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Abstract. We reduce the problem on multiplicities of simple subquotients in an
α-stratified generalized Verma module to the analogous problem for classical Verma mod-
ules.
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1. Introduction

The study of α-stratified modules over a simple complex finite-dimensional Lie
algebra was originated in [3] where several basic properties of such modules were

obtained. The class of α-stratified modules contains the so-called generalized Verma
modules (GVM). These modules are completely different from another family of

GVMs introduced and studied in [9]. The α-stratified GVM were investigated in [5,
6, 8] where a BGG-like criterion for the existence of a non-trivial homomorphism

between two α-stratified GVMs was established.

One of the most important results about classical Verma modules is the so-called
Kazhdan-Lusztig theorem describing the multiplicities of simple subquotients in a

Verma module (see for example [1] and references therein). An analogous result for
GVM in the sense of [9] was obtained in [2]. It happened that the answer obtained

in [2] is different from the classical Kazhdan-Lusztig theorem. The latter means
that the multiplicities of simple subquotients in a GVM (in the sense of [9]) cannot

be obtained directly from the analogous multiplicities in the corresponding Verma
module.
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In the present paper we calculate the multiplicities of simple subquotients in an

α-stratified GVM. In fact, with an arbitrary α-stratified GVM we associate a certain
Verma module and prove that the required multiplicities coincide with the multi-
plicities of simple subquotients in this Verma module. This analogy with Verma

modules provides one more difference between α-stratified GVMs and GVMs in the
sense of [9].

We have to note that one related question for α-stratified modules was solved in [7,
Theorem 13.4] in a full generality. In fact, for any simple complex finite-dimensional

Lie algebraG and its “well-embedded” subalgebraG1 of type An or Cn, the character
of the unique simple quotient of GVM induced from a homogeneous G1-module was

calculated. Here homogeneous means that this module is weight, dense and has
weight subspaces of the same dimension (see [7] for details). In the case when G1 is

of type A1, simple homogeneous means the same as simple α-stratified. Thus, using
the above mentioned result one can calculate the character of the unique simple

quotient of an α-stratified GVM.
The paper is organized as follows: in Section 2 we collect all necessary prelimi-

naries. In Section 3 we formulate our main result—Theorem 1, which is proved in
Section 4.

2. Preliminaries

Let � denote the complex numbers, � the set of integers and � the set of all positive

integers. For a Lie algebra A we will denote by U(A) its universal enveloping algebra.
Let G be a simple complex finite-dimensional Lie algebra and H its Cartan subal-

gebra. Denote by ∆ the corresponding root system and choose a base π in ∆. This
defines a partition of ∆ into two sets of positive (∆+) and negative (∆−) roots. We

will write P for the abelian subgroup in H∗ generated by the elements from ∆. For
β ∈ ∆ let Gβ denote the corresponding root subspace in G. Fix a Weyl-Chevalley

basis Xα, α ∈ ∆, Hα, α ∈ π. Set

� =
1
2

∑

β∈∆+
β.

Fix α ∈ π. Let Gα denote the sl(2)-subalgebra of G corresponding to the root α.

Set Nα
± =

∑
β∈∆+\{α}

G±β , Hα = {h ∈ H | α(h) = 0}, πα = π \ {α}. Then we have the

following decomposition: G = Gα ⊕Nα
− ⊕ Hα ⊕Nα

+. For Hα = Gα ∩ H one obtains
Gα = Gα ⊕ Hα ⊕G−α.

For a G-module V and λ ∈ H∗ let Vλ denote the weight space with respect to
weight λ. A G-module V will be called a weight module if it decomposes into a
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direct sum of its weight spaces. A weight G-module V is called α-stratified ([3]) if

the actions of Xα and X−α are injective on V . All modules considered in this paper
are supposed to be weight modules with finite-dimensional weight spaces.

Consider the quadratic Casimir operator c = (Hα + 1)2 + 4X−αXα in U(Gα).

Any pair a, b ∈ � defines a unique indecomposable Gα-module N(a, b) such that
X−α acts bijectively on N(a, b), all non-trivial weight spaces of N(a, b) are one-

dimensional, a is an eigenvalue of Hα and b is the (unique!) eigenvalue of c. One
has N(a, b) � N(a+ 2l, b) for any l ∈ �.

Since H = Hα ⊕ Hα we can rewrite an arbitrary λ ∈ H∗ as λ = λα + λα where
λα ∈ Hα and λα ∈ Hα. Let a, b ∈ � and let λ ∈ H∗ be such that (λ − �)(Hα) =

(λα−�)(Hα) = a. We can define the structure of an H-module on N(a, b) by setting
hv = (λ − �)α(h)v for all h ∈ Hα and all v ∈ N(a, b). Further, we can consider

N(a, b) as D = H+Gα ⊕Nα
+-module by setting Nα

+N(a, b) = 0.

The G-module

Mα(λ, b) = U(G)
⊗

U(D)

N(a, b)

is called the generalized Verma module associated with G,H, π, α, λ, b. One can
easily prove that Mα(λ, b) is α-stratified if and only if b �= (a + 1 + 2l)2 for all
l ∈ � (see also [3, Theorem 2.1]). We will denote by Lα(λ, b) the unique simple
quotient of Mα(λ, b). It is well-known that Mα(λ, b) has a composition series [3,

Theorem 2.8 (i)]. For λ ∈ H∗ we will write M(λ) for the Verma module with the
highest weight λ− � ([4, 7.1.4]) and L(λ) for its unique simple quotient.

3. Main theorem

Fix an analytic branch of the square root function satisfying the condition
√
1 = 1.

For arbitrary λ ∈ H∗ and b ∈ � set

f(λ, b) = λ− λ(Hα) +
√
b

α(Hα)
α.

Theorem 1. Suppose that Mα(λ, b) is α-stratified. Then the multiplicity
of Lα(µ, d) as a simple subquotient in a composition series ofMα(λ, b) equals the mul-

tiplicity of L(f(µ, d)) as a simple subquotient in a composition series of M(f(λ, b)).
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4. Proof of the main theorem

For u ∈ � consider the Gα-module

T (u) =
⊕

a∈�/2�

N(a, u)

and the corresponding induced module

MT (λ, u) = U(G)
⊗

U(D)

T (u).

A weight G-module V will be called normal provided X−α acts bijectively on V .
It follows from the definition of N(a, b) that MT (λ, b) is normal.

Lemma 1. Let V be a normal weight G-module and W a normal submodule

of V . Then the module V/W is normal.

�����. Since V is normal it follows that X−α acts surjectively on V/W .

Moreover, since W is normal it follows that the pre-image of any element from W is
contained in W and thus X−α acts injectively on V/W . Combining these results we

obtain that V/W is normal. �

Consider a normal G-module V . Let U(α) denote the localization of U(G) with re-
spect to the multiplicative set {Xn

−a | n ∈ �}. U(α) is well-defined by [7, Lemma 4.2].
Since V is normal, we can define the U(α)-module V (α) = U(α) ⊗U(G) V . By [7,
Lemma 4.3] there exists a unique polynomial extension {θx | x ∈ � } of the family
of automorphisms θx : U(α) → U(α), x ∈ � such that θx(v) = Xx

−αvX
−x
−α, x ∈ �.

For a U(α)-module W and x ∈ � we will denote by θx(W ) the U(α)-module which

is equal to W as a vector space and v ·w = θ(v)w for all v ∈ U(α), w ∈ W . Clearly,
one can consider any U(α)-module as a U(G)-module by restriction.

Set Pα =
{ ∑

β∈πα

zββ | zβ ∈ �

}
and P (α) = P + Pα. Let V be a weight G-module

and λ ∈ H∗. We will denote by V (λ) the direct summand
∑

µ∈λ+P (α)
Vµ of V . For

λ1, λ2 ∈ H∗ let x(λ1, λ2) denote the unique complex number such that λ2 − (λ1 +
x(λ1, λ2)α) belongs to Pα. A weight G-module V will be called α-homogeneous
provided V (λ2) � θx(λ1,λ2)V (λ1) for all λ1, λ2 ∈ H∗. It follows immediately from the

definition thatMT (λ, b) is α-homogeneous. One can easily see that the quotient of an
α-homogeneous module by an α-homogeneous submodule is again α-homogeneous.

Let V be an α-homogeneous G-module. By a solid structure on V we will mean

a family of linear maps ψ(y) = θ−1x(yα,0) ◦ ϕ(y) : V (0) → V (yα), y ∈ � , where ϕ(y),
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y ∈ � are isomorphisms of V (0), which can be chosen in an arbitrary way. If a

solid structure on V is given, V will be called a solid module. We will say that an
α-homogeneous submodule W of V is solid provided

W (λ1) = ψ(x(λ1, 0)) ◦ ψ−1(x(λ2, 0))(W (λ2)).

It follows immediately from the definition that MT (λ, b) can be viewed as a solid
α-homogeneous module (remark that the only automorphisms of the zero part

of MT (λ, b) are scalars by [3], hence all ϕ(y) are scalars). One can easily see that
the quotient of a solid α-homogeneous module by a solid α-homogeneous submodule

(whose solid structure is inherited from the big module) is again solid α-homogeneous.

Lemma 2. Let V be a solid α-homogeneous module and let W be a normal

submodule in V . Then the submodule Ŵ of V defined by

Ŵ (µ) =
∑

µ′∈H∗

ψ(x(µ, 0)) ◦ ψ−1(x(µ′, 0))(W (µ′)),

µ ∈ H∗ is the unique minimal solid normal α-homogeneous submodule containingW .

�����. Clearly, Ŵ is solid, α-homogeneous and contains W . It is normal

by the definition of θx. Its minimality follows directly from the construction. The
uniqueness follows from the solidness. �

The submodule Ŵ constructed in Lemma 2 will be called the α-homogeneous hat

of W . A G-module V is said to be simple normal if there are no non-trivial normal
G-submodules in V .

Lemma 3. Let V be a solid α-homogeneous G-module and let W be its simple

normal submodule. Let Ŵ be the α-homogeneous hat of W . Then Ŵ (µ) is simple
normal for any µ ∈ H∗.

�����. Since W is simple normal it follows that W =W (µ′) for some µ′ ∈ H∗.

Thus W (µ′) = ψ(x(µ′, 0)) ◦ ψ−1(x(µ, 0))(Ŵ (µ)). Suppose that Ŵ (µ) is not simple
normal and contains a non-trivial normal submodule, say N . Then ψ(x(µ′, 0)) ◦
ψ−1(x(µ, 0))(N) is a non-trivial normal submodule in W (µ′), which contradicts our
assumptions. �

Lemma 4. Let V be solid α-homogeneous and let W = W (µ), µ ∈ H∗, be a

normal submodule in V . Suppose that W has a composition series,

W =W0 ⊃W1 ⊃ . . . ⊃Wk = 0,
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such that all simple quotients W i =Wi/Wi+1, 0 � i � k, are normal. Let Ŵ be the

α-homogeneous hat of W . Then Ŵ has a filtration

Ŵ = Ŵ0 ⊃ Ŵ1 ⊃ . . . ⊃ Ŵk = 0,

such that each Ŵi is the α-homogeneous hat of Wi for all 0 � i � k. Moreover,

Ŵ i = Ŵi/Ŵi+1 is the α-homogeneous hat of W i in V/Ŵi+1 and Ŵ i(ξ) is simple
normal for all ξ ∈ H∗.

�����. Follows from Lemma 3 and Lemma 1 by trivial induction in k. �

Lemma 5. Suppose that W is simple normal. Then W contains the unique

subquotient N such that X−α acts injectively on N . Moreover, this subquotient is

a submodule of W .

�����. As any simple subquotient of W on which X−a acts injectively defines

some normal subquotient ofW , the first statement follows from the assumption that
W is simple normal. The second statement follows from the bijectivity of X−α. �

Now we are ready to prove our main theorem.

����� of Theorem 1. Consider the module MT (λ, b). Clearly, it is normal and
we can view it as a solid α-homogeneous module with respect to an arbitrary solid

structure. Consider its normal submodule Mα(λ, b). One can see that MT (λ, b) is
the α-homogeneous hat of Mα(λ, b). Let N = (MT (λ, b))(f(λ, b)). By Lemma 4

any composition series of Mα(λ, b) leads to a filtration of N with simple normal
subquotients. By Lemma 5 each simple normal subquotient of N has a unique

simple submodule on which X−α acts injectively. Clearly, this correspondence is
a bijection between the set of all simple subquotients of Mα(λ, b) and all simple

subquotients of M(f(λ, b)) on which X−α acts injectively. The rest follows from the
trivial observation that the module corresponding to Lα(µ, d) is exactly L(f(µ, d)).
Theorem 1 is proved. �
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