
the proof runs basically as in the connected case. �

We now prove the main result:

����� of Theorem 2. Let G0 and G1 be the connected components of

�
n+1 −Mn, soMn is the boundary of both G0 and G1 and one of them, for example
G0, is bounded. Moreover G0 and G1 are open sets of �n+1 and Gi = Gi ∪Mn are

differentiable submanifolds of �n+1 with ∂(Gi) =Mn for i = 0, 1.

AsMn is compact, there exists r > 0 withMn ⊂ B(0, r) = {x ∈ �n+1 | ‖x‖ < N},
hence G0 ⊂ B(0, r). Then X = G1 ∩ B[0, r] is a differentiable submanifold of �n+1
with ∂X = Mn + Snr the disjoint union of M

n and Snr , where S
n
r is the sphere of

radius r centered at the origin of �n+1 .

It suffices to prove that X is an h-cobordism between Mn and Snr if n � 2, this
is, the maps Mn ↪→ X and Snr ↪→ X are homotopy equivalences. Of course, in that
case, the theorem follows from the h-cobordism Theorem if n � 5 ([7], Theorem 9.1)
and from [1], Corollary 7.1B in the case n = 4.

By an already well known argument (see for example [7], Theorem 9.1) it suffices
to prove that Mn and X are simply-connected and the inclusion map Mn ↪→ X is a

homotopy equivalence. As Gi are connected, Mn = f−1(0) and 0 is a regular value
of f , we can assume that f(G0) ⊂ (−∞, 0) and f(G1) ⊂ (0,+∞).
Suppose first that f satisfies the condition of Palais-Smale. Let C(f) be the

set of critical points of f . Then, if C(f) ∩ G1 = ∅, there exists a diffeomorphism
ψ : Mn × [0,+∞) → G1 with ψ(x, 0) = x for every x ∈ Mn. To see this, note

first that there is an ε > 0 with f(C(f)) ∩ [−ε, 0] = ∅. It follows that (see [9],
Theorem 5.9) there exists a diffeomorphism h : f−1(0)× (−ε,+∞)→ f−1(−ε,+∞)
with h(x, 0) = x for every x ∈ f−1(0) and h(f−1(0) × {d}) = f−1(d) for every
d ∈ (−ε,+∞), and so the map ψ : Mn × [0,+∞)→ G1 defined by ψ(x, t) = h(x, t)

is a diffeomorphism and ψ(x, 0) = x for every x ∈Mn (note that f has then compact
fibers).
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Then the diagram

Mn � � ��

j0 ������������� G1

Mn × [0,+∞)
ψ

�������������

where j0(x) = (x, 0), is obviously commutative, and the inclusion map Mn ↪→ G1

is a homotopy equivalence. On the other hand, the inclusion map X ↪→ G1 is also
a homotopy equivalence since there exists a strong deformation retract of G1 on X .

As Mn ⊂ X ⊂ G1, we can conclude that the inclusion map Mn ↪→ X is a homotopy
equivalence.

Let us see now that G1 is simply-connected. Choose d > 0 such that the hyper-
surface f−1(d) = ψ(Mn × {d}) is disjoint from B[0, r]. Then, if i : f−1(d) ↪→ G1 is
the inclusion map, the induced homomorphism i∗ : π1(f−1(d))→ π1(G1) is the zero

map because f−1(d) ⊂ �
n+1 −B[0, r] ⊂ G1 and n � 2. Now, as the diagram

Mn × {d} ��
� �

��

f−1(d)

i

� �

��
Mn × [0,+∞) ψ �� G1

is commutative, i∗ is an isomorphism and hence π1(G1) = 0.
In this way the proof of the theorem is finished when f satisfies the condition of

Palais-Smale. Suppose now that f has compact fibers: if f is not bounded from
above, f is proper by Proposition 1 and hence it satisfies Palais-Smale and we may

apply the part of the theorem already proved. If f is bounded from above, f(G1) =
(0, b) with b > 0 since C(f) ∩ G1 = ∅. We then consider a strictly increasing
diffeomorphism β : (−∞, b) → � such that β(t) = t for every t � b/2. Then the
composite map g = βf is proper by Proposition 1, hence it fulfills the condition of

Palais-Smale, and of courseMn = g−1(0) and 0 is a regular value of g. As before, we
then apply the part of the theorem already proved. This completes the proof. �

Note that under the hypothesis of Theorem 2, the map f has compact fibers in

any case. We now prove a result about the connectedness of regular level sets:

����� of Lemma 2. We first see that if there is a regular value λ of f which is an
upper bound of f(C(f)) and its inverse image is nonempty, then C(f) is bounded. Of

course, the inverse image of such a regular value is a compact hypersurface, and by the
Jordan-Brouwer Separation Theorem, its complement has finitely many connected
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components, all bounded except one which we call M. Moreover every bounded
component has critical points (at least extreme points) of f , hence f takes values
less than λ in these components. Then, asM is connected and λ is a regular value
of f , necessarily f(M) ⊂ (λ,+∞) and so there are no critical points inM because

λ is an upper bound of f(C(f)). So we have that C(f) is included in the union of
the bounded connected components of �n+1 − f−1(λ) and hence it is bounded.

Note also that we can assume that f is not bounded from above: let b ∈ �∪{+∞}
be the supremum of im(f). If f is bounded from above, b ∈ �. Now, if b ∈ im(f),
b ∈ f(C(f)) and if λ is a regular value of f which is an upper bound of f(C(f)), of
course f−1(λ) is empty. The other possibility is that b /∈ im(f): if a is the infimum
of im(f), then a < b and there exists c ∈ �, a < c < b. We consider then a
diffeomorphism α : (−∞, b) → � satisfying the condition α(t) = t for every t � c,

and the differentiable map g = α ◦ f . This function has compact fibers too, and it is
unbounded. Now, if λ is a regular value of f which is an upper bound of f(C(f)),

then α(λ) is a regular value of g which is an upper bound of g(C(g)), and of course,
f−1(λ) = g−1(α(λ)).

Now suppose that f is not bounded from above, so f is proper by Proposition 1.

We have then that f−1(λ1) and f−1(λ2) are diffeomorphic if λ1 < λ2 are two
regular values of f which are upper bounds of f(C(f)): in fact, as f is proper,(
f−1([λ1, λ2]); f−1(λ1), f−1(λ2)

)
is a compact cobordism, and

f |f−1([λ1,λ2]) : f−1([λ1, λ2])→ [λ1, λ2]

is a Morse function on this cobordism without critical points. So, by the First Theo-
rem of Morse Deformation Theory, the fibers f−1(λ1) and f−1(λ2) are diffeomorphic

manifolds.

From the above discussion, it suffices to prove that there is a regular value of f

which is an upper bound of f(C(f)) such that its fiber is connected when f is a proper
function, not bounded from above, and f(C(f)) is bounded from above. Then, we

already know that C(f) ⊂ B(0, s) for some s > 0. Besides, if µ is a regular value of f
with f−1(µ) ∩B(0, s) = ∅, there exists a connected component A of �n+1 − f−1(µ)

with C(f) ⊂ A. By the Jordan-Brouwer Separation Theorem and the existence of
relative extreme points, if µ is a regular value of f and �n+1 −f−1(µ) has more than
two connected components, at least two of these components have critical points of f ,
hence there is no connected component of �n+1 − f−1(µ) containing C(f). Now,

Lemma 2 follows from the fact that f(B[0, s])) is bounded. �

Remark. In spite of Lemma 2, Theorem 2 requires the hypothesis of the con-
nectedness of the hypersurface. Why?
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Let now f : �n+1 → � be a proper differentiable function, and let Mn = f−1(0)

be a regular level hypersurface. Suppose f has only finitely many critical points
in the external region, and all of them are nondegenerate. As f is proper, f is
unbounded. Assume for example that f is not bounded from above. Choose a

regular value λ which is an upper bound of the set of the critical values. It is clear
that

(
f−1([0, λ]);Mn, f−1(λ)

)
is a compact cobordism and f |f−1([0,λ]) : f−1([0, λ])→

[0, λ] is a Morse function on this cobordism. Now, by Lemma 2 the fiber f−1(λ) is
connected, and by Theorem 2 it is the sphere (differentiable if n = 2 or n � 5). So,
we know the first level of the cobordism and hence we can studyMn by means of the
Classical Morse Deformation Theory. For example, using the relation between Morse

functions and surgery ([8]) we can prove Corollary 1 stated in the Introduction.

Example. From the last result, we infer easily that if g : �3 → � is the polyno-
mial map defined by

g(x1, x2, x3) = x41 + x
4
2 + x

4
3 + 2x

2
1x
2
2 + 2x

2
1x
2
3 + 2x

2
2x
2
3 + 6x

2
1 − 10x22 − 10x23 + 9,

then S = g−1(0) is a torus.

That S is connected follows from the Jordan-Brouwer Separation Theorem and

from the next points:
i) C(g) = {(0, 0, 0)} ∪ {(0, x2, x3) ∈ �

3 | x22 + x23 = 5} has exactly two connected
components.

ii) {(0, 0, 0)} ⊂ A, where A is the only unbounded connected component of �3 −S
(g(t, 0, 0) = t4 + 6t2 + 9 > 0 for every t � 0).

iii) Every bounded connected component of �3 − S has necessarily critical points

(relative extreme points).
On the other hand g has only one critical point in the unbounded connected

component of �3 − S: this is {p ∈ �
3 | g(p) > 0} and C(g) ∩ {p ∈ �

3 | g(p) > 0} =
{(0, 0, 0)}. It is obvious that g fulfills all the other hypothesis of Corollary 1, hence
S is a torus.
Making use of the Differentiable Schoenflies Theorem in dimensions greater than

four we can prove (we need again Proposition 1):

Proposition 2. Let Mn be a hypersurface in �n+1 , with n � 4. Then, if Mn

is diffeomorphic to Sn, there exists a proper differentiable map f : �n+1 → � such

that 0 is a regular value of f , Mn = f−1(0), f has only one critical point and it is
nondegenerate (hence f is a Morse function).

����� of Corollary 2. Of course ii) and iii) follows from iv). By Theorem 2, i)
follows from ii) or iii). Finally i) implies iv) by Proposition 2. �
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