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OF GEODETIC GRAPHS

Ladislav Nebeský, Praha
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Abstract. In [3], the present author used a binary operation as a tool for characterizing
geodetic graphs. In this paper a new proof of the main result of the paper cited above is
presented. The new proof is shorter and simpler.
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By a graph we will mean a graph in the sense of [1], i.e. a finite undirected graph
without loops or multiple edges. Let G be a graph (with vertex set V (G) and edge
set E(G)). Then G is said to be geodetic if it is connected and there exists exactly
one shortest u − v path for each ordered pair of u, v ∈ V (G).
Let G be a geodetic graph. Following [3], we say that ∗ is the proper operation

of G if ∗ is the binary operation on V (G) defined as follows:

u ∗ v = u if u = v,

u ∗ v is the second vertex on the shortest u − v path if u �= v.

for all u, v ∈ V (G). Thus, if ∗ is the proper operation of G, then {x, x ∗ y} ∈ E(G)
for all ordered pairs of distinct x, y ∈ V (G).
Let G be a graph. Following [3], we say that ∗ is a binary operation associated

with G if ∗ is a binary operation on V (G) and

E(G) = {{u, v} ; u, v ∈ V (G), u �= v, u ∗ v = v and v ∗ u = u}.

It is easy to see that if G is a geodetic graph, then the proper operation of G is
associated with G.
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The following theorem, which was proved in [3], gives a characterization of geodetic
graphs and their proper operations:

Theorem. Let G be a graph, and let ∗ be a binary operation associated with G.
Put U = V (G). Then G is geodetic and ∗ is the proper operation of G if and only
if G is connected and ∗ satisfies the following Axioms (A)–(D):
(A) if u, v ∈ U , then (u ∗ v) ∗ u = u;
(B) if u, v ∈ U , then u = v or (u ∗ v) ∗ v �= u;
(C) if u, v ∈ U , then v ∗ u = u or u ∗ (v ∗ u) = u ∗ v;
(D) if u, v, w ∈ U and w ∗ v = v, then u ∗ v = u ∗w or w ∗ (u ∗ v) = v.

As was shown in [3], the condition that G is connected cannot be omitted in this
theorem.
The proof of this theorem given in [3] is rather long and complicated. In the

present paper we will give a new proof. This proof (including the proofs of the
lemmas) is shorter and simpler.
The following lemma was presented in [3] without proof (note that only Axioms (A)

and (B) are utilized in the proof):

Lemma 1. Let ∗ be a binary operation on a nonempty set U , and let ∗ satisfy
Axioms (A)–(D). Then

u ∗ v = u if and only if u = v

and

u ∗ v = v if and only if v ∗ u = u

for all u, v ∈ U .

The next lemma was proved in [3]:

Lemma 2. Let ∗ be a binary operation on a nonempty set U , and let ∗ satisfy
Axioms (A)–(D). Let u1, . . . , uh, uh+1, v, w ∈ U , where h � 1. Assume that

u1 �= u2, . . . , uh �= uh+1

and

u2 = u1 ∗ v, . . . , uh+1 = uh ∗ v.

If w ∗ u1 = v, then

w ∗ u2 = . . . = w ∗ uh+1 = v

and

u2 = u1 ∗ w, . . . , uh+1 = uh ∗ w.
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����� (outlined). Consider g, 1 � g � h, and assume that ug ∗ v = ug+1 and
w∗ug = v. Since ug �= ug+1, Lemma 1 implies that ug �= v and therefore, w∗ug �= ug.
By Axiom (C), ug∗(w∗ug) = ug ∗w. Hence ug∗w = ug∗v = ug+1. Since w∗ug �= ug,
Lemma 1 implies that ug ∗ w �= w. By Axiom (C), w ∗ (ug ∗ w) = w ∗ ug. Hence
w ∗ ug+1 = w ∗ ug = v.
Proceding by the induction on g, we will prove the lemma. �

We will need three more lemmas.

Lemma 3. Let ∗ be a binary operation on a nonempty set U , and let ∗ satisfy
Axioms (A)–(D). Consider u1, . . . , uh+1 ∈ U , where h � 1, such that

u1 �= u2, . . . , uh �= uh+1

and

uh = uh+1 ∗ u1, . . . , u1 = u2 ∗ u1.

Then

(1) u2 = u1 ∗ uh+1, . . . , uh+1 = uh ∗ uh+1.

�����. We proceed by induction on h. If h = 1, the result follows from
Lemma 1. Let h � 2. Since

uh−1 = uh ∗ u1, . . . , u1 = u2 ∗ u1,

it follows from the induction hypothesis that

u2 = u1 ∗ uh, . . . , uh = uh−1 ∗ uh.

Since uh+1 ∗ u1 = uh, Lemma 2 implies that

u2 = u1 ∗ uh+1, . . . , uh = uh−1 ∗ uh+1.

By Axiom (A), uh+1 = (uh+1 ∗ u1) ∗ uh+1. We get uh+1 = uh ∗ uh+1. Hence (1)
holds. �

The next lemma is similar to Lemma 5 of [3], but our proof will be different and
shorter.

Lemma 4. Let G be a connected graph, let ∗ be a binary operation associated
with a connected graph G, and let ∗ satisfy Axioms (A)–(D). Consider arbitrary
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distinct u, v ∈ V (G). Then there exist pairwise distinct u1, . . . , um+1 ∈ V (G), m � 1,
such that u1 = u, um+1 = v and

u2 = u1 ∗ v, . . . , um+1 = um ∗ v.

�����. Suppose, to the contrary, that the lemma is false. Since V (G) is finite,
it is easy to see that there exist v1, . . . , vk+1 ∈ V (G), where k � 1, such that v1 = u,

(2) v2 = v1 ∗ v �= v, . . . , vk+1 = vk ∗ v �= v

and there exists j, 1 � j � k, with the property that vj = vk+1 and the vertices
vj , vj+1, . . . , vk are pairwise distinct. By virtue of Lemma 1, j < k. Let d denote the
distance function of G. For each w ∈ V (G), we denote

e(w) = min{d(w, vi) ; j � i � k}.

Moreover, we denote by Z the set of all z ∈ V (G) such that

vj+1 = vj ∗ z, . . . , vk+1 = vk ∗ z.

As follows from (2), v ∈ Z. Consider an arbitrary x ∈ Z such that

(3) e(x) � e(z) for all z ∈ Z.

Since x ∈ Z, Lemma 1 implies that e(x) � 1. Therefore, there exists y ∈ V (G) such
that e(y) = e(x) − 1 and {x, y} ∈ E(G). By Lemma 1, y ∗ x = x. By (3), y �∈ Z.
Recall that vk+1 = vj . Without loss of generality, we may assume that vk+1 �= vk ∗y.
Thus vk ∗ x �= vk ∗ y. By Axiom (D),

x = y ∗ (vk ∗ x) = y ∗ vk+1 = y ∗ vj .

Since vj �= vj+1, . . . , vk �= vk+1, Lemma 2 implies that

vj+1 = vj ∗ y, . . . , vk ∗ y = vk+1.

Thus y ∈ Z, which is a contradiction. �

Let G be a graph, let ∗ be a binary operation associated with G, and let ∗ satisfy
Axioms (A)–(D). We will say that

(u1, . . . , uk, uk+1)
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is a (∗)-path in G, if k � 1, u1, . . . , uk, uk+1 are pairwise distinct vertices of G, and

u2 = u1 ∗ uk+1, . . . , uk+1 = uk ∗ uk+1.

Obviously, every (∗)-path in G is a path in G.
Let G be a connected graph, and let d denote its distance function. For every

ordered pair x, y ∈ V (G), we denote

AG(x, y) = {x}, if x = y

and

AG(x, y) = {z ∈ V (G) ; d(x, z) = 1 and d(z, y) = d(x, y)− 1}, if x �= y.

(Note that if x �= y, then AG(x, y) is N1(x, y) in the sense of [2].)
The next lemma is the main one:

Lemma 5. Let G be a connected graph, let ∗ be a binary operation associated
with G, and let ∗ satisfy Axioms (A)–(D). Consider arbitrary u, v ∈ V (G). Then

(4) AG(u, v) = {u ∗ v}.

�����. Let P∗ denote the set of all (∗)-paths in G, and let d denote the distance
function of G. Put n = d(u, v). We proceed by induction on n. Clearly, if n � 1,
then (4) holds. Let n � 2. We assume that

(5) AG(x, y) = {x ∗ y} for all x, y ∈ V (G) such that d(x, y) < n.

Suppose, to the contrary, that AG(u, v) �= {u ∗ v}. Then there exists w ∈ AG(u, v)
such that w �= u ∗ v. By Lemma 4, there exist u1, . . . , um, um+1 ∈ V (G) such that
m � n, u1 = u, um+1 = v, and (u1, . . . , um, um+1) ∈ P∗. Since w ∈ AG(u, v),
there exist um+2, . . . , um+n, um+n+1 ∈ V (G) such that um+n = w, um+n+1 = u and
(um+n+1, um+n, . . . , um+1) is a shortest u − v path in G.
Obviously, um+n+1 = u1. Put um+n+2 = u2, um+n+3 = u3, . . . , um+2n+1 = un+1.

Define

αh = (uh, . . . , uh+m−1, uh+m) and βh = (uh+m+n, uh+m+n−1, . . . , uh+m)

for each h = 1, . . . , n+ 1.
Obviously, α1 ∈ P∗. Since w �= u ∗ v and u2 = u ∗ v, we have u2 �= um+n and

β1 �∈ P∗.
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Since α1 ∈ P∗, Lemma 3 implies that

(um+1, um, . . . , u2, u1) ∈ P∗.

Therefore, (um, . . . , u2, u1) ∈ P∗. Applying Lemma 3 again, we have

(u1, u2, . . . , um) ∈ P∗.

Hence u2 = u1 ∗ um.
Clearly, w ∈ AG(u, um+2). Since d(u, um+2) = n − 1, it follows from (5) that

AG(u, um+2) = {u ∗ um+2} and thus w = u ∗ um+2. Since w �= u2 = u ∗ um, we get
um �= um+2.
Recall that α1 and β1 are paths in G. Thus

(6) u3 �= u1, u4 �= u2, . . . , um+n+2 �= um+n.

Assume that αn+1 ∈ P∗. Then also (um+1, . . . , um+n, um+n+1) ∈ P∗ and, by
Lemma 3, β1 ∈ P∗; a contradiction. Thus αn+1 �∈ P∗. Since α1 ∈ P∗ and β1 �∈ P∗,
there exists i, 1 � i � n such that

αi ∈ P∗ and βi �∈ P∗,(7)

and

αi+1 �∈ P∗ or βi+1 ∈ P∗.(8)

Let αi+1 ∈ P∗. By (8), βi+1 ∈ P∗. Since ui+1 = ui+m+n+1 and ui+2 = ui+m+n+2,
we have ui+m+n+2 = ui+2 = ui+1 ∗ ui+m+1 = ui+m+n+1 ∗ ui+m+1 = ui+m+n, which
contradicts (6). Thus αi+1 �∈ P∗.
By (7), αi ∈ P∗. This implies that ui+1 = ui ∗ ui+m and

ui+2 = ui+1 ∗ ui+m, . . . , ui+m = ui+m−1 ∗ ui+m.

Let ui+m = ui+m+1 ∗ ui+1. By Lemma 2,

ui+2 = ui+1 ∗ ui+m+1, . . . , ui+m = ui+m−1 ∗ ui+m+1.

Since ui+m+1 = ui+m ∗ ui+m+1, we get αi+1 ∈ P∗, which is a contradiction. Thus
ui+m �= ui+m+1 ∗ ui+1.
Since ui+1 = ui ∗ ui+m, we get ui+m �= ui+m+1 ∗ (ui ∗ ui+m). By Axiom (D),

(9) ui ∗ ui+m+1 = ui ∗ ui+m.

Since ui = ui+m+n, we have d(ui, ui+m+1) � n − 1.
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First, let d(ui, ui+m+1) = n − 1. By (5), AG(ui+m+n, ui+m+1) = {ui+m+n ∗
ui+m+1} and thus ui+m+n ∗ ui+m+1 = ui+m+n−1. It follows from (9) that
ui+m+n+1 = ui+m+n−1, which contradicts (6).
Now, let d(ui, ui+m+1) < n − 1.Thus d(ui, ui+m) < n. Applying (5) step by step,

we see that αi is a shortest ui − ui+m path in G. We get n � m = d(ui, ui+m) < n;
a contradiction.
Thus (4) holds. �

����� of the theorem. Put U = V (G). Let G be geodetic and let ∗ be its
proper operation. Then G is connected. It is easy to see that ∗ satisfies Axioms (A),
(B) and (C). Moreover, it is not difficult to show that ∗ satisfies also Axiom (D); this
verification can be found in [3].
Conversely, let G be connected and let ∗ satisfy Axioms (A)–(D). By Lemma 5,

|AG(x, y)| = 1, for all x, y ∈ U . It is easy to prove, by induction on d(x, y), that G

is geodetic. By Lemma 5, AG(x, y) = {x ∗ y} for all x, y ∈ U . This implies that ∗ is
the proper operation of G, which completes the proof of the theorem. �

Remark. Obviously, every tree is a geodetic graph. For trees, a stronger result
can be found in [4].
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