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1.

It is well-known ([5]) that, for a solution y(t) of

(1) y′′ + p(t)y = 0

with y(a) = 0 = y(b)(a < b) and y(t) �= 0, t ∈ (a, b), we have

(2) (b − a)
∫ b

a

|p(t)| dt > 4.

Clearly, this provides an implicit lower bound on the distance between the zeros a and
b of y. It can also be used to obtain a lower bound on the first positive eigen-value

of the Sturm-Liouville problem

y′′ + (p(t) + λq(t))y = 0,

y(a) = y(b) = 0.
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Further, the inequality (2) has found applications in the study of various properties

of solutions of (1) ([6, 8]).
In recent years, many authors have generalized this inequality in different direc-

tions. The inequality (2) has been generalized to second order nonlinear differential

equations by Eliason [2], to delay-differential equations of second order by Eliason
[3, 4] and by Dahiya and Singh [1], and to higher order ordinary differential equations

by Pachpatte [6]. However, the work in [6] is not applicable to third order differential
equations. In an earlier work [7], the authors obtained

(3) (b − a)2
∫ b

a

|p(t)| dt > 4

for a solution y(t) of

(4) y′′′ + p(t)y = 0

with y(a) = y(b) = 0(a < b) and y(t) �= 0, t ∈ (a, b), provided there exists a d ∈ [a, b]
such that y′′(d) = 0; otherwise,

(5) (a′ − a)2
∫ a′

a

|p(t)| dt > 4,

where a, b, a′ (a < b < a′) are consecutive zeros of y(t) such that y(t) �= 0 for
t ∈ (a, b) and y(t) �= 0 for t ∈ (b, a′). In [3], S. B. Eliason obtained a lower bound
for the distance between two consecutive zeros of a solution of the second order
delay-differential equation of the form

y′′(t) + p(t)|y(t)|µ sgn y(t) +m(t)|y(g(t))|ν sgn y(g(t)) = 0, t � 0,

where p and m are non-negative functions on [0,∞), µ > 0, ν > 0 and g is a strictly
increasing real-valued function on [0,∞).
In this paper we generalize the inequalities (3) and (5) to third order delay-

differential equations of the form

(6) y′′′(t) + p(t)|y(t)|µ sgn y(t) +m(t)|y(t− τ)|ν sgn y(t− τ) = 0,

where p, m ∈ C([0,∞),�), µ > 0, ν > 0 and τ � 0. For simplicity, we take t− τ in
place of g(t). If p(t) � 0 and m(t) � 0, then the bounds obtained in this paper are
better than (3) or (5). These bounds will be derived in Section 2. In Section 3, we
obtain such inequalities without any sign restriction on p and m.
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2.

Consider Eq. (6) with p(t) � 0 and m(t) � 0, t � 0. Let y(t) be a solution of (6)

with y(a) = y(b) = 0 and y(t) > 0 for t ∈ (a, b). This is called a ‘positive semi-cycle’
by Eliason [3]. Let y(t) � 0 on [a, b]−, where

[a, b]− = {t ∈ � : t � a and t � x− τ for some x ∈ [a, b]}.

The existence of such x ∈ [a, b] is obvious. For example, [a, b]− = [a − τ, a] if x = a

and [a, b]− = {a} if x = a+ τ . Let

y′(t∗) = max{y′(t) : t ∈ [a, b]}.

Hence t∗ ∈ [a, b) and y′(t∗) > 0. We consider two cases, viz. y′′(t∗) = 0 and

y′′(t∗) �= 0. It may be noted that t∗ ∈ (a, b) implies y′′(t∗) = 0. If t∗ = a, then
y′′(t∗) = 0 or y′′(t∗) �= 0. In the latter case, we consider two semi-cycles, viz. y(a′) =
y(a) = y(b) = 0 (a′ < a < b), y(t) < 0 for t ∈ (a′, a) and y(t) > 0 for t ∈ (a, b). Hence
there exist c1 ∈ (a′, a) and c2 ∈ (a, b) such that y′(c1) = y′(c2) = 0 and y′(t) > 0 for

t ∈ (c1, c2). Thus there exists a t1 ∈ (c1, c2) such that y′′(t1) = 0.

Theorem 2.1. (i) If t∗ ∈ (a, b), then

2 � (b − t∗)−1
{
[y′(t∗)]µ−1

∫ b

t∗
(b− θ)2(θ − a)µp(θ) dθ(7)

+ [y′(t∗)]ν−1
∫ B

A

(b− θ)2(θ − τ − a)νm(θ) dθ

}
,

where

A =





t∗, if a+ τ � t∗

a+ τ, if t∗ < a+ τ < b

b, if b � a+ τ

and B = b.

(ii) If t∗ = a is such that y′′(t∗) = 0, then (7) holds.

(iii) Let t∗ = a be such that y′′(t∗) �= 0. If c1 − a′ � τ , then (7) holds.

�����. (i) Integrating (6) from t∗ to t (t∗ < t � b) we obtain

y′′(t) +
∫ t

t∗
p(s)yµ(s) ds+

∫ t

t∗
m(s)|y(s− τ)|ν sgn y(s− τ) ds = 0.
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Further integration from t∗ to t yields

y′(t) = y′(t∗)−
∫ t

t∗
(t− θ)p(θ)yµ(θ)dθ

−
∫ t

t∗
(t− θ)m(θ)|y(θ − τ)|ν sgn y(θ − τ) dθ.

Integrating the above identity from t∗ to b, we get

0 > −y(t∗) = y′(t∗)(b − t∗)−
∫ b

t∗

( ∫ t

t∗
(t− θ)p(θ)yµ(θ) dθ

)
dt

−
∫ b

t∗

( ∫ t

t∗
(t− θ)m(θ)|y(θ − τ)|ν sgn y(θ − τ)dθ

)
dt,

that is,

(b− t∗)y′(t∗) <
1
2

∫ b

t∗
(b− θ)2p(θ)yµ(θ) dθ(8)

+
1
2

∫ b

t∗
(b − θ)2m(θ)|y(θ − τ)|ν sgn y(θ − τ) dθ.

We consider two cases, viz. a+ τ � b or a + τ < b. If a+ τ � b, then θ − τ < a for

t∗ < θ < b and hence
∫ b

t∗
(b − θ)2m(θ)|y(θ − τ)|ν sgn y(θ − τ)dθ � 0,

since y(t) � 0 on [a, b]−. Further,

∫ b

t∗
(b− θ)2m(θ)yν(aV (θ − τ))dθ = yν(a)

∫ b

t∗
(b− θ)2m(θ) dθ = 0,

where uV z = max{u, z}. Hence
∫ b

t∗
(b− θ)2m(θ)|y(θ − τ)|ν sgn y(θ − τ)dθ �

∫ b

t∗
(b− θ)2m(θ)yν(aV (θ − τ))dθ.

Let a+ τ < b. If a+ τ � t∗, then a � θ − τ and hence

∫ b

t∗
(b− θ)2m(θ)|y(θ − τ)|ν sgn y(θ − τ) dθ

=
∫ b

t∗
(b − θ)2m(θ)yν(θ − τ)dθ

=
∫ b

t∗
(b − θ)2m(θ)yν(aV (θ − τ)) dθ.
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If t∗ < a+ τ , then
∫ b

t∗
(b − θ)2m(θ)|y(θ − τ)|ν sgn y(θ − τ)dθ

=
∫ a+τ

t∗
(b− θ)2m(θ)|y(θ − τ)|ν sgn y(θ − τ)dθ

+
∫ b

a+τ

(b− θ)2m(θ)|y(θ − τ)|ν sgn y(θ − τ) dθ

�
∫ b

a+τ

(b− θ)2m(θ)yν(θ − τ)dθ

=
∫ b

a+τ

(b− θ)2m(θ)yν(aV (θ − τ)) dθ

=
∫ b

t∗
(b− θ)2m(θ)yν(aV (θ − τ)) dθ.

Thus from (8) we get

(b− t∗)y′(t∗) <
1
2

∫ b

t∗
(b− θ)2p(θ)yµ(θ) dθ(9)

+
1
2

∫ b

t∗
(b − θ)2m(θ)yν(aV (θ − τ)) dθ.

If a+ τ � t∗, then a+ τ < θ and hence
∫ b

t∗
(b − θ)2m(θ)yν(aV (θ − τ)) dθ =

∫ B

A

(b− θ)2m(θ)yν(θ − τ) dθ.

If t∗ < a+ τ < b, then
∫ b

t∗
(b− θ)2m(θ)yν(aV (θ − τ)) dθ =

∫ a+τ

t∗
(b − θ)2m(θ)yν(aV (θ − τ)) dθ

+
∫ b

a+τ

(b− θ)2m(θ)yν(aV (θ − τ)) dθ

= yν(a)
∫ a+τ

t∗
(b− θ)2m(θ) dθ +

∫ b

a+τ

(b − θ)2m(θ)yν(θ − τ) dθ

=
∫ b

a+τ

(b− θ)2m(θ)yν(θ − τ) dθ =
∫ B

A

(b− θ)2m(θ)yν(θ − τ) dθ.

If b � a+ τ , then
∫ b

t∗
(b− θ)2m(θ)yν(aV (θ − τ))dθ = yν(a)

∫ b

t∗
(b− θ)2m(θ) dθ

= 0 =
∫ B

A

(b− θ)2m(θ)yν(θ − τ) dθ.
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Hence (9) yields

(b − t∗)y′(t∗) <
1
2

∫ b

t∗
(b − θ)2p(θ)yµ(θ) dθ

+
1
2

∫ B

A

(b− θ)2m(θ)yν(θ − τ) dθ

=
1
2

∫ b

t∗
(b − θ)2p(θ)

[ ∫ θ

a

y′(s) ds

]µ

dθ

+
1
2

∫ B

A

(b− θ)2m(θ)

[ ∫ θ−τ

a

y′(s) ds

]ν

dθ

� 1
2
[y′(t∗)]µ

∫ b

t∗
(b− θ)2p(θ)(θ − a)µ dθ

+
1
2
[y′(t∗)]ν

∫ B

A

(b− θ)2m(θ)(θ − τ − a)ν dθ,

that is,

2 < (b − t∗)−1
{
[y′(t∗)]µ−1

∫ b

t∗
(b− θ)2p(θ)(θ − a)µ dθ

+ [y′(t∗)]ν−1
∫ B

A

(b− θ)2m(θ)(θ − τ − a)ν dθ

}
.

Hence the first part of the theorem is proved.

(ii) In this case the proof is similar and hence is omitted.

(iii) We claim that t1 /∈ (a, c2). If not, then a < t1 < c2. If y′′(t) < 0 for t ∈ (a, t1)
and y′′(t) < 0 for t ∈ (t1, c2), then y′′′(t1) = 0, a contradiction. Hence y′′(t) > 0

for t ∈ (a, t1). Since y′(t) is increasing in (a, t1), we have y′(t1) > y′(a) = y′(t∗),
a contradiction due to the definition of y′(t∗). Then our claim holds. Hence t1 ∈
(c1, a]. The case t1 = a = t∗ has been discussed earlier. Thus we take t1 ∈ (c1, a).
Integrating (6) from t1 to t (a < t � b) we obtain

y′′(t) +
∫ a

t1

[p(s)|y(s)|µ sgn y(s) +m(s)|y(s− τ)|ν sgn y(s− τ)] ds

+
∫ t

a

[p(s)yµ(s) +m(s)|y(s− τ)|ν sgn y(s− τ)] ds = 0.

Since c1 − a′ � τ , we have

y′′(t) +
∫ t

a

[p(s)yµ(s) +m(s)|y(s− τ)|ν sgn y(s− τ)] ds > 0.
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Integrating the above inequality from a to t (a < t � b) we obtain

y′(t) > y′(a)−
∫ t

a

(t− s)[p(s)yµ(s) +m(s)|y(s− τ)|ν sgn y(s− τ)] ds.

Further integration from a to b yields

(b− a)y′(a) <
1
2

∫ b

a

(b − s)2[p(s)yµ(s) +m(s)|y(s− τ)|ν sgn y(s− τ)] ds.

Since a = t∗, then proceeding as in case (i) of the proof we obtain (7). Thus the
theorem is proved. �

Remark 1. If we consider a negative semi-cycle, viz. y(a) = 0 = y(b), y(t) < 0

for t ∈ (a, b), then we get

2 � (b− t∗)−1
{
|y′(t∗)|µ−1

∫ b

t∗
(b− s)2(s− a)µp(s) ds

+ |y′(t∗)|ν−1
∫ B

A

(b− s)2(s− τ − a)νm(s) ds

}
,

where A and B are the same as in (7). In this case, we assume y(t) � 0 on [a, b]−

and y′(t∗) = min{y′(t) : t ∈ [a, b]}.

Thus a � t∗ < b and y′(t∗) < 0.

Remark 2. If A = b, then
∫ B

A
m(θ) dθ = 0. If p(t) ≡ 0 in this case, then the

inequality (7) does not hold.

Remark 2′. In the case of second order delay equations it is possible (see [3,
p. 184]) to predict the location of t∗ in some situations. However, such a prediction
is not possible in the case of third order delay equations.

Remark 3. For an equation of the form

(10) y′′′(t) + q(t)y′(t) + p(t)|y(t)|µ sgn y(t) +m(t)|y(t− τ)|ν sgn y(t− τ) = 0,

where p, m, µ, ν and τ are the same as in (6) and q ∈ C([0,∞),�), we may have a
theorem similar to Theorem 2.1. Indeed, if p(t) � 0, q(t) � 0 and m(t) � 0, then
the following theorem holds.
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Theorem 2.2. (i) If t∗ ∈ (a, b), then

2 � (b− t∗)−1
{ ∫ b

t∗
(b− s)2q(s) ds(11)

+ [y′(t∗)]µ−1
∫ b

t∗
(b− s)2(s− a)µp(s) ds

+ [y′(t∗)]ν−1
∫ B

A

(b− s)2(s− τ − a)νm(s) ds

}
,

where A and B are the same as in (7).

(ii) If t∗ = a is such that y′′(t∗) = 0, then (11) holds.

Remark 4. A result similar to Theorem 2.1 (iii) does not hold for (10) since
y′(t) > 0 for t ∈ (c1, a].

In the sequel we consider the ‘positive left-quarter cycle case’, viz. y(a) = 0,
y′(c) = 0 and y(t) > 0 for t ∈ (a, c], where y(t) is a solution of (6). We continue to

assume that p(t) � 0 and m(t) � 0. Let y(t) � 0 for t ∈ [a, c]−, where

[a, c]− = {t ∈ � : t � a and t � x− τ for some x ∈ [a, c]}.

Let y′(t∗) = max{y′(t) : a � t � c}. Hence a � t∗ < c and y′(t∗) > 0. If t∗ ∈ (a, c),

then y′′(t∗) = 0. If t∗ = a is such that y′′(t∗) �= 0, then we consider a negative
semi-cycle left to the positive quarter cycle, viz. y(a′) = y(a) = 0, y(t) < 0 for

t ∈ (a′, a), y′(c) = 0 and y(t) > 0 for t ∈ (a, c], where a′ < a < c. Then there exists a
c1 ∈ (a′, a) such that y′(c1) = 0. Hence there is t1 ∈ (c1, c) such that y′′(t1) = 0. As

in ‘semi-cycle’ case, we can show that t1 ∈ (c1, a]. We have the following theorem,

Theorem 2.3. (i) If t∗ ∈ (a, c), then

(12) 1 � [y′(t∗)]µ−1
∫ c

t∗
(c−t)(t−a)µp(t) dt+[y′(t∗)]ν−1

∫ B

A

(c−t)(t−τ−a)νm(t) dt,

where

A =





t∗, if a+ τ � t∗

a+ τ if t∗ < a+ τ < c

c, if c � a+ τ

and B = c.

(ii) If t∗ = a is such that y′′(t∗) = 0, then (12) holds.

(iii) Let t∗ = a be such that y′′(t∗) �= 0. If c1 − a′ � τ , then (12) holds.
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�����. (i) Integrating (6) successively, first from t∗ to t (t∗ < t < c) and then

from t∗ to c, we obtain

y′(t∗) =
∫ c

t∗
(c− t)p(t)yµ(t) dt+

∫ c

t∗
(c− t)m(t)|y(t− τ)|ν sgn y(t− τ) dt.

If a+ τ � c, then

∫ c

t∗
(c− t)m(t)|y(t− τ)|ν sgn y(t− τ) dt � 0 =

∫ c

t∗
(c− t)m(t)yν(aV (t− τ)) dt.

Let a+ τ < c. If a+ τ � t∗, then

∫ c

t∗
(c− t)m(t)|y(t − τ)|ν sgn y(t− τ) dt =

∫ c

t∗
(c− t)m(t)yν(t− τ) dt

=
∫ c

t∗
(c− t)m(t)yν(aV (t− τ)) dt.

If a+ τ > t∗, then

∫ c

t∗
(c− t)m(t)|y(t− τ)|ν sgn y(t− τ) dt �

∫ c

a+τ

(c− t)m(t)yν(t− τ) dt

=
∫ c

a+τ

(c− t)m(t)yν(aV (t− τ)) dt

=
∫ c

t∗
(c− t)m(t)yν(aV (t− τ)) dt.

Hence

(13) y′(t∗) �
∫ c

t∗
(c− t)p(t)yµ(t) dt+

∫ c

t∗
(c− t)m(t)yν(aV (t− τ)) dt.

Proceeding as in the proof of Theorem 2.1 (i), we can show that

∫ c

t∗
(c− t)m(t)yν(aV (t− τ)) dt =

∫ B

A

(c− t)m(t)yν(t− τ) dt.

Thus (13) yields

y′(t∗) �
∫ c

t∗
(c− t)p(t)

( ∫ t

a

y′(s) ds

)µ

dt+
∫ B

A

(c− t)m(t)

( ∫ t−τ

a

y′(s) ds

)ν

dt

� [y′(t∗)]µ
∫ c

t∗
(c− t)p(t)(t − a)µ dt+ [y′(t∗)]ν

∫ B

A

(c− t)m(t)(t− τ − a)ν dt.
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That is,

1 � [y′(t∗)]µ−1
∫ c

t∗
(c− t)(t− a)µp(t) dt+ [y′(t∗)]ν−1

∫ B

A

(c− t)(t− τ − a)νm(t) dt.

Hence the proof of part (i) is complete. The proof of part (ii) is similar to that

of part (i). One may proceed as in the proof of Theorem 2.1 (iii) to complete the
present proof. �

Remark 5. For a negative left-quarter cycle, that is, when y(a) = 0, y′(c) = 0
and y(t) < 0, t ∈ (a, c], one gets

(14) 1 � |y′(t∗)|µ−1
∫ c

t∗
(c−t)(t−a)µp(t) dt+|y′(t∗)|ν−1

∫ B

A

(c−t)(t−τ−a)νm(t) dt,

where A and B are the same as in (12) and

y′(t∗) = min{y′(t) : a � t � c}.

Here we assume y(t) � 0, t ∈ [a, c]−.

Remark 6. If p(t) ≡ 0 and A = c, then (12) fails to hold.

Example 1. Consider

y′′′(t) + 2y(t) + 2e�/2y
(
t− �

2

)
= 0.

Clearly, y(t) = et sin t is a solution of the equation with y(0) = 0, y(�) = 0, y(t) � 0
for t ∈ (0, �] and y(t) � 0 for t ∈ [−�, 0] = [0, �]−. Since here t∗ = �

2 and a+ τ = �

2 ,

we have A = �

2 and B = �. Further, t∗ ∈ (0, �) implies that y′′(t∗) = 0. Clearly,

(
�− �

2

)−1{∫
�

�/2
2(�− s)2s ds+

∫
�

�/2
2(�− s)2

(
s− �

2

)
e�/2 ds

}
=

�
3

48
(5 + e�/2) > 2.

Thus (7) is verified.

Example 2. Clearly, y(t) = et cos t is a solution of

y′′′(t) + 2y(t) + 2e5�/2y
(
t− 5�
2

)
= 0

with y(− �

2 ) = y(�2 ) = 0 and y(t) > 0 for − �

2 < t < �

2 . Here t∗ = 0 ∈ (− �

2 ,
�

2 ) and
a + τ = 2� > �

2 and hence A = B = �

2 . Thus the second integral of (7) is zero.
Clearly,

2
�

∫
�/2

0
2
(
�

2
− θ

)2(
θ +

�

2

)
dθ =

5�3

48
> 2

and hence (7) is true.
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3.

In this section we apply another technique to obtain a lower bound of the distance
between two or three consecutive zeros of a solution of (6). We do not assume that

p(t) and m(t) are non-negative functions. However, the bound obtained in Section 2
is better than the bound obtained in this section. There are several instances where

the analysis of Section 2 fails while the results of this section can be applied. These
remarks will be illustrated through suitable examples.

Let y(t) be a solution of (6) with y(a) = y(b) = 0 (a < b) and y(t) �= 0 for
a < t < b. In some cases it is possible to find a d ∈ [a, b] such that y′′(d) = 0.

If y′′(t) �= 0 for t ∈ [a, b], then we consider three consecutive zeros of y(t), viz.
y(a) = y(b) = y(a′) = 0 (a < b < a′) and y(t) �= 0 for t ∈ (a, b) ∪ (b, a′). Then there
exist c1 ∈ (a, b) and c2 ∈ (b, a′) such that y′(c1) = y′(c2) = 0. Hence we can find
d ∈ (c1, c2) such that y′′(d) = 0. Since y′′(t) �= 0 for t ∈ [a, b], we have d ∈ (b, c2).
Thus we consider two cases, viz. y′′(d) = 0 for some d ∈ [a, b] and y′′(t) �= 0 for
t ∈ [a, b].

Theorem 3.1. (i) If there exists a d ∈ [a, b] such that y′′(d) = 0, then

∫ b

a

[|p(t)|+ |m(t)|] dt � 4M1

L(b− a)2
,

where M1 = max{|y(t)| : a � t � b} and L = max{Mµ
1 , Mν

2 } and M2 = max{|y(t)| :
a− τ � t � b}.
(ii) If y′′(t) �= 0 for t ∈ [a, b], then

∫ a′

a

[|p(t)|+ |m(t)|] dt � 4M3

M(b− a)2
,

where M3 = max{|y(t)| : a � t � a′}, M = max{Mµ
3 , Mν

4 } and

M4 = max{|y(t)| : a− τ � t � a′}.

�����. (i) There exists c ∈ (a, b) such that M1 = |y(c)|. Since

M1 =

∣∣∣∣
∫ c

a

y′(t) dt

∣∣∣∣ �
∫ c

a

|y′(t)| dt

and

M1 =

∣∣∣∣
∫ b

c

y′(t) dt

∣∣∣∣ �
∫ b

c

|y′(t)| dt,
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then

2M1 �
∫ b

a

|y′(t)| dt.

Hence, using the Cauchy-Schwarz inequality, we obtain

4M2
1 �

( ∫ b

a

|y′(t)| dt
)2

� (b− a)
∫ b

a

(y′(t))2 dt = −(b− a)
∫ b

a

y(t)y′′(t) dt

� (b− a)
∫ b

a

|y(t)||y′′(t)| dt,(15)

where integration by parts is performed. Integrating (6) from d to t if d < t or from
t to d if t < d, we obtain

y′′(t) = −
∫ t

d

p(s)|y(s)|µ sgn y(s) ds−
∫ t

d

m(s)|y(s− τ)|ν sgn y(s− τ) ds.

Thus

|y′′(t)| �
∣∣∣∣
∫ t

d

|p(s)||y(s)|µ ds
∣∣∣∣+

∣∣∣∣
∫ t

d

|m(s)||y(s− τ)|ν ds
∣∣∣∣

� Mµ
1

∫ b

a

|p(t)| dt+Mν
2

∫ b

a

|m(t)| dt � L

∫ b

a

[|p(t)|+ |m(t)|] dt.

Hence (15) yields

4M2
1 � (b− a)2M1L

∫ b

a

[|p(t)|+ |m(t)|] dt,

that is, ∫ b

a

[|p(t)|+ |m(t)|] dt � 4M1

L(b− a)2
.

Thus part (i) of the theorem is proved.
(ii) In this case, there exists a d ∈ (b, c2) such that y′′(d) = 0. Clearly, there is a

c ∈ (a, b) ∪ (b, a′) such that M3 = |y(c)|. Proceeding as in part (i) of the proof, we
obtain

4M2
3 � (a′ − a)

∫ a′

a

|y(t)||y′′(t)| dt

and

|y′′(t)| � M

∫ a′

a

[|p(t)|+ |m(t)|] dt.

The required inequality is obtained from these two inequalities. Hence part (ii) of
the theorem is proved. �
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Remark 7. For Eq. (10) we get the following bounds:

(i) If y′′(d) = 0 for some d ∈ [a, b], then

4M1 � (b− a)2
[
Mµ
1

∫ b

a

|p(t)| dt+Mν
2

∫ b

a

|m(t)| dt+ 2M1q1 +M1

∫ b

a

|q′(t)| dt
]
,

where q1 = max{|q(t)| : t ∈ [a, b]} and M1, M2 are the same as in Theorem 3.1 (i).

(ii) If y′′(t) �= 0 for t ∈ [a, b], then

4M3 � (a′ − a)2
[
Mµ
3

∫ a′

a

|p(t)| dt+Mν
4

∫ a′

a

|m(t)| dt+ 2M3q2 +M3

∫ a′

a

|q′(t)| dt
]

where q2 = max{|q(t)| : a � t � a′} and M3, M4 are the same as in Theorem 3.1
(ii).

Example 3. Consider

y′′′ + y = 0, t � 0.

Clearly, u(t) = et/2 cos
√
3
2 t is a solution of the equation with zeros given by

tn =
2√
3

(2n− 1)�
2

, n = 1, 2, . . .

For a = �√
3
and b = 3�√

3
, we notice that u(t) < 0 for t ∈ (a, b) and

u′
( 5�
3
√
3

)
= min

{
u′(t) :

�√
3

� t � 3�√
3

}
.

Since �√
3

< 5�
3
√
3

< 3�√
3
, we have u′′( 5�

3
√
3
) = 0. From Theorem 3.1 (i) it follows that

(b− a)3 � 4 or b− a � (4)1/3.

However, from Theorem 2.1 (i) (see Remark 1) we obtain

2 � 3
√
3
4�

∫ 3�/
√
3

5�/3
√
3

( 3�√
3
− s

)2(
s− �√

3

)
ds =

16�3

81
√
3
.

Thus 2�√
3

� 3, that is, (b − a) � 3.

Hence the bound obtained by applying Theorem 2.1 (i) is better than the corre-
sponding bound obtained by applying Theorem 3.1 (i).
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Example 4. Clearly, y(t) = sin t is a solution of the equation

y′′′ + y′ = 0

with y(0) = 0, y(�) = 0, y(t) > 0 for t ∈ (0, �). As

y′(0) = max{y′(t) : 0 � t � �}

and y′′(0) = 0, from Theorem 2.2 (ii) we obtain

2 � 1
�

∫
�

0
(�− s)2 ds =

�
2

3
.

Hence b − a = � >
√
6. On the other hand, from Remark 7 (i) one gets 4 < 2�2 or

b− a = � >
√
2. Clearly, b− a >

√
6 >

√
2.

However, there are occasions when we fail when applying the analysis of Section 2
but the results of Section 3 can be applied.

Example 5. Consider

y′′′(t) + y
(
t− 3�
2

)
= 0, t � 0.

We may see that y(t) = sin t is a solution of the equation with y(0) = y(�) = 0,
y(t) > 0 for t ∈ (0, �) and y(t) < 0 for t ∈ (−�, 0). Clearly, y′(0) = max{y′(t) : 0 �
t � �} and y′′(0) = 0. Theorem 2.1 (ii) cannot be applied since a+τ = 0+ 3�2 > � = b

and hence A = B = � (see Remark 2). However, by Theorem 3.1 (i), we get

∫
�

0
dt � 4

�
2
, that is, � > (4)1/3, which is true.

Example 6. No result of Section 2 can be applied to

y′′′(t)− y
(
t− �

2

)
= 0, t > 0,

since m(t) < 0. Clearly, y(t) = cos t is a solution of the equation with y(− �

2 ) =

y(�2 ) = 0, y(t) > 0 for t ∈ (− �

2 ,
�

2 ) and y′′(− �

2 ) = 0. From Theorem 3.1 (i) it follows
that ∫

�/2

−�/2
dt � 4

�
2
, that is, � > (4)1/3.

Remark 8. The distribution of zeros of solutions of second order differential
equations was discussed in [8] and of third order differential equations in [7]. However,

for higher order and delay-differential equations, the nature of distributions of zeros
of solutions is not known.
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