
Czechoslovak Mathematical Journal

Hans Weber
Two extension theorems. Modular functions on complemented lattices

Czechoslovak Mathematical Journal, Vol. 52 (2002), No. 1, 55–74

Persistent URL: http://dml.cz/dmlcz/127702

Terms of use:
© Institute of Mathematics AS CR, 2002

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/127702
http://dml.cz


Czechoslovak Mathematical Journal, 52 (127) (2002), 55–74

TWO EXTENSION THEOREMS. MODULAR FUNCTIONS ON

COMPLEMENTED LATTICES

Hans Weber, Udine

(Received January 22, 1999)

Abstract. We prove an extension theorem for modular functions on arbitrary lattices and
an extension theorem for measures on orthomodular lattices. The first is used to obtain
a representation of modular vector-valued functions defined on complemented lattices by
measures on Boolean algebras. With the aid of this representation theorem we transfer
control measure theorems, Vitali-Hahn-Saks and Nikodým theorems and the Liapunoff the-
orem about the range of measures to the setting of modular functions on complemented
lattices.
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Introduction

The basic result of this paper is the extension theorem 2.1 for modular functions
defined on an arbitrary lattice with values in a complete Hausdorff locally convex
linear space E. This result is used in Section 3.1 to obtain an isomorphism between
the space of all E-valued exhaustive modular functions defined on a complemented
(or sectionally complemented or relatively complemented) lattice L and the space of
all E-valued order continuous measures on a complete Boolean algebra, namely on
the center C(L̃) of a uniform completion L̃ of L. (Observe that any orthomodular
lattice is complemented and relatively complemented and therefore sectionally com-
plemented). This isomorphism allows us to transfer results known for measures on
Boolean algebras to the case of modular functions on complemented lattices. This
is done for a decomposition theorem (Section 3.2), control measure theorems (Sec-
tion 3.3), Vitali-Hahn-Saks and Nikodým theorems (Section 3.4) and Liapunoff type
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theorems about the range of measures (Section 3.5). Versions of some results of
Sections 3.3, 3.4 and 3.5 are already contained in [1], [2] [3] and [5]; these results are
there obtained—in contrast to our method indicated above—with similar methods
as in the Boolean case.
The proof of the extension Theorem 2.1 is organized in a way that it yields at

the same time an extension theorem for measures with values in complete Hausdorff
locally convex linear spaces on orthomodular lattices (Theorem 2.2). This extension
theorem generalizes an extension theorem [4, 2.5] of Avallone and Hamhalter for mea-
sures of bounded variation with values in Banach spaces with the Radon-Nikodým
property.

1. Preliminaries

Throughout the paper let L be a lattice, (E, τ) a complete Hausdorff locally convex
linear space and E′ its continuous dual.
If L is bounded, i.e. if L has the smallest and the greatest element, we denote

these elements, respectively, by 0 and 1. The center C(L) of a bounded lattice L

is the set of the elements c ∈ L for which there is an element c′ ∈ L such that
ϕ(x) = (x ∧ c, x ∧ c′) defines a lattice isomorphism from L onto [0, c]× [0, c′]. C(L)
is a Boolean sublattice of L.
A lattice uniformity is a uniformity on a lattice which makes the lattice operations

∨ and ∧ uniformly continuous; a lattice endowed with a lattice uniformity is called
a uniform lattice. A lattice uniformity u on L is called (σ-)order continuous if order
convergence of a monotone net (sequence) implies topological convergence in (L, u),
and exhaustive if every monotone sequence is Cauchy in (L, u).
Any Hausdorff uniform lattice (L, u) is a sublattice and a dense subspace of a

Hausdorff uniform lattice (L̃, ũ) which is complete as a uniform space; (L̃, ũ) is called
the completion of (L, u).

Theorem 1.1. Let u be a Hausdorff exhaustive lattice uniformity on L and (L̃, ũ)
the completion of (L, u).
(a) Then (L̃, �) is a complete lattice and ũ is order continuous. (See [17, 6.15] or
the Russian paper of Kiseleva cited there.)

(b) C(L̃) is a complete Boolean sublattice of L̃, i.e. supM , infM ∈ C(L̃) for M ⊂
C(L̃) [21, 3.4].

(c) If L is a complemented or a sectionally complemented or a relatively comple-
mented modular lattice, then L̃ is a complemented modular lattice [21, 4.2].

Theorem 1.2 [17, 6.3]. Let u be a Hausdorff lattice uniformity on L. Then (L, u)
is a complete uniform space and u is exhaustive iff (L, �) is a complete lattice and
u is order continuous.
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Let µ : L → E be a function which is modular, i.e. µ(x∨y)+µ(x∧y) = µ(x)+µ(y)
for x, y ∈ L. If (pα)α∈A is a system of seminorms generating the topology of E, then

dα(a, b) = sup{pα

(
µ(x) − µ(y)

)
: x, y ∈ L, a ∧ b � x � y � a ∨ b}, α ∈ A,

defines a family of pseudometrics on L generating the µ-uniformity, i.e. the weakest
lattice uniformity making µ uniformly continuous (see [10], [19, 3.1]). The topology
induced by the µ-uniformity is called the µ-topology. If µ is an increasing (= iso-
tone) real-valued modular function on L, then the µ-uniformity is generated by the
pseudometric (a, b) �→ d(a, b) = µ(a∨b)−µ(a∧b) introduced in [7, section X.1]. If Λ
is a set of modular functions on L, then the supremum of the λ-uniformities, λ ∈ Λ,
is called the Λ-uniformity or the uniformity generated by Λ.
From the description of the µ-uniformity given above one easily obtains:

Proposition 1.3 [19, 3.2]. Let u be a lattice uniformity on L. Then a modular
function µ : (L, u)→ E is continuous iff the µ-topology is coarser than the u-topology
(i.e. the topology induced by u).

Proposition 1.4 (see [17, section 1.2] and [19, 2.5]). Let u be a lattice uniformity
on L.
(a) Then N(u) :=

⋂
U∈u

U is a congruence relation on L and the quotient (L̂, û) :=

(L, u)/N(u) is a Hausdorff uniform lattice.
(b) If µ : L → E is a modular function and u the µ-uniformity, then L̂ is modular
and N(u) = N(µ) where

N(µ) = {(x, y) ∈ L2 : µ is constant on [x ∧ y, x ∨ y]}.

(c) If µ : L → E is a modular function and N(u) ⊂ N(µ), then µ(x̂) = µ(x)
(x ∈ x̂ ∈ L̂) defines a modular function µ̂ on L̂.

The modularity of L̂ in 1.4 (b) was proved in [10] generalizing [7, Theorem X.2.2].
A modular function µ : L → E is (σ-)order continuous if limµ(xα) = µ(x) for

every monotone net (sequence) (xα) with order limit x, and exhaustive if
(
µ(xn)

)
is

a Cauchy sequence for every monotone sequence (xn) in L. By [19, 3.5 and 3.6], µ is
σ-order continuous, order continuous or exhaustive, respectively, iff the µ-uniformity
is σ-order continuous, order continuous or exhaustive.

Theorem 1.5 [20, 1.1.4]. If µ : L → E is a σ-order continuous modular function,
L σ-complete and E metrizable, then L is complete with respect to the µ-uniformity.

Theorem 1.6 [19, 6.3]. Let µ : L → (E, τ) be an exhaustive modular func-
tion and u a lattice uniformity on L. Then µ : (L, u) → (E, τ) is continuous iff
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µ : (L, u)→ (E, σ(E, E′)) is continuous iff x′ ◦µ : (L, u)→ � is continuous for every
x′ ∈ E′.

The total variation |µ| : L → [0,+∞] of a Banach space valued function µ on L

is defined by

|µ|(a) := sup
{ n∑

i=1

‖µ(xi)− µ(xi−1)‖ : n ∈ N, xi ∈ L, x0 � x1 � . . . � xn = a

}
.

Proposition 1.7. Let E be a Banach space, (µγ)γ∈Γ a net of E-valued functions
on L converging pointwise to a function µ with respect to the weak topology σ(E, E′),
and (νγ)γ∈Γ a net of monotone [0,+∞]-valued functions on L converging pointwise
to a function ν. If ‖µγ(q)−µγ(p)‖+νγ(p) � νγ(q) holds for every γ ∈ Γ and p, q ∈ L

with p � q, then |µ| � ν.

�����. We first show that

(∗) ‖µ(q)− µ(p)‖+ ν(p) � ν(q) for any p, q ∈ L with p � q.

For x′ ∈ E′ with ‖x′‖ = 1 we have

x′(µγ(q)− µγ(p)) + νγ(p) � ‖µγ(q)− µγ(p)‖ + νγ(p) � νγ(q).

For the limit functions we therefore get

x′(µ(q)− µ(p)) + ν(p) � ν(q).

Now choosing x′ with x′(µ(q)−µ(p)) = ‖µ(q)−µ(p)‖ we obtain the desired inequality.
Let a ∈ L and xi ∈ L with x0 � x1 � . . . � xn = a. Then we have by (∗)

n∑

i=1

‖µ(xi)− µ(xi−1)‖ +
n∑

i=1

ν(xi−1) �
n∑

i=1

ν(xi)

and therefore
n∑

i=1
‖µ(xi) − µ(xi−1)‖ � ν(xn) = ν(a); hereby observe that ν(xi) is

finite if ν(a) is finite by the monotonicity of ν. It follows that |µ|(a) � ν(a). �

Proposition 1.7 contains in particular the following statement about the total
variation of measures on orthomodular lattices. Recall that a function µ on an
orthomodular lattice L is a measure if µ(x+y) = µ(x)+µ(y) for orthogonal elements
x, y ∈ L.
If (µγ)γ∈Γ is a net of Banach space valued measures on an orthomodular lattice L

converging pointwise to a function µ with respect to the weak topology σ(E, E′) and
ν : L → [0,+∞] is a measure such that |µγ | � ν for every γ ∈ Γ, then |µ| � ν.
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Proposition 1.8. Let E be a Banach space and µ : L → E a modular function.
(a) Then |µ| is a modular function [20, 1.3.10].
(b) If |µ| is bounded, then µ is exhaustive. If µ is exhaustive, then µ is bounded
[19, section 2].

2. Extension of modular functions

The main result of this section is the following extension theorem for modular
functions.

Theorem 2.1. Let L be a bounded lattice, A a Boolean sublattice of C(L),
Λ a set of increasing real-valued modular functions on L, u the Λ-uniformity and
µ : (A, u)→ (E, τ) a continuous measure. Then µ has an extension to an exhaustive
continuous modular function µ : (L, u)→ (E, τ) with µ(L) ⊂ coµ(A).

A result of this type was presented in [18, 3.2] for L being complemented and µ

σ-additive and real-valued.
We organize the proof of 2.1 in a way that it yields at the same time a similar

extension theorem (Theorem 2.2) for measures on orthomodular lattices.

Theorem 2.2. Let L be an orthomodular lattice, A a Boolean sublattice of C(L),
Λ a set of positive real-valued measures on L, Λ0 := {λ

∣∣A : λ ∈ Λ} the set of the
restrictions on A of the measures λ ∈ Λ, u0 the Λ0-uniformity and µ : (A, u0) →
(E, τ) a continuous measure. Then µ has an extension to a measure µ : L → E with
µ(L) ⊂ coµ(A).

Theorem 2.2 generalizes the extension theorem [4, 2.5] of Avallone and Hamhalter;
in [4] it is additionally assumed that E is a Banach space with the Radon-Nikodým
property and µ has bounded variation. [4, 2.5] is for its part a generalization of the
extension theorem [18, 3.3] for σ-additive real-valued measures. What is new here
in 2.2 (and also in 2.1) is in particular the statement about the range of µ, namely
that µ(L) ⊂ coµ(A). This becomes important in Section 3.5. In particular, if in 2.1
or in 2.2 the range of µ is closed and convex, then µ(L) = µ(A); if E is a locally
convex-solid Riesz space and µ is positive, then µ is positive as well.
In the proof of 2.1 and 2.2 we use the following facts.

Proposition 2.3. Let C be a convex subset of E and 0 ∈ C. If x1, . . . , xn ∈ E

and
∑
i∈I

x ∈ C for any I ⊂ {1, . . . , n}, then
n∑

i=1
αixi ∈ C for 0 � αi � 1.

�����.
n∑

i=1
αixi ∈

n∑
i=1
co{0, xi} = co

n∑
i=1
{0, xi} ⊂ C. �
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Proposition 2.4. Let λ, ν : B → � be σ-additive real-valued measures on a
σ-complete Boolean algebra B, λ strictly positive and ε > 0. Then there is a finite
decomposition d0, . . . , dn ∈ B of the maximal element of B and k ∈ � such that
|ν|(d0) � ε and (−k + iε − ε)λ(x) � ν(x) � (−k + iε)λ(x) for B � x � di and
i = 1, . . . , n.

Sketch of the �����. Let α ∈ �; the Hahn decomposition theorem for the
measures αλ − ν yields an element xα ∈ B such that ν(x) � αλ(x) for B� x � xα

and ν(x) � αλ(x) for B � x � x′α where x′α denotes the complement of xα. Let
k, n ∈ � with n � 2k/ε, di = x−k+iε ∧ x′−k+iε−ε for i = 1, . . . , n and let d0 be the
complement of d1 ∨ . . . ∨ dn. If n is large enough, then |ν|(d0) � ε and the di’s have
the desired properties. �

Proposition 2.5 (See [19, 4.1]). Let µ : L → E be a modular function.
(a) If µ is exhaustive, then µ(L) is relatively weakly compact.
(b) If K is a weakly compact subset of E such that

∑
i∈I

µ(xi)−µ(xi−1) ∈ K for any

finite chain x0 < . . . < xn in L and I ⊂ {1, . . . , n}, then µ is exhaustive.

2.5 (b) is slightly stronger than [19, 4.1 (b)]; but the proof of [19, 4.1 (b)] works
without any change also in the situation of 2.5 (b). 2.5 (a) generalizes the well known
fact—also used in the following proof—that any E-valued σ-additive measure on a
σ-complete Boolean algebra has a relatively weakly compact range.

����� of 2.1 and 2.2. Replacing in 2.1 any λ ∈ Λ by λ− λ(0), we may assume
that λ(0) = 0 for λ ∈ Λ. To unify the proof of 2.1 and 2.2, we first assume that L

is an arbitrary lattice and Λ a set of increasing functions λ : L → [0,+∞[ such that
λ(x1 ∨ x2) = λ(x1) + λ(x2) whenever xi ∈ L, zi ∈ A, xi � zi and z1 ∧ z2 = 0. This
is satisfied under the assumptions of 2.1 or 2.2.
Let u0 be the uniformity on A generated by the restrictions λ

∣∣A (λ ∈ Λ), N :=
{0} the closure of {0} in (A, u0), (Ã, ũ0) the completion of the quotient (Â, û0) :=
(A, u0)/N and � : A → Â the quotient map. Set â := �(a) for a ∈ A. Then
λ̂(â) := λ(a) defines for λ ∈ Λ a û0-continuous measure on Â. Let λ̃ be the unique
ũ0-continuous extension of λ̂ to Ã and, analogously, let µ̃ : Ã → E be the unique
ũ0-continuous measure with µ̃ ◦ � = µ.
For simplicity we suppose in the first step that there is a z ∈ Ã and a λ ∈ Λ such

that λ̃(x) > 0 for x ∈ Ã with 0 < x � z and µ̃(x) = 0 for x ∈ Ã with x ∧ z = 0.
For any p ∈ L, λp(a) := λ(p∧a) defines a measure on A; λp is u0-continuous since

0 � λp � λ
∣∣A. Let λ̃p : Ã → [0,+∞[ be the unique ũ0-continuous measure such that

λ̃p ◦ � = λp. For any finite decomposition D ⊂ Ã \ {0} of z and p ∈ L we define

µD(p) :=
∑

d∈D

(λ̃p(d)/λ̃(d)) · µ̃(d).
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By 2.3, µD(L) ⊂ co µ̃(Ã) ⊂ coµ(A) since 0 � λ̃p(d)/λ̃(d) � 1.
We show that (µD(p))D is weakly Cauchy uniform in p ∈ L, where D runs in the

system of all finite decompositions of z contained in Ã \ {0} directed by refinement.
Let x′ ∈ E′ and ε > 0. For ν̃ = x′ ◦ µ̃ and λ̃ choose a decomposition d0, . . . , dn ∈ Ã

of z and k according to 2.4; ν, λ and B of 2.4 correspond here to ν̃, λ̃ and {x ∈
Ã : x � z}. Let D ⊂ Ã \ {0} be a finite decomposition of z which is a refinement
of D0 := {d0, . . . , dn} \ {0}. To simplify the notation we agree for the following
calculation that 0/0 := 0. For any p ∈ L we have

|x′µD(p)− x′µD0(p)|

=

∣∣∣∣
n∑

i=0

∑

di�h∈D

λ̃p(h) · x′µ̃(h)/λ̃(h)−
n∑

i=0

λ̃p(di) · x′µ̃(di)/λ̃(di)

∣∣∣∣

�
∣∣∣∣

n∑

i=1

∑

di�h∈D

λ̃p(h) · [x′µ̃(h)/λ̃(h)− x′µ̃(di)/λ̃(di)]

∣∣∣∣

+
∑

d0�h∈D

|x′µ̃(h)| · λ̃p(h)/λ̃(h) + |x′µ̃(d0)| · λ̃p(d0)/λ̃(d0).

The number in the brackets [. . .] is the difference of two numbers of the interval
[−k + iε− ε,−k + iε]; therefore its absolute value is � ε. It follows that

|x′µD(p)− x′µD0(p)| �
n∑

i=1

∑

di�h∈D

λ̃(h) · ε+
∑

d0�h∈D

|x′µ̃|(h) + |x′µ̃|(d0)

� λ̃(1) · ε+ 2|x′µ̃|(d0) �
(
λ̃(1) + 2

) · ε.

We have proved that, for p ∈ L, (µD(p)) is a weak Cauchy net in coµ(A).
Since µ̃(Ã) is relatively weakly compact and therefore by a theorem of Krein
K := coµ(A) = co µ̃(Ã) is weakly compact, (µD(p))D has a weak limit µ(p) in
coµ(A).
We now show that µ is an extension of µ. We need here that λ̃p(d) = λ̃(p̂∧ d) for

p ∈ A and d ∈ Ã: In fact, for p ∈ A the measures λ̃p and Ã � d �→ λ̃(p̂∧ d) are equal
since they are ũ0-continuous and coincide on the dense subalgebra Â. In particular,
for d ∈ Ã and p ∈ A, we have λ̃p(d) = λ̃(p̂∧d) = λ̃(d) if d � p̂, and λ̃p(d) = λ̃(0) = 0
if p̂∧ d = 0. Let p ∈ A and let D be a finite decomposition of z in Ã \ {0} such that
for each d ∈ D we have d � z ∧ p̂ or d � z \ p̂. Then

µD(p) =
∑

z∧p̂�d∈D

µ̃(d) = µ̃(p̂ ∧ z) = µ̃(p̂) = µ(p)

and therefore µ(p) = µ(p).
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If L is an orthomodular lattice and λ a measure, then λ̃p(d)+ λ̃q(d) = λ̃p∨q(d) for
orthogonal elements p, q ∈ L and d ∈ Â. By the continuity of the functions λ̃p, λ̃q,
λ̃p∨q, this equality holds also for any d ∈ Ã . Using this fact, one immediately sees
that the µD’s are measures and therefore the limit µ is a measure.

Now suppose that the functions in Λ are modular. Let (L̃, ũ) be the completion
of (L̂, û) := (L, u)/N(u). We may assume that (Ã, ũ0) is a subspace of (L̃, ũ). The
continuous extension on (L̃, ũ) of the map (L̂, û) � x̂ �→ λ(x), where x ∈ x̂, extends
λ̃. If we denote this extension also by λ̃, then λ̃p(d) = λ̃(p̂ ∧ d) for p ∈ L and
d ∈ Ã. Using this fact one easily sees that the µD’s are u-continuous modular
functions. Since (µD(a)) converges to µ(a) uniformly in a ∈ L with respect to the
weak topology σ(E, E′), also the limit µ is a u-continuous modular function with
respect to σ(E, E′). We will show that µ : (L, u) → (E, τ) is exhaustive; then we
can conclude by 1.6 that µ : (L, u) → (E, τ) is u-continuous with respect to the
topology τ . The exhaustivity of µ will be proved with the aid of 2.5 (b). We show
that the assumption of 2.5 (b) is satisfied for K = coµ(A): Let x0 < . . . < xn be a
finite chain in L and I ⊂ {1, . . . , n}. For any finite decomposition D ⊂ Ã \ {0} of z
we have ∑

i∈I

µD(xi)− µD(xi−1) =
∑

d∈D

βd · µ̃(d),

where

0 � βd :=
∑

i∈I

(λ̃xi(d)− λ̃xi−1(d))/λ̃(d) �
n∑

i=1

(λ̃xi(d) − λ̃xi−1(d))/λ̃(d) � 1,

hence
∑
i∈I

µD(xi) − µD(xi−1) ∈ coµ(A) by 2.3 and therefore the limit
∑
i∈I

µ(xi) −
µ(xi−1) belongs to coµ(A). Since coµ(A) is weakly compact, µ is exhaustive by 2.5.
Hence µ : (L, u)→ (E, τ) is continuous by 1.6.

Now, in the second step, we do not assume any more that there are a z and λ ∈ Λ
as stated above. Let D be a maximal disjoint set in Ã \ {0} with the property that
for each d ∈ D the restriction of λ̃ to Ã∧ d is strictly positive for some λ ∈ Λ. Then
supD = 1 since (Ã, �) is complete and λ̃ is order continuous for any λ ∈ Λ. As
proved in the first step, the measure µd : A → E defined by µd(x) := µ̃(x̂ ∧ d) has
an extension to a function µd : L → E with µd(L) ⊂ coµd(A) ⊂ co µ̃(Ã ∧ d) which
is, respectively, exhaustive, u-continuous and modular (in 2.1) or a measure (in 2.2).
We show that (µd(x))d∈D is summable uniformly in x ∈ L. Let U be a closed
convex 0-neighbourhood in (E, τ). Since ũ is order continuous, the net (supF )F∈F

where F is the system of all finite subsets of D, converges to 1 in (Ã, ũ). Since µ̃

is ũ-continuous, D contains a finite subset F0 such that µ̃(Ã ∧ z0) ⊂ U where z0
denotes the complement of supF0 in Ã. Let F be a finite subset of D \F0. Then we

62



get for x ∈ L
∑

d∈F

µd(x) ∈
∑

d∈F

co µ̃(Ã∧ d) ⊂ co
∑

d∈F

µ̃(Ã∧ d) ⊂ co µ̃(Ã∧ supF ) ⊂ co µ̃(Ã∧ z0) ⊂ U.

By Cauchy’s criterion, (µd(x))d∈D is summable uniformly in x ∈ L. Therefore
µ :=

∑
d∈D

µd is an exhaustive u-continuous modular function (in 2.1) or a measure

(in 2.2) extending µ. Since
∑

d∈F

µd(x) ∈ co µ̃(A ∧ supF ) ⊂ coµ(A) for any finite
subset F of D and x ∈ L, we have µ(L) ⊂ coµ(A). �
In the proof of 2.1 and 2.2 we have used the completion of a quotient of (A, u0). For

the proof of 2.1 it would also be possible to work with the completion of a quotient
of (L, u).

Remark 2.6. If E is a Banach space, then in 2.1 and 2.2 the extension µ of µ

can be chosen with the additional property that the total variation of µ extends the
total variation of µ.

�����. We use the same notation as in the proof of 2.1 and 2.2. Since E

is a Banach space, the µ-uniformity has a countable base. Therefore Λ contains a
countable subset Λ1 = {λn : n ∈ �} such that the µ-uniformity is coarser than the
uniformity generated by {λn

∣∣A : n ∈ �} on A. Replacing Λ by Λ1 we may assume

that Λ = {λn : n ∈ �}. Since λ :=
∞∑

n=1
εnλn for suitable small real numbers εn > 0

induces on A (and in the case of 2.1 also on L) the same uniformity as Λ1, we may
assume that Λ contains only a single function λ. Then the additional assumption of
the first step of the proof of 2.1 and 2.2 is satisfied (with z = 1).
Let a ∈ A. Obviously |µ|(a) � |µ|(a). To prove the other inequality, we may

assume that |µ|(a) is finite. Then ν(x) := |µ|(x ∧ a) defines a bounded measure
on A. Analogously to µ̃, µD, µ we define ν̃, νd, ν; i.e. ν̃ is the continuous measure on
(Ã, ũ0) with ν̃ ◦� = ν, νD(p) =

∑
d∈D

(λ̃p(d)/λ̃(d)) · ν̃(d) for any finite decomposition D

of z (= 1) in Ã\{0} and ν(p) is the limit of νD(p) for p ∈ L. Put µD,a(p) := µD(p∧a)
and µa(p) := µ(p ∧ a) for p ∈ L. We will apply 1.7. Let p, q ∈ L with p � q and
let D be a finite decomposition of z in Ã \ {0} such that d � â or d ∧ â = 0 for all
d ∈ D. In the following estimation we use that ‖µ̃(d)‖ � ν̃(d) and λ̃p(d) = λ̃p∧a(d)
for d ∈ Ã with d � â, and ν̃(d) = λ̃p∧a(d) = 0 for d ∈ Ã with d ∧ â = 0; this is
obviously true for d ∈ Â and by continuity also for d ∈ Ã. So we have

‖µD,a(q)− µD,a(p)‖+ νD(p)

�
∑

â�d∈D

(λ̃q∧a(d)− λ̃p∧a(d))/λ̃(d)) · ‖µ̃(d)‖+
∑

a�d∈D

(λ̃p(d)/λ̃(d)) · ν̃(d)

�
∑

â�d∈D

(λ̃q(d)− λ̃p(d)/λ̃(d)) · ν̃(d) +
∑

a�d∈D

(λ̃p(d)/λ̃(d)) · ν̃(d) = νD(q).
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By 1.7 we therefore get |µa|(a) � ν(a), hence

|µ|(a) = |µa|(a) � ν(a) = ν(a) = |µ|(a).

�

3. Modular functions on complemented or sectionally complemented
or relatively complemented lattices

3.1. Representation of modular functions.
The theorem which we prove in this section gives in particular an isomorphism

between the space of all exhaustive E-valued modular functions on a complemented
(c.) or sectionally complemented (s.c.) or relatively complemented (r.c.) lattice and
the space of all order continuous E-valued measures on a suitable complete Boolean
algebra. In the subsequent sections we show how this theorem can be used to transfer
results known for measures on Boolean algebras to the case of modular functions on
c. or s.c. or r.c. lattices.
We first select some properties of lattice uniformities and of modular functions on

c. or s.c. or r.c. lattices.

Proposition 3.1.1. Let L be a modular r.c. lattice and u and v lattice uniformi-
ties on L. Then u is coarser than v iff the u-topology is coarser than the v-topology.

�����. For s.c. lattices the equivalence is proved in [17, 6.10]. Let now e ∈ L,
L1 = {x ∈ L : x � e} and L2 = {x ∈ L : x � e} and suppose that the u-topology is
coarser than the v-topology. Since L1 is s.c., we have u

∣∣L1 ⊂ v
∣∣L1 by [17, 6.10], and

dually u
∣∣L2 ⊂ v

∣∣L2. Now apply the following lemma. �

Lemma 3.1.2. Let L be modular, e ∈ L, L1 = {x ∈ L : x � e}, L2 = {x ∈ L :
x � e} and let u, v be lattice uniformities such that u

∣∣L1 ⊂ v
∣∣L1 and u

∣∣L2 ⊂ v
∣∣L2.

Then u ⊂ v.

�����. Let U ∈ u, ∆ = {(x, x) : x ∈ L} and U1, U2 ∈ u with U1 ◦ U2 ⊂ U and
U2∨∆, U2∧∆ ⊂ U1. By assumption, there is a V0 ∈ v such that V0∩(L1×L1) ⊂ U2
and V0∩(L2×L2) ⊂ U2. Let V ∈ v with V ∨∆, V ∧∆ ⊂ V0 and (a, b) ∈ V . We shall
show that (a, b) ∈ U . Since by [17, 1.1.3] any lattice uniformity has a base of sets W

such that for all pairs (x, y) ∈ W the rectangle [x∧y, x∨y]2 is contained inW , we may
assume that a � b and that U1 is symmetric. Now (a∨e, b∨e) ∈ V0∩(L1×L1) ⊂ U2,
hence ((a ∨ e) ∧ b, b) ∈ U2 ∧∆ ⊂ U1 and dually ((b ∧ e) ∨ a, a) ∈ U2 ∨∆ ⊂ U1. Since
(a ∨ e) ∧ b = (b ∧ e) ∨ a by the modularity of L, we obtain (a, b) ∈ U1 ◦ U1 ⊂ U . �
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Proposition 3.1.3. Let L be c. or s.c. or r.c. and let µ : L → E be a modular
function.
(a) If u is a lattice uniformity on L and µ : (L, u) → E is continuous, then µ is
uniformly continuous with respect to u.

(b) If E is a Banach space and |µ| is bounded, then the µ-uniformity agrees with
the |µ|-uniformity.

(c) If µ is real-valued, then µ is bounded iff the total variation |µ| is bounded iff
µ is exhaustive.

�����. (a) Passing to the quotient L/N(µ), we may assume that L is modular
(see 1.4) and therefore r.c. (see [7, I.14]). Since by 1.3 the µ-topology is coarser
than the u-topology, we obtain by 3.1.1 that the µ-uniformity is coarser than u,
i.e. µ : (L, u)→ E is uniformly continuous.
(b) If |µ| is bounded, then the µ-topology agrees with the |µ|-topology by [20,

1.3.11]. Therefore µ and |µ| induce the same uniformity by (a) (or by 3.1.1 observing
that we may assume as in (a) that L is modular and r.c.).
(c) holds by [19, 2.7 and 2.8]. �

Proposition 3.1.4. Let L be c. or s.c. or r.c. and let L U0(L) be the set of
all lattice uniformities each of which is generated by a set of real-valued bounded
increasing modular functions.
(a) For any set Λ of exhaustive E-valued modular functions on L, the Λ-uniformity
belongs to L U0(L).

(b) A modular function µ : L → E is exhaustive iff µ : (L, u)→ E is continuous for
some u ∈ L U0(L).

�����. (a) Since the supremum of a set of uniformities of L U0(L) belongs to
L U0(L), we may assume that Λ contains only one element µ. Let Λ′ := {x′ ◦µ : x′ ∈
E′} and let u be the Λ′-uniformity. Obviously, u is coarser than the µ-uniformity.
By 1.6, µ : (L, u)→ E is continuous and therefore uniformly continuous by 3.1.3 (a).
It follows that u is the µ-uniformity. On the other hand, u is also generated by
Λ0 := {|ν| : ν ∈ Λ′} (see 3.1.3 (b), (c)). Therefore u ∈ L U0(L).
(b) The implication⇐ follows from the facts that every u ∈ L U0(L) is exhaustive

and that any continuous modular function µ : (L, u) → E is uniformly continuous
by 3.1.3. For ⇒ observe that the µ-uniformity belongs to L U0(L) by (a). �

Proposition 3.1.5 [18]. Let L be a complete r.c. lattice and ν : L → � an order
continuous modular function. Then ν attains its supremum and infimum on C(L).

The ����� is essentially contained in [18, 4.1]: The assertion follows from
[18, 2.1] if the ν-topology is Hausdorff, i.e. if N(ν) = {(x, x) : x ∈ L}. But
the assertion can be easily reduced to the Hausdorff case: By the next lemma

65



s := sup{x ∈ L : |ν|(x) = 0} ∈ C(L). Let t be the (unique) complement of s. Then
the restriction ν

∣∣[0, t] (and therefore ν) attains its supremum and infimum on C([0, t])
by [18, 2.1]. Now observe that C([0, t]) ⊂ C(L) since t ∈ C(L). �

Lemma 3.1.6 [11, section III.3]. Let L be a r.c. bounded lattice and � a con-
gruence relation of L. If {x ∈ L : x � 0} has a maximal element s, then s ∈ C(L).

�����. By [11, III.3.10], any congruence relation of L is standard. Therefore
s is by [11, III.3.3] a standard element, hence neutral by [11, exercise III.2.19]. It
follows that s ∈ C(L), since an element of a bounded lattice belongs to its center iff
it is neutral and has a complement, see [7, Theorem III.9.12]. (In [11; section III.4,
p. 156], the center is defined as the set of complemented neutral elements.) �

Theorem 3.1.7. Let L be c. or s.c. or r.c., u ∈ L U0(L) where L U0(L) is defined
as in 3.1.4 and (L̃, ũ) the uniform completion of the quotient (L̂, û) := (L, u)/N(u).
(a) Then, for any continuous modular function µ : (L, u) → (E, τ), the function

µ̂ : (L̂ → E) defined by µ̂(x̂) = µ(x), x ∈ x̂ ∈ L̂, has a unique continuous
extension µ̃(L̃, ũ) → E. Denote by µ : C(L̃) → E the restriction of µ̃ to the
center C(L̃) of L̃. Then

µ(L) = µ̃(L̃) and coµ(L) = coµ(C(L̃)).

(b) µ �→ µ defines an isomorphism from the linear space of all continuous mod-
ular functions µ : (L, u) → (E, τ) with µ(0) = 0 onto the linear space of all
continuous measures µ : (C(L̃), ũ) → (E, τ). In particular, if u is generated
by the set of all real-valued bounded modular functions on L, then µ �→ µ de-
fines an isomorphism from the linear space of all exhaustive modular functions
µ : L → E with µ(0) = 0 onto the linear space of all order continuous measures
µ : C(L̃)→ E.

(c) If F is a complete locally convex Hausdorff linear space and µ : (L, u)→ E and
ν : (L, u) → F are continuous modular functions, we have µ � ν iff µ � ν

and µ⊥ν iff µ⊥ν. Moreover, if T : E → F is a continuous additive map and
ν = T ◦ µ, then ν̂ = T ◦ µ̂, ν̃ = T ◦ µ̃ and ν = T ◦ µ.

(d) Let E be a Banach space and µ : (L, u) → E a continuous modular function.
Then µ has bounded variation iff µ̃ has bounded variation iff µ has bounded
variation. Moreover, if ν := |µ| is bounded, then ν̃ = |µ̃| and ν = |µ|.

Here µ⊥ν means that the infimum of the µ-uniformity and the ν-uniformity is
trivial. µ � ν means that the µ-uniformity is coarser than the ν-uniformity; in this
case we also say that µ is ν-continuous.
Part of this theorem was already proved in [20, 3.2.4] in the slightly more special

case that u is generated by the set of all real-valued increasing bounded modular
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functions on L. What is new here in 3.1.7 (a) is in particular the information on the
convex hull of µ(L) and in (b) the surjectivity of the map µ �→ µ. These two facts
are important for the applications given below.

�����. (a), (b): First observe that by 1.1 (c) and 1.4 ũ is order continuous,
L̃ is a complete modular complemented (and therefore by [7, I.14] a r.c.) lattice and
C(L̃) is a complete Boolean sublattice of L̃.

Obviously, µ̂, µ̃ and µ in (a) are well defined and ũ-continuous modular functions
(see 1.4 and 3.1.3 (a)), and the map µ �→ µ in (b) is well defined and linear. To prove
the injectivity of this map, let µ : (L, u)→ E be a continuous modular function such
that µ = 0. Since for any x′ ∈ E′ the real-valued modular function x′ ◦ µ̃ attains
by 3.1.5 its supremum and infimum on C(L̃) and x′ ◦ µ = 0, we obtain x′ ◦ µ̃ = 0.
Therefore µ̃ = 0 and µ = 0.

We now prove the surjectivity of the map µ �→ µ. Let Λ be a set of real-
valued bounded increasing modular functions generating the uniformity u and Λ̃ :=
{λ̃ : λ ∈ Λ}. It is easy to see that then ũ is the Λ̃-uniformity (cf. [19, 3.8]). Let
µ : (C(L̃), ũ)→ (E, τ) be a continuous measure. By 2.1, µ has a continuous exten-
sion µ̃ : (L̃, ũ)→ (E, τ) to a modular function. Define µ : L → E by µ(x) := µ̃(x̂),
x ∈ x̂ ∈ L̂. Then µ is the image of µ under the map defined in (b).

In the proof of the last statement in (a) we may assume, replacing µ by µ− µ(0),
that µ(0) = 0. Since µ̃ is the unique ũ-continuous E-valued modular function on L̃

extending µ, we have by 2.1 that µ̃(L̃) ⊂ coµ(C(L̃)), hence co µ̃(L̃) = coµ(C(L̃)).
Obviously, µ(L) is dense in µ̃(L̃). Therefore µ(L) = µ̃(L̃) and coµ(L) = co µ̃(L̃).

To prove the second statement in (b), let u be the uniformity generated by the set
of all real-valued bounded modular functions on L. By 3.1.4, u ∈ L U0(L). Using the
fact that a complete r.c. modular lattice admits by [17, 5.10] and 3.1.1 at most one
Hausdorff order continuous lattice uniformity, one easily sees that ũ is generated by
the set of all order continuous real-valued modular functions on L̃, and the restriction
ũ
∣∣C(L̃) by the set of all order continuous real-valued measures on C(L̃) . Now it
is sufficient to observe that a modular function µ : L → E is exhaustive iff µ is
u-continuous, and a measure µ : C(L̃)→ E is order continuous iff µ is ũ-continuous
(see 3.1.4).

(c) For the first statement, see [20, 3.2.4]. The second statement is obvious.

(d) (i) If ν := |µ| is bounded, then ν is u-continuous by 3.1.3 (b). It is easy to see
(and contained in the proof of [20, 1.3.11]) that |µ̃| is the continuous extension of
|µ̂|, i.e. µ̃ has bounded variation and ν̃ = |µ̃|.
(ii) If µ̃ is of bounded variation, then obviously also the restriction µ is so.

(iii) If µ has bounded variation, then |µ̃| extends |µ| by 2.6 and the injectivity of
the isomorphism of (b), i.e. µ̃ has bounded variation and ν = |µ|. �
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Proposition 3.1.8. With the assumption and notation of 3.1.7, let u ∈ L U0(L)
and let M be a set of E-valued u-continuous modular functions on L.

(a) If M is uniformly exhaustive (i.e. (µ(an))n∈� converge uniformly in µ ∈ M for
any monotone sequence (an)n∈� in L), then {µ : µ ∈ M} is uniformly exhaus-
tive.

(b) If {µ : µ ∈ M} is uniformly exhaustive and M is pointwise bounded, then M is
uniformly exhaustive.

�����. Replacing µ by µ− µ(0), we may assume that µ(0) = 0 for all µ ∈ M .
Let τ∞ be the topology of uniform convergence on EM and 
∞[M, E] the subspace
of (EM , τ∞) consisting of all bounded functions from M into E.

(a) If M is uniformly exhaustive, then M is equicontinuous with respect to u

by [9] or [19, 6.2]. Hence ν̂ := (µ̂)µ∈M : (L̂, û) → (EM , τ∞) is continuous. Let
ν̃ : (L̃, ũ)→ (EM , τ∞) be the continuous extension of ν̂. Then ν̃ = (µ̃)µ∈M . Since ν̃

is exhaustive, the set {µ̃ : µ ∈ M} is uniformly exhaustive and therefore {µ : µ ∈ M}
is uniformly exhaustive.

(b) Since {µ : µ ∈ M} is uniformly exhaustive and any µ, for µ ∈ M , is
ũ-continuous, {µ : µ ∈ M} is even equicontinuous with respect to ũ, i.e. (µ)µ∈M :

(C(L̃), ũ) → (
∞[M, E], τ∞) is continuous. Let ν : (L, u) → 
∞[M, E] be the mod-
ular function which corresponds to (µ)µ∈M according to 3.1.7 (b), i.e. ν = (µ)µ∈M .
Applying the last statement of 3.1.7 (c) with the projections (xµ)µ∈M �→ xµ from

∞[M, E] onto E one obtains that ν = (µ)µ∈M . Since ν : (L, u) → 
∞[M, E] is
continuous and therefore exhaustive, M is uniformly exhaustive. �

3.2. A decomposition theorem.
We illustrate the method of transferring results for measures from the Boolean

case to the case of c. or s.c. or r.c. lattices by means of Lebesgue decomposition
theorem.

Theorem 3.2.1. Let L be c. or s.c. or r.c. and let µ : L → E and ν : L → F

be exhaustive modular functions where F is a locally convex Hausdorff linear space.
Then there are exhaustive modular functions µ1 and µ2 such that µ = µ1 + µ2,
µ1 � ν and µ2⊥ν.

�����. We use the notation of 3.1.7 where u is generated by the set of all
real-valued bounded modular functions on L. Replacing µ by µ − µ(0) we may
assume that µ(0) = 0. µ has by [15] or [16, 5.1] a unique decomposition of the form
µ = λ1 + λ2 where λ1 and λ2 are E-valued µ-continuous measures on C(L̃), λ1 � ν

and λ2⊥ν. By 3.1.7 there are exhaustive modular functions µ1 : L → E with µi = λi

decomposing µ according to 3.2.1. �
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3.3. Controls.
A modular function ν is called a control for a modular function Λ or for a set of

modular functions Λ if the ν-uniformity agrees with the Λ-uniformity.
In [20, 3.2.5] it was already explained how to transfer Rybakov’s theorem to the

case of modular functions on c. or s.c. or r.c. lattices:

Theorem 3.3.1 [20, 3.2.5]. Let L be c. or s.c. or r.c., let E be a Banach space
and µ : L → E an exhaustive modular function. Then there is an x′ ∈ E′ such that
x′ ◦ µ is a control of µ.

�����. With the notation of 3.1.7, by the Rybakov theorem there is an x′ ∈ E′

such that x′ ◦ µ is a control of µ; then, by 3.1.7 (c), x′ ◦ µ is a control of µ. �

Using [8, Corollary 1] instead of the Rybakov theorem for measures on Boolean
algebras, one obtains by the same argument that for any exhaustive modular function
µ : L → E there is a x′ ∈ E′ such that x′ ◦ µ is a control of µ if E is a dual nuclear
space.

Theorem 3.3.2. Let L be c. or s.c. or r.c. and let (µn) be a sequence of uniformly
exhaustive E-valued modular functions on L. Then there is a modular function
ν : L → E which is a control of {µn : n ∈ �}.
In the case of L being a Boolean algebra, 3.3.2 is proved in [6, Theorem 2].

In [3, Theorem 2.11], the result 3.3.2 was obtained by transferring the proof of
[6, Theorem 2] from the Boolean case to the case of c. (or s.c.) lattices. We now
show that with the aid of 3.1.7 one can transfer the result [6, Theorem 2] to the case
of c. (or s.c. or r.c.) lattices.

����� of 3.3.2. We use the notation of 3.1.7 where—as in the second statement
of 3.1.7 (b)—u is generated by the set of all real-valued bounded modular functions
on L. By 3.1.8, {µn : n ∈ �} is uniformly exhaustive and has therefore a control
ν : C(L̃)→ E by [6, Theorem 2]. By 3.1.7, the corresponding function ν : L → E is
a control for {µn : n ∈ �}. �

3.4. Vitali-Hahn-Saks and Nikodým theorems.
Here we transfer the Vitali-Hahn-Saks and Nikodým theorems to the setting of

modular functions on c. or s.c. or r.c. lattices.

Theorem 3.4.1. Let L be a σ-complete c. or s.c. or r.c. lattice and µn : L → E,
n ∈ �, a sequence of σ-order continuous modular functions, which converges point-
wise to µ : L → E.
(a) Then the sequence (µn)n∈� is uniformly exhaustive and µ is a σ-order continuous
modular function.
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(b) If, for every n ∈ �, µn is continuous with respect to a lattice uniformity v on
L, then {µn : n ∈ �} ∪ {µ} is equicontinuous with respect to v.

�����. Since E is a subspace of a product of Banach spaces, we may assume
that already E is a Banach space. Let u be the uniformity generated by {µn : n ∈ �}.
Then (L, u) is complete by 1.5. Passing to the quotient (L̂, û) := (L, u)/N(u) we
may assume for (b) and for the first statement of (a) that u is Hausdorff. So (L, u) =
(L̂, û) = (L̃, ũ) with the notation of 3.1.7. (Observe that u ∈ L U0(L) by 3.1.4 as
required in 3.1.7.) Replacing µn by µn − µn(0), we may assume that µn(0) = 0. By
the Vitali-Hahn-Saks theorem (sometimes also called the Brooks-Jewett theorem) for
measures on Boolean algebras the restrictions µn := µn

∣∣C(L), n ∈ �, are uniformly
exhaustive. Therefore µn, n ∈ �, are uniformly exhaustive by 3.1.8. From this fact
(b) follows by [9] or [19, 6.2].
Applying (b) with v being the finest σ-order continuous lattice uniformity on L

we obtain that µ is σ-order continuous. �

The proof shows that in 3.4.1 we do not need to assume the convergence of
(µn(a))n∈� for all a ∈ L.

Theorem 3.4.2. Let L be a σ-complete c. or s.c. or r.c. lattice andM a pointwise
bounded set of σ-order continuous E-valued modular functions on L. Then M is
uniformly bounded.

�����. Since a subset A of a locally convex linear space is bounded iff all
countable subsets of A are bounded, we may assume that M is countable, i.e. that
M = {µn : n ∈ �}. We use the same notation as in the proof of 3.4.1. As there we
may assume that E is a Banach space, u is Hausdorff and complete and L = L̂ = L̃.
By the classical Nikodým boundedness theorem, {µn : n ∈ �} is uniformly bounded,
i.e. for some positive real number r we have µn(C(L̃)) ⊂ B := {x ∈ E : ‖x‖ � r} for
all n ∈ �. By 3.1.7 (a), µn(L) ⊂ coµn(C(L̃)) ⊂ B. Hence {µn : n ∈ �} is uniformly
bounded. �

Results related to 3.4.1 and 3.4.2, but with quite different proofs are contained
in [5].

3.5. The range of modular functions.

Proposition 3.5.1. Let L be a r.c. irreducible complete lattice. Suppose that
there exists an order continuous modular function ν : L → E which is not constant.
(a) Then there is a unique order continuous modular function λ : L → � with

λ(0) = 0 and λ(1) = 1. λ is strictly increasing and every order continuous
modular function µ : L → E has the form µ = λ · µ(1) + (1− λ) · µ(0).

(b) If L is atomless, then the range of λ is the closed real unit interval I.
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(c) If L is not atomless, then L is a geometric lattice of finite length n and λ = h/n

where h is the height function.

�����. (a) Let µ : L → E be an order continuous modular function which
is not constant. Then for some x′ ∈ E′, x′ ◦ µ is not constant and has bounded
variation by 3.1.3 (c). Therefore λ := |x′ ◦ µ|/|x′ ◦ µ|(1) is an increasing modular
function with λ(0) = 0 and λ(1) = 1. Since sup{x ∈ L : λ(x) = 0} ∈ C(L) = {0, 1}
by 3.1.6, λ is strictly positive and therefore strictly increasing. Moreover, λ is order
continuous since the λ-uniformity agrees with the x′ ◦ µ-uniformity by 3.1.3 (b). We
now will apply 3.1.7 for u being the λ-uniformity. Observe that (L, u) is complete
by 1.5 and therefore L = L̂ = L̃. Since the modular functions µ− (1− λ) · µ(0) and
λ ·µ(1) agree on C(L), they are equal by 3.1.7. Hence µ = λ ·µ(1)+(1−λ) ·µ(0). So
µ is uniquely determined by the values µ(0) and µ(1). This implies also (for E = �)
the uniqueness of λ.
(b) If L is atomless, then (L, u) is connected by [21, 5.4 (a)]. Therefore the con-

tinuous image λ(L) is an interval. Since λ is increasing, λ(0) = 0 and λ(1) = 1, we
get λ(L) = I.
(c) First observe that L is modular by 1.4 since the λ-uniformity is Hausdorff. It

now follows from [21, 5.13] that L is a geometric lattice of finite length if L is not
atomless. By the uniqueness statement in (a) we obtain λ = h/n. (Here we use that
the height function is modular, see [7, p. 40].) �

Theorem 3.5.2. Let L be a complete complemented lattice and µ : L → E

an order continuous modular function with µ(0) = 0 and N(µ) = {(x, x) : x ∈ L}.
Then there is a µ-continuous modular function ν : L → E and there are µ-continuous
increasing modular functions �a : L → � and σb : L → � and elements ya, zb ∈ E

(a ∈ A, b ∈ B) with the following properties:
(1) (�a(x)·ya)a∈A and (σb(x)·zb)b∈B are summable uniformly in x ∈ L; µ = ν+�+σ

where � :=
∑

a∈A

�a(x) · ya and σ :=
∑

b∈B

σb · zb.

(2) �a(L) = I (:=closed real unit interval) for a ∈ A; σb(L) = {i/nb : i = 0, . . . , nb}
for b ∈ B and some nb ∈ �; �(L) is convex and compact; σ(L) is compact;
co ν(L) = co ν(C(L)); µ(L) = ν(L) + �(L) + σ(L).

(3) The restriction ν
∣∣C(L) is an atomless measure.

(4) σ = 0 iff L is atomless.

�����. First observe that L is modular by 1.4 and therefore r.c. by [7, I.14].
We may assume that L �= {0}. Let A be the set of all atoms a of C(L) for which
[0, a] is atomless, and let B be the set of all the other atoms of C(L). For p ∈ A∪B,
the interval [0, p] is an irreducible lattice. Therefore there is by 3.5.1 an increasing
modular function λp : [0, p]→ � with λp(0) = 0, λp(p) = 1 and µ(x) = λp(x) · µ(p)
(x ∈ [0, p]); λp([0, p]) = I if p ∈ A, and λp([0, p]) = {i/np : i = 0, . . . , np} for some
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np ∈ � if p ∈ B. Let t be the (unique) complement of sup(A ∪B) in C(L). We put
ν(x) = µ(x∧ t), �a(x) = λa(x∧a), σb(x) = λb(x∧ b), ya = µ(a), zb = µ(b) for a ∈ A,
b ∈ B and x ∈ L. We shall verify the properties (1) through (4). (1) holds by [21,
6.3]. By 3.1.7 we have co ν(L) = co ν(C(L)) observing that (L̃, ũ) = (L̂, û) = (L, u)
for u being the µ-uniformity. �(L) is the image of the compact convex set IA under
the continuous affine map (ta)a∈A �→ ∑

a∈A

ta · ya and therefore it is compact and

convex. Similarly we obtain that σ(L) is compact. (3), (4) and the last statement of
(2) hold obviously. �

The last result allows us to transfer Liapunoff’s theorem to the setting of modular
functions on c. or s.c. or r.c. lattices.
We call a modular function µ : L → E on a c. (or s.c.) lattice atomless if the

quotient L/N(µ) has no atom, or equivalently, if for every a ∈ L with (0, a) �∈ N(µ)
there is an element b ∈ [0, a] with µ(b) �∈ {µ(0), µ(a)}.

Theorem 3.5.3. Let n ∈ � and let µ : L → �
n be a σ-order continuous modular

function on a complemented σ-complete lattice. Then µ(L) is compact. If µ is
atomless, then µ(L) is convex.

�����. Replacing µ by µ − µ(0) and passing then to the quotient L/N(µ),
we may assume that µ(0) = 0 and that the µ-uniformity is Hausdorff. Then the
assumptions of 3.5.2 are satisfied by 1.2 and 1.5. With the notation of 3.5.2 we
obtain from Liapunoff’s theorem that ν(C(L)) is compact and convex. Therefore
ν(L) = ν(C(L)) by 3.5.2 (2) and µ(L) is the sum of three compact sets ν(L), �(L)
and σ(L) and consequently it is compact. If µ is atomless, then σ = 0 and µ(L) is
the sum of two convex sets ν(L) and �(L) and therefore it is convex. �

The convexity assertion of 3.5.3 was already proved by Avallone [1]. More pre-
cisely, the main result of [1] gives a generalization of the finitely additive version of
Liapunoff’s convexity theorem to modular functions on complemented lattices.
We now give a condition under which µ(L) is compact and convex. Let µ : L → E

be a modular function. L is called µ-chained (see [19, p. 50]) if for every
0-neighbourhood U in E and every a, b ∈ L with a < b there is a finite chain
a = x0 < x1 < . . . < xn = b in L such that µ(x) − µ(y) ∈ U for x, y ∈ [xi−1, xi] and
i = 1, . . . , n. If µ is exhaustive and L is c. (or s.c.) and complete with respect to the
µ-uniformity, then L is µ-chained iff µ is atomless (see [20, section 2.2]).

Theorem 3.5.4. Let L be c. or s.c. or r.c.
(a) Assume that µ(A) is compact (convex) for every order continuous atomless mea-
sure µ : A → E defined on a complete Boolean algebra. Then µ(L) is compact
(or convex, respectively) for every exhaustive modular function µ : L → E (with
L being µ-chained).
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(b) Assume that E is a Banach space and µ(A) is compact (convex) for every
order continuous atomless measure µ : A → E of bounded variation defined on
a complete Boolean algebra. Then µ(L) is compact (or convex, respectively)
for every modular function µ : L → E of bounded variation (with L being
µ-chained).

�����. We prove only the convexity assertion in (b). The other three assertions
can be proved in a similar way. Let µ : L → E be a modular function of bounded
variation such that L is µ-chained. µ is exhaustive since µ has bounded variation.
We apply 3.1.7 with u being the µ-uniformity. Since µ(L) = µ̃(L̃), it is enough to

show that µ̃(L̃) is convex. Replacing µ and L by µ̃ and L̃ we may assume that µ is
order continuous and L complete. Replacing µ by µ− µ(0) we may further assume
that µ(0) = 0. So all assumptions of 3.5.2 are satisfied. With the notation of 3.5.2,
σ = 0 since L is µ-chained and therefore atomless, �(L) is compact and therefore
µ(L) = ν(L) + �(L). ν(C(L)) is convex by the assumption on E and therefore
ν(L) = ν(C(L)). Hence ν(L) is convex. Moreover, �(L) is convex. It follows that
µ(L) = ν(L) + �(L) is convex. �

In the assumption of 3.5.4 one can replace the order continuous measures on
complete Boolean algebras by σ-additive measures on σ-fields of sets. This follows
from the fact that every σ-complete Boolean algebra is isomorphic to a factor algebra
F/N where F is a σ-field of sets and N a σ-ideal in F.

Theorem 3.5.4 allows us to transfer e.g. the following theorems of Uhl, of Kadets
and of Kadets and Shekhtman to the setting of modular functions on c. or s.c. or r.c.
lattices:

Theorem. Let F be a σ-field, E a Banach space and µ : F → E a σ-additive
measure.

If E has the Radon-Nikodým property and µ has bounded variation, then µ(F) is
compact [14].

If E has the Radon-Nikodým property and µ has bounded variation [14] or if E

is B-convex and µ has bounded variation [12] or if E = c0 or E = 
p for some
p ∈ [1,∞[\{2} [13], then µ(F) is convex.

With quite another method, Avallone [2] generalized these theorems of Uhl, Kadets
and of Kadets-Shekhtman (for E = 
1) to modular functions on complemented lat-
tices.
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