
Czechoslovak Mathematical Journal

Ulrich F. Albrecht; Anthony Giovannitti; H. Pat Goeters
A class of torsion-free abelian groups characterized by the ranks of their socles

Czechoslovak Mathematical Journal, Vol. 52 (2002), No. 2, 319–327

Persistent URL: http://dml.cz/dmlcz/127719

Terms of use:
© Institute of Mathematics AS CR, 2002

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/127719
http://dml.cz


Czechoslovak Mathematical Journal, 52 (127) (2002), 319–327

A CLASS OF TORSION-FREE ABELIAN GROUPS

CHARACTERIZED BY THE RANKS OF THEIR SOCLES

Ulrich Albrecht, Auburn, Tony Giovannitti, Carrollton,

and Pat Goeters, Auburn

(Received March 17, 1999)

Abstract. Butler groups formed by factoring a completely decomposable group by a rank
one group have been studied extensively. We call such groups, bracket groups. We study
bracket modules over integral domains. In particular, we are interested in when any bracket
R-module is R tensor a bracket group.
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1. Introduction

In 1983, F. Richman studied a certain class of Butler groups to great advan-

tage [12]. His work was later generalized by Hill and Megibben [8] and separately,
by Arnold and Vinsonhaler (see [2] for a summary and a list of related papers). The
class of groups dual the class studied in [2] was examined by Wu Yen Lee in [9], and

will be studied more generally in our next section. A matrix-oriented approach to
the study of the groups of Lee was proffered in [4], and later, in the same vein, in [6].

We will adopt the colloquial terminology of calling the groups from [9], bracket

groups.

Specifically, given subgroups C1, . . . , Cn of the group � of rational numbers, a

bracket group is C1⊕. . .⊕Cn/C0, where C0 is any rank 1 pure subgroup of C1 ⊕ . . .⊕
Cn generated by some (c1, . . . , cn) with each ci �= 0. As mentioned above, these
groups, and their duals, have been studied extensively over the past few years. Of
special interest here is the result from [7] that two backet groups G and H are
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quasi-isomorphic if and only if rank G(τ) = rank H(τ) for all types τ , where G(τ)

represents the τ -socle of G, and is defined to be G(τ) = {x ∈ G | type x � τ}.
In this article we discuss a class of torsion-free abelian groups of finite rank which

are distinguished (up to quasi-isomorphism) by the ranks of their socles. Specifically,

we study the class of groups of the form R ⊗ G where G is a bracket group and R

is a certain subring of an algebraic number field. Below, the unadorned Hom and ⊗
symbols are meant to be with respect to the group � of integers.

2. A class of Butler modules

Throughout this text, R denotes a subring of an algebraic number field, and Q =

�R represents the quotient field of R. The integral closure of R in its Q is denoted
by R, and is a Dedekind overring of R with R/R finite [1].

Definitions.
• An R-module A is called completely decomposable, if A = A1 ⊕ . . .⊕An where

A1, . . . , An are rank one R-modules.

• A torsion-free R-module M of finite rank is called a bracket R-module, if there
is a completely decomposable module A = A1⊕ . . .⊕An, such that M ∼= A/A0,

where A0 is some rank one pure submodule of A whose projection onto each
coordinate is nonzero.

In the definition, we are distinguishing between the quotient of a completely de-
composable R-module A = A1⊕ . . .⊕An modulo any rank one pure submodule, and

the quotient A/A0 where A0 is a pure submodule of A generated by some (a1, . . . , an)
with aj �= 0 for all j. The latter module is a bracket module, and the former is the
direct sum of a completely decomposable module and a bracket module.

Definition. By π(R) we mean the set of integral primes p such that pR �= R.
We will say that R is a π(R)-primary ring, if for each p ∈ π(R), pR is a primary ideal

of R. We will call R an integrally primary ring, IP ring for short, if for each p ∈ π(R),
pR is a primary ideal of R; equivalently, R is an IP ring if R is a π(R)-primary ring.

The following conditions are equivalent for a subring S of an algebraic number
field: pS is primary; pS contains a power of a prime ideal; and there is a unique

prime ideal of S containing p. It follows that R is an IP ring if and only if R is a
π(R)-primary ring, and for each non zero prime ideal P of R, there is a unique prime

ideal of R lying over P .

The following appears in [3] in essence, however there is an error in the statement
of Proposition 2.2 in [3], which is corrected here.

320



Lemma 1. Let R be a subring of an algebraic number field. Then, every rank

one module is of the form I ⊗X for some ideal I of R and some subgroup X of �,

if and only if R is an IP ring.

�����. We will first show that R is an IP ring under the stated condition. If
there are two nonzero prime ideals P1 and P2 of R lying over a single integral prime

p ∈ π(R), then consider the localizations Rj = RPj of R at the prime ideals Pj ,
j = 1, 2. Since each of R1 and R2 is p-local as an abelian group, and since any two
ideals of R are quasi-equal, from the hypothesis we must conclude that both R1, R2

are quasi-equal to R ⊗ �p
∼= R�p ⊆ Q. Therefore R1 · R2 is quasi-equal to R1. But

this contradicts the fact that RP ·RP ′ = Q for any two distinct nonzero prime ideals

of R since R is Dedekind. Thus, R is an IP ring.

Given a rank one R-module A, set π = {p | pA �= A}. We will use the notation
Rπ =

⋂
p∈π

Rp and �π =
⋂

p∈π
�p. If A ∼= J ⊗X for some rank one subgroup X of �

and some ideal J of S = Rπ, then J ∼= I ⊗ S for some ideal I of R, and A ∼= I ⊗X ′

for X ′ = �π ⊗X . Since S is an IP ring, we may assume, without loss of generality,
that π = π(R).

Let X and Y be rank one pure subgroups of the rank one R-module A. With

0 �= a ∈ X and 0 �= b ∈ Y , q = b/a ∈ Q = �R, so there is an integer k �= 0 for which
kq ∈ R. Then, left multiplication on A by kq is a group monomorphism sending X

into Y . From this we conclude that type X = type Y , and A is homogeneous as a
group. As Warfield has shown in [14], the natural map Hom(X, A) ⊗X → A is an

isomorphism. It remains to show that I = Hom(X, A) is isomorphic to an ideal of R.
Identify the rank one R-module I with {t ∈ Q | tX ⊆ A}.
Consider I = RI ⊆ Q. Once we have shown that I is a fractional ideal of R, we

are assured of finding an integer m �= 0 such that mI ⊆ R. But since R/R is finite,
m′R ⊆ R for some integer m′ �= 0, and then mm′I ⊆ mm′I ⊆ R, so I is isomorphic

to an ideal of R.

The rank one R-module I is homogeneous as a group, of type equal to the type of

�π, where π = π(R). It is easy to see that I is a fractional ideal of R if and only if
IP = RP for almost all maximal ideals P of R, and for any maximal ideal P of R,

IP is a fractional ideal of RP . Let P be a maximal ideal of R.

Since RP is a dvr, IP is either a fractional ideal of RP , or it is Q. If PIP = IP ,
then because R is an IP ring, we know that pR = Pn for some integer n and some

integral prime p. But then pIP = IP implying that I is p-divisible. But p ∈ π = π(R)
and so pA �= A. Thus, IP is a fractional ideal of RP for all P .

Suppose IP �= RP for infinitely many primes P . The theory of heights for �

carries over to modules over R in the following manner. Define the height sequence
hI(x) : spec(R) → �up{∞}, for x ∈ I, by hI

P (x) = n provided x ∈ PnI \ Pn+1I,
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and hI
P (x) = ∞ otherwise. Then any two height sequences of elements in the rank

one module I have equivalent height sequences (in that,
∑

P |hI
P (x)−hI

P (x
′)| < ∞),

and I is a fractional ideal of R precisely when
∑

P hI
P (x) < ∞ for each 0 �= x ∈ I.

We have seen that hI
P (x) < ∞ for each P , so we must now show that hI

P (x) = 0 for

almost all prime ideals P .
Suppose 0 �= x ∈ I is such that hI

P (x) > 0 for infinitely many prime ideals P .

It is well known that R =
⋂

P∈S
TP where T is the ring of integers in the algebraic

number field �R and S is a certain subset of spec(T ). Recall that almost all integral
primes p are unramified in T , meaning that pT is a product of distinct prime ideals.
The condition that R is an IP ring can be interpreted as saying that S cannot contain
two prime ideals of T lying over the same integral prime.
For almost all integral primes p ∈ π(R), pR is a prime ideal. Since every prime

ideal of R lies over some integral prime, we conclude that almost all prime ideals
of R are of the form pR for some p ∈ π(R). Therefore, x ∈ pI for infinitely many

integral primes, contradicting the fact that, as a group, I is homogeneous of type
equal to the type of �π. This contradiction shows that I is a fractional ideal of R,

and the proof is complete. �

Recall that a subring R of an algebraic number field, is called strongly homoge-

neous, if every element of R is an integral multiple of a unit of R. Arnold’s devel-
opment in [1] advances the following equivalence: R is strongly homogeneous; pR is
a maximal ideal of R for every p ∈ π(R); and, every ideal of R is generated by an

integer. So strongly homogeneous rings are pid’s that are IP rings.

Lemma 2. Let R be a subring of an algebraic number field that is an IP ring.

Then, for any module R ⊆ A ⊆ Q, there is a subgroup C of � and fractional ideal J

of R, containing R, such that A = JC. If in addition, R is a pid, then there is an

element r ∈ R such that A = r−1RC.

�����. From the proof of Lemma 1, A ∼=nat Hom(C, A) ⊗ C for any rank one

pure subgroup C of A. In particular, we shall take C equal to the �-purification
of 1 in A, and identify Hom(C, A) with the submodule J = {t ∈ Q | tC ⊆ A}. As
verified in the proof of Lemma 1, J is a fractional ideal of R which clearly contains R.
Evaluating the natural isomorphism results in A = JC. When R is also a pid, then

J = tR for some t ∈ Q, but since 1 ∈ J , t−1 ∈ R. Thus, A = tRC as desired. �

Theorem 3. Let R be a strongly homogeneous ring and M a torsion-free

R-module of finite rank. The following are equivalent:

(a) M is a bracket R-module.

(b) M ∼= R⊗G for some bracket group G.
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�����. (b) → (a) holds generally, and is clear. For the reverse implication, in
accordance with the definition of M as a bracket R-module, let

0 −→ A0 −→ A1 ⊕ . . .⊕An
ϕ−→ M −→ 0

be an exact sequence of R-modules with A0, . . . , An having rank one. Let

(a1, . . . , an) ∈ Kerϕ,

and recall that each aj �= 0. Multiplication by ai sends a−1i Ai isomorphically onto

Ai and 1 	→ ai. Therefore, replacing Ai with a−1i Ai, we may assume that each Ai

contains 1 and that (1, . . . , 1) ∈ Kerϕ ≡ A0.

By virtue of Lemma 2, there are rational subgroups Ci ⊆ �, and elements ri ∈ R

such that Ai = r−1i RCi. Since ri is an integral multiple of a unit of R, there are

integers ni for i = 1, . . . , n such that Ai = n−1i RCi. Set D = D1 ⊕ . . . ⊕Dn where
Di = n−1i Ci for each i. We claim that G = ϕ(D) is a bracket group and that

M ∼= R⊗G. Note that (1, . . . , 1) ∈ K = Kerϕ ∩D.

Consider the commutative rectangle

0 �� R⊗K ��

α

��

R⊗D ��

β

��

R⊕G ��

γ

��

0

0 �� A0 �� A1 ⊕ . . .⊕An
ϕ �� M �� 0.

As K �= 0, the image of α is nonzero. The module A0 is rank one, implying that
α has torsion cokernel (as an abelian group). Since β is an isomorphism, the Snake

Lemma implies that Kerγ ∼= Cokerα, and because R⊗G is torsion-free, Ker γ = 0.
Furthermore, γ is an epimorphism. By counting ranks we find that K must have

�-rank one, and consequently G is a bracket group with R⊗G ∼=M . �

The assumption on R in Theorem 3 is tight as the next two examples show.

Example 1. Let R be a subring of an algebraic number field. If every bracket

R-module is isomorphic to R⊗G for some bracket group G, then R is a pid that is
an IP ring.

�����. Every rank one module is isomorphic to R⊗C for some subgroup C of
�, so by Lemma 1, R is an IP ring. Furthermore, any ideal I of R is isomorphic to

R⊗C for some �⊆ C ⊆ �. Since it is clear that we may find C so that pC = C when
p ∈ π(R), C must be finitely generated over �π(R). Therefore, I is principal. �
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To facilitate the proof of Theorem 3, more is required of R, other than R is a

IP ring that is a pid. We needed to factor a rank one R-module R ⊆ A ⊆ Q into
A = RC where �⊆ C ⊆ �. In light of this and in view of the next example, we feel
that the strongly homogeneous assumption on R in Theorem 3 is necessary.

Example 2. Let R be a subring of an algebraic number field. Then, any sub-

module R ⊆ A ⊆ Q is equal to RC for some �⊆ C ⊆ � if and only if R is strongly
homogeneous.

�����. In the notation above, if every A can be expressed as RC, then for any

maximal ideal P of R, P−1 = {t ∈ Q | tP ⊆ R} must be of this form. But P−1

is finitely generated over R so we must be able to obtain C so that it is a finitely

generated �π(R)-module. It follows that P−1 is n−1R for some integer n, but since
P = (P−1)−1 ([10], Theorem 37), P = nR. Clearly n must be prime, so every

maximal ideal is pR for some integral prime p. On the other hand, any given pR is
contained in a maximal ideal of R which implies that the maximal ideals of R are

precisely the ideals pR for p ∈ π(R). Therefore R is strongly homogeneous. �

Theorem 4. The following are equivalent:
(1) R is an IP ring.

(2) Every bracket R-module is quasi-isomorphic to R⊗G for some bracket group G.

�����. (2) → (1). As in the proof of Lemma 1, suppose P1 and P2 are two

maximal ideals of R over pR for some p ∈ π(R) = π(R) and let Rj = RPj . Since
each Rj is a bracket (rank one) R-module, Rj is quasi-isomorphic to R⊗Cj for some

subgroup Cj of �. Clearly, we must have C1 ∼= C2 ∼= �p. This results in R1 · R2
being quasi-equal to R1, although we know that R1 · R2 = Q. Therefore, pR must

be primary.
(1)→ (2). LetM be a bracket R-module. As argued at the beginning of the proof

of Theorem 3, M is the epimorphic image of a completely decomposable R-module
A1⊕. . .⊕An where each Ai is a submodule of Q containing R, and, (1, . . . , 1) belongs

to the kernel. Let ϕ : A1 ⊕ . . .⊕An → M represent such a scheme.
By Lemma 2 we can factor each Aj = JjCj with R ⊆ Jj ⊆ Q a fractional ideal,

and � ⊆ Cj ⊆ �. Then, for A′
j = RCj ⊆ Aj , arguing as in Theorem 4, we find

that ϕ(A′
1 ⊕ . . .⊕A′

n) =M ′ is a bracket R-module (the proof goes through because

⊕jCj contains a nonzero element of Kerϕ). Since each Jj is a fractional ideal of R,
there is a nonzero integer m such that mJj ⊆ R for every j. It follows that the

index of M ′ in M is bounded by m, and so M is quasi-isomorphic to R ⊗G where
G = ϕ(⊕jCj). �
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3. Rational socles of bracket modules

In this section we will show that any group M quasi-isomorphic to a bracket R-

module over a pid that is an IP ring, is characterized (up to quasi-isomorphism)
by the ranks of its socles. Recall, given a torsion-free group G and a type (of a

subgroup of �), the τ -socle of G, written G(τ), is the image of the natural map
Hom(X, G) ⊗ X → G where X is any rank 1 group having type τ . Equivalently,

G(τ) = {x ∈ G | type x � τ}.
When dealing with a pid R, one can replicate the study of modules over the

integers; for example the notion of a type is obtained. For this reason, we will call
the type of a subgroup of �, a rational type, and the quasi-isomorphism class of a

rank one R-module, an R-type, to avoid duplicitous terms. Further, one may wish
to delineate between socles G(τ) where τ is a rational type, and socles (defined

analogously) where τ is an R-type. When τ is a rational type, G(τ) will be called a
rational socle, and when τ is an R-type, G(τ) is an R-socle.

Theorem 5. Let R be an IP ring that is a pid. For any rational type τ and any

bracket group G, (R⊗G)(τ) contains R⊗G(τ) as a subgroup of finite index.

�����. As usual, G is an image of a completely decoposable group C1 ⊕ . . .⊕
Cn with (1, . . . , 1) purely generating the kernel. Then the module M = R ⊗ G is

a bracket R-module that is the image of the completely decomposable R-module
RC1 ⊕ . . .⊕RCn whose kernel is generated, as a pure R-submodule, by (1, . . . , 1).
The socles of a bracket groupG were examined extensively in [6]; the essence of this

work can be summarized in the following way: Given a subset I of {1, 2, . . . , n}, let
eI represent the standard element in C1⊕ . . .⊕Cn with 1’s in components indexed by

members of I, and 0’s elsewhere. Assuming G is the epimorphic image of C1⊕. . .⊕Cn

with kernel purely generated by (1, . . . , 1), let eI denote the image of eI in G. For

any such eI , let CI = {t ∈ � | teI ∈ G}. It is shown, for any rational type τ , that
G(τ) =

∑{
CIeI | I ⊆ {1, . . . , n} and eI has rational type � τ

}
.

Let M = R⊗G. A rank one R-module is of the form R⊗X for some subgroup X

of � by Lemma 1. We claim that the R-socle ofM with respect to the R-type R⊗X ,

coincides with the rational socleM(τ) where τ is the rational type of X . That is, we
claim that the images of the natural maps HomR(R⊗X, M)⊗R (R⊗X)→ M and

Hom(X, M)⊗X → M are the same. With τR equal to the R-type of R⊗X , denote
the image of the latter map by M(τ) and the image of the former, by M(τR).

If y ∈ M(τ) then y has rational type at least τ . Then for Y taken to be the
pure subgroup of M generated by y, R ⊗ Y ∼= R · Y ⊆ M(τR), and so y ∈ M(τR).

Conversely, if z ∈ M(τR), then clearly z must have integral type at least τ since R⊗X

is homogeneous of rational type τ as a group. So our claim has been established.
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The description of the socles of bracket groups mentioned above, carries over

to bracket modules over pid’s. Specifically, using the notation above, given I ⊆
{1, . . . , n}, let AI = {t ∈ �R | teI ∈ M}. Then, encorporating the results from [6]
mentioned above for bracket modules over the pid R, M(τ) = M(τR) =

∑{AIeI |
R-type eI � τR} =

∑{AIeI | eI has rational type � τ}.
Let I ⊆ {1, . . . , n} be such that ēI has rational type at least τ . Then using the

notation above, AI
∼= RCI so there is an integer ni �= 0 for which nIAI ⊆ RCI due

to the fact that RCI ⊆ AI . With n equal to the product over all appropriate nI ’s,

n bounds the cokernel of R⊗G(τ) in (R ⊗G)(τ) as desired. �

Theorem 6. Let R be an IP ring which is a pid. The following are equivalent

for two bracket R-modules M and N :

(1) M and N are quasi-isomorphic as groups (R-modules).

(2) For any rational type τ , rankM(τ) = rankN(τ).

(3) There is a bracket group G such that both M and N are quasi-isomorphic to

R⊗G.

�����. The implication (1) → (2) holds generally and (3) → (1) is clear.
By Theorem 5, if M is quasi-isomorphic to R ⊗ G for some bracket group G, then

rank M(τ) = (rankR)(rankG(τ)) for every rational type τ . By Theorem 4, M and
N are quasi-isomorphic to R ⊗ G and R ⊗ H respectively, where G and H are

certain bracket groups. It follows from (2) and from what we have just stated, that
rankG(τ) = rankH(τ) for every rational type τ . The main result in [7] is that

bracket groups are characterized by the ranks of their rational socles. Therefore G

and H are quasi-isomorphic, from which (3) is a consequence. �

The assumption of the last two Theorems that R is a pid is in place in order to

apply the results from [6]. We feel the techniques from [6] carry over to more general
domains with appropriate modifications of the statements of the results. If this is

the case, the pid assumption can be removed from the last two Theorems.
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