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Abstract. In this paper we investigate the relations between torsion classes of Specker
lattice ordered groups and torsion classes of generalized Boolean algebras.
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Specker lattice ordered groups have been investigated by Conrad and Darnel [3],

[4], [5], and by Conrad and Martinez [7]. Below we write “Specker group” instead of
“Specker lattice ordered group”.

The notion of a torsion class of lattice ordered groups was introduced by Mar-
tinez [13].

In [5] it was proved that the class SG of all Specker groups is a torsion class of
lattice ordered groups.

Radical classes of generalized Boolean algebras were studied in [11]. Let Y be a
radical class of generalized Boolean algebras; we define Y to be a torsion class of

generalized Boolean algebras if it is closed with respect to homomorphic images.
We denote by T s the collection of all torsion classes X of lattice ordered groups

such that X ⊆ SG. Further, let T b be the collection of all torsion classes of general-
ized Boolean algebras.

In the present paper we show that there exists a one-to-one mapping ϕ0 of T s

onto T b such that, whenever X1, X2 ∈ T s, then

X1 ⊆ X2 ⇔ ϕ0(X1) ⊆ ϕ0(X2).

Further, we prove that T s is a large collection (in the sense that there exists an

injective mapping of the class of all infinite cardinals into T s).
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1. Preliminaries

For the sake of completeness we recall some relevant definitions.

We denote by G the class of all lattice ordered groups. Let G ∈ G. An element
0 < s ∈ G is called singular if x ∧ (s − x) = 0 whenever 0 � x � s. The set of all

singular elements of G is denoted by S(G); further, we put S0(G) = S(G) ∪ {0}.
Then S0(G) is a sublattice of the lattice G+.

A lattice ordered group G is a Specker group if G is generated as a group by the

set S(G). (Cf. [6].)

For each G ∈ G let C(G) be the system of all convex �-subgroups of G; this system
is partially ordered by the set-theoretical inclusion. Then C(G) is a complete lattice.

A torsion class of lattice ordered groups is defined to be a nonempty subclass X
of G such that
(i) X is closed with respect to homomorphisms;
(ii) if G1 ∈ X and G2 ∈ C(G1), then G2 ∈ X ;
(iii) if G ∈ G and {Gi}i∈I ⊆ C(G) ∩X , then ∨

i∈I

Gi ∈ X .

If X is a nonempty subclass of G which is closed with respect to isomorphisms and
satisfies the conditions (ii), (iii), then X is called a radical class of lattice ordered
groups (cf. [10]).

A lattice L is a generalized Boolean algebra if it has the least element 0 and if for
each x ∈ L, the interval [0, x] of L is a Boolean algebra.
Let B be the class of all generalized Boolean algebras. For each B ∈ B, the

system J(B) of all ideals of B (partially ordered by the set-theoretical inclusion) is
a complete lattice.

The torsion class of generalized Boolean algebras is defined by conditions which
are analogous to the conditions (i), (ii), (iii) above with the distinction that G and

C(G1) are replaced by B and J(B1).

A nonempty subclass Y of B which is closed with respect to isomorphisms and
satisfies the conditions analogous to (ii) and (iii) (in the above specified sense) is

called a radical class of generalized Boolean algebras.

2. Auxiliary results

For lattice ordered groups we apply the notation as in Birkhoff [1] and Conrad [2].

It is well-known that an element 0 < s of a lattice ordered group G belongs to
S(G) if and only if the interval [0, s] of G is a Boolean algebra.

The following lemma is easy to verify (cf. also [5]).
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Lemma 2.1. Let G be a Specker group. Then S0(G) is a generalized Boolean
algebra.

The following result is known (cf. [4], Proposition 2.6). Let us remark that a simple
alternative proof of 2.2 can be performed by applying Carathéodory functions (for

this notion, cf. Gofman [8] and the author [9], [12]).

Lemma 2.2. Let B be a generalized Boolean algebra. There exists a Specker
group G such that B = S0(G).

Let G ∈ G. An indexed system (ai)i∈I of elements of G+ is called disjoint if

ai(1) ∧ ai(2) = 0 whenever i(1) and i(2) are distinct elements of I.
Let Z be the additive group of all integers. If G ∈ G, x ∈ G and if 0 is the

neutral element of Z, then we define 0x to be the neutral element of G. (We do not
distinguish typographically the neutral element of G and the neutral element of Z;

from the context it will be clear which of these elements is taken into consideration.)
From [5], Proposition 1.2 we obtain

Lemma 2.3. The following conditions for G are equivalent:

(i) G is a Specker group.
(ii) For each 0 �= x ∈ G there exist a disjoint system (xi) (i = 1, 2, . . . , n) of

elements of S(G) and integers αi (i = 1, 2, . . . , n) such that

(1) x = α1x1 + α2x2 + . . .+ αnxn.

Under the notation as in 2.3 we say that (1) is a representation of the element x.

A simple calculation yields

Lemma 2.4. Let (1) be a representation of an element x of a Specker group G.
Then x > 0 if and only if αi > 0 for i = 1, 2, . . . , n. Further, x ∈ S(G) if and only if
αi ∈ {0, 1} for each i = 1, 2, . . . , n and if there is i ∈ {1, 2, . . . , n} with αi �= 0.
Let us extend the definition of the representation so that for x = 0 we consider

(1) to be a representation of x if αi = 0 (i = 1, 2, . . . , n). Moreover, for any x ∈ G

the relation xi = 0 for some i ∈ {1, 2, . . . , n} will be also allowed.

Lemma 2.5. Let x and y be elements of a Specker group G. Then there exist
t1, t2, . . . , tk ∈ S(G) and integers γ1, γ2, . . . , γk, γ′1, γ

′
2, . . . , γ

′
k such that x and y have

representations

x = γ1t1 + γ2t2 + . . .+ γktk,

y = γ′1t1 + γ
′
2t2 + . . .+ γ

′
ktk.
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�����. In view of 2.3 there exist representations

x = α1x1 + α2x2 + . . .+ αnxn,

y = β1y1 + β2y2 + . . .+ βmym.

Denote
v =

(∨
xi

)
∨

(∨
yj

)

with i = 1, 2, . . . , n and j = 1, 2, . . . ,m. Hence v belongs to S0(G). Thus [0, v] is a

Boolean algebra.
Let xn+1 be the complement of the element x1 ∨ x2 ∨ . . . ∨ xn in the Boolean

algebra [0, v] and let ym+1 be defined analogously. We put

I = {1, 2, . . . , n+ 1}, J = {1, 2, . . . ,m+ 1}, αn+1 = 0 = βm+1.

Hence we have representations

x =
∑

i∈I

αixi, y =
∑

j∈J

βjyj.

Denote xi ∧ yj = zij for i ∈ I and j ∈ J . We obtain

v =
∨

i∈I

xi =
∨

j∈J

yj ,

whence for each i ∈ I we have

xi = xi ∧ v = xi ∧
(∨

j∈J

yj

)
=

∨

j∈J

(xi ∧ yj)

=
∨

j∈J

zij =
∑

j∈J

zij ,

since the indexed system (zij)j∈J is disjoint. Analogously,

yj =
∑

i∈I

zij .

Therefore we get

x =
∑

i∈I,j∈J

αizij ,(2)

y =
∑

i∈I,j∈J

βizij ,(3)

and (2), (3) are representations of x and y, respectively. This completes the proof.
�
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Let B be a generalized Boolean algebra and let A be an ideal of B. In view of 2.2

there exists a Specker group G such that S0(G) = B. We denote by G1 the set of all
x ∈ G for which there exists a representation (1) such that xi ∈ A for i = 1, 2, . . . , n.

Lemma 2.6. G1 is a convex �-subgroup of G and S0(G1) = A.

�����. a) Let 0 < x ∈ G1 and y ∈ G, 0 < y � x. We can assume that (1)

is a representation of x and that xi ∈ A for i = 1, 2, . . . , n. Further, in view of 2.4,
αi � 0 for i = 1, 2, . . . , n.
There exists a representation of the element y having the form

y = β1y1 + β2y2 + . . .+ βmym

with yj ∈ S(G) and βj > 0 for j = 1, 2, . . . ,m.

Consider the element y1. Put

x0 = x1 + x2 + . . .+ xn = ∨xi (i = 1, 2, . . . , n),

k = max{α1, α2, . . . , αn}.

We have y1 � x, whence y1 � kx0. Further, x0 ∈ A.
In view of the Riesz decomposition property (cf., e.g., Conrad [2], p. 0,19) there

are y11, y12, . . . , y1k ∈ G such that 0 � y1t � x0 for t = 1, 2, . . . , k and

y1 = y11 + y12 + . . .+ y1k.

The relation y1 ∈ S(G) yields that the system (y1t) (t = 1, 2, . . . , k) is disjoint. Thus

y1 = y11 ∨ y12 ∨ . . . ∨ y1k � x0.

Hence y1 ∈ A. Similarly, y2, . . . , ym ∈ A. We conclude that y ∈ G1.
b) If x ∈ G and if x has a representation (1), then −x has the representation

−x = (−α1)x1 + . . .+ (−αn)xn.

Hence if x belongs to G1, then −x belongs to G1 as well.
c) Let x and y be elements of G1. We apply the same notation as in the proof of

2.5 and we can assume that all xi and all yj belong to A. Then all zij belong to A.
From (2) and (3) we conclude that x+ y has the representation

x+ y =
∑

i∈I,j∈J

(αi + βj)zij .

Thus x+ y ∈ G1.
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Let i ∈ I and j ∈ J . Put

γij = min{αi, βj}, δij = max{αi, βj}.

Then

x ∧ y =
∑

i∈I,j∈J

γijzij ,

x ∨ y =
∑

i∈I,j∈J

δijzij ,

whence x ∧ y, x ∨ y ∈ G1. Therefore in view of b), G1 is an �-subgroup of G. This
fact and a) yield that G1 is a convex �-subgroup of G.

d) The relation A ⊆ S0(G1) is obviously valid. Let 0 < x ∈ S0(G1). We apply the
notation as above. We can assume that xi > 0 and αi > 0 for i = 1, 2, . . . , n.

Since x is singular, the system (αixi) (i = 1, 2, . . . , n) is disjoint and all αixi belong

to S(G). In view of 2.4, αi = 1 for i = 1, 2, . . . , n. Hence

x = x1 + x2 + . . .+ xn = x1 ∨ x2 ∨ . . . ∨ xn ∈ A.

�

The following result is well-known.

Lemma 2.7. Let G ∈ G and let {Gi}i∈I be a nonempty system of elements

of C(G). Put H =
∨
i∈I

Gi. Then H is the set of all elements h ∈ G which can be

expressed in the form

h = h1 + h2 + . . .+ hn,

where hj ∈
⋃
i∈I

Gi for each j ∈ {1, 2, . . . , n}. If h > 0, then there are hi with the

mentioned property such that hj > 0 for j = 1, 2, . . . , n.

Lemma 2.8. Let B ∈ B and let {Ai}i∈I be a nonempty system of elements

of J(B). Put A =
∨
i∈I

Ai. Then A is the set of all elements a ∈ B which can be

expressed in the form

a = a1 ∨ a2 ∨ . . . ∨ an,

where aj ∈
⋃
i∈I

Ai for each j ∈ {1, 2, . . . , n}.

The proof is simple and will be omitted.
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Lemma 2.9. Let G ∈ G, Gi ∈ C(G) (i ∈ I),
∨
i∈I

Gi = H , Bi = S0(Gi). Then

S0(H) =
∨
i∈I

Bi, where
∨
i∈I

Bi is taken with respect to the lattice J(S0(G)).

�����. Let i ∈ I. We have Gi ∈ C(G). From this relation we infer that

S0(Gi) = S0(H) ∩Gi,

whence Bi ⊆ S0(H). From this and from the fact that S0(H) is an ideal of S0(G)
we obtain ∨

i∈I

Bi ⊆ S0(H).

Let 0 < h ∈ S0(H). Then in view of 2.7 there are h1, h2, . . . , hk ∈
⋃
i∈I

Gi such

that 0 < ht (t = 1, 2, . . . , k) and h = h1 + h2 + . . .+ hk. Since h is singular in G all

h1, h2, . . . , hk are singular in G, hence for each t ∈ {1, 2, . . . , k} there is i(t) ∈ I such
that ht ∈ S0(Gi(t)) = Bi(t). Moreover, the system (ht)t=1,2,...,k is disjoint. Thus

h = h1 ∨ h2 ∨ . . . ∨ hk.

Therefore h ∈ ∨
i∈I

Bi. �

3. The mapping ϕ

For each Specker group G we put

ϕ(G) = S0(G).

From 2.3 we conclude

Lemma 3.1. If G1 and G2 are Specker groups such that ϕ(G1) is isomorphic to
ϕ(G2), then G1 and G2 are isomorphic.

Let Ks and Kb be the collection of all nonempty classes of Specker groups or of

generalized Boolean algebras, respectively. For each X ∈ Ks we put

(1) ϕ(X) = {ϕ(G) : G ∈ X} = Y.

Hence ϕ is a mapping of Ks into Kb.
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Lemma 3.1.1. ϕ is a one-to-one mapping of Ks onto Kb such that, if X1, X2 ∈
Ks, then

(2) X1 ⊆ X2 ⇔ ϕ(X1) ⊆ ϕ(X2).

�����. In view of 2.2, ϕ is an epimorphism, and according to 3.1, ϕ is a
monomorphism. The validity of (2) is then obvious. �

Let X and Y be as in (1). If X satisfies the condition (ii) from Section 1 then

we say that it is closed with respect to convex �-subgroups. Under the analogous
assumption on Y we say that Y is closed with respect to ideals.

If the condition (iii) from Section 1 is fulfilled for X then X is said to be closed
under joins; the same term will be applied for Y under the analogous assumption.

Lemma 3.2. Let X ∈ Ks, Y = ϕ(X). Then the following conditions are

equivalent:

(i) X is closed with respect to convex �-subgroups;
(ii) Y is closed with respect to ideals.

�����. a) Assume that (i) is valid. Let B ∈ Y and let A be an ideal of B.

There exists G ∈ X with B = S0(G). Let G1 be as in 2.6. Then G1 ∈ X , hence
S0(G1) ∈ Y . In view of 2.6, S0(G1) = A. Therefore (ii) holds.
b) Suppose that the condition (ii) is satisfied. Let G ∈ X and G1 ∈ C(X). Then

S0(G1) = S0(G) ∩G1,

whence S0(G1) is an ideal of S0(G). Thus S0(G1) belongs to Y . Therefore G1 is an

element of X . This yields that the condition (i) is valid. �

The following assertions 3.3 and 3.4 slightly sharpen some results of [12], Section 3;

in fact, several steps in the proofs are the same.

Lemma 3.3. Let X ∈ Ks be closed with respect to convex �-subgroups, Y =

ϕ(X). Then the following conditions are equivalent:

(i) X is closed under joins;

(ii) Y is closed under joins.

�����. a) Let (i) be valid. Let B be a generalized Boolean algebra and let
{Bi}i∈I be a nonempty subset of J(B) such that all Bi belong to Y .

In view of 2.2 there is a Specker group G such that S0(G) = B. Further, according
to 2.9, for each Bi there is Gi ∈ C(G) with S0(Bi) = Gi. Hence Gi ∈ X for each
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i ∈ I. The condition (i) yields that the lattice ordered group H = ∨
i∈I

Gi belongs to

X . Now from 2.9 we conclude that
∨
i∈I

Bi is an element of Y . Hence (ii) holds.

b) Assume that (ii) is satisfied. Let G be a lattice ordered group and let ∅ �=
{Gi}i∈I ⊆ C(G) such that Gi ∈ X for each i ∈ I. Then Bi = S0(Gi) ∈ Y for each
i ∈ I. Put B = S0(G). We have {Bi}i∈I ⊆ J(B). In view of (ii),

∨
i∈I

Bi ∈ Y . Thus
2.9 yields that

∨
i∈I

Gi belongs to X . Hence (i) holds. �

Corollary 3.4. Let X and Y be as in 3.2. The following conditions are equiva-
lent:

(i) X is a radical class of lattice ordered groups;

(ii) Y is a radical class of generalized Boolean algebras.

We denote by Rs the collection of all radical classes X of lattice ordered groups

such that X ⊆ SG. Further, let Rb be the collection of all radical classes of general-
ized Boolean algebras. Let ϕ0 be the mapping ϕ reduced to the collection Rs.

Lemma 3.5. ϕ0 is a one-to-one mapping ofRs ontoRb such that ifX1, X2 ∈ Rs,

then

X1 ⊆ X2 ⇔ ϕ0(X1) ⊆ ϕ0(X2).

�����. This is a consequence of 3.1.1 and 3.4. �

4. Torsion classes

Let G be a Specker group. Put B = S0(G). Let A be an ideal in B and let G1 be as
in 2.6. In view of 2.6 we have S0(G1) = A. If G2 is another convex �-subgroup of G
and if S0(G2) = A, then G2 = G1. In fact, all elements of G2 are linear combinations

with integral coeficients of elements of A ⊆ G1, whence G2 ⊆ G1; similarly, G1 ⊆ G2.
Hence there is a one-to-one correspondence ψ between the elements of C(G) and the

elements of J(B); this correspondence is given by

ψ(H) = S0(H),

where H runs over C(G).

Since G is abelian, each element H ∈ C(G) is an �-ideal of G and thus it is a kernel
of a congruence �1 on G, and each congruence on G can be constructed in this way.

Similarly, each ideal A of B is kernel of a congruence on the generalized Boolean
algebra B and in this way we obtain all congruences on B.
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Let G1 and A be as above. Let us construct the factor lattice ordered group

G = G/G1 and the factor generalized Boolean algebra B = B(A).

For g ∈ G and b ∈ B we put

g = g +G1 = {g1 ∈ G : g1�1g},
b̃ = {b1 ∈ B : b1�2b},

where �1 (and �2) is the congruence relation onG generated byG1 (or the congruence

relation on B generated by A, respectively).

Lemma 4.1. Let b, b1 ∈ B. Then b�2b1 if and only if b�1b1.

�����. Let b�2b1. Denote

u = b ∧ b1, v = b ∨ b1.

Then u�2v. Let u′ be the complement of u in the interval [0, v]. Thus

u′ = u′ ∧ v, 0 = u′ ∧ u,

whence 0�2u′. It is well-known that the kernel of �2 is the ideal A of B. Thus u′ ∈ A
and so 0�1u′. Since

u = 0 ∨ u, v = u′ ∨ u

we obtain u�1v and this yields b�1b1.

Conversely, suppose that b�1b1. Then by analogous steps as above (with �1 and

�2 interchanged) we conclude that b�2b1. �

Lemma 4.2. Let x ∈ G. The following conditions are equivalent:
(i) x ∈ S0(G);
(ii) there exists x1 ∈ x such that x1 ∈ S0(G).

�����. The implication (ii)⇒(i) is obvious. Assume that (i) is valid.
The case x = 0 is trivial. Suppose that x > 0. Then without loss of generality we

can assume that x > 0. Hence there exist s1, s2, . . . , sk ∈ S(G) and positive integers
n1, n2, . . . , nk such that

(1) x = n1s1 + n2s2 + . . .+ nksk

and, moreover, the set {s1, s2, . . . , sk} is disjoint.
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If all si belong to G1 then x = 0, which is a contradiction. Then the elements

si belonging to G1 can be omitted in (1); assume that s1, s2, . . . , sm /∈ G1 and
sm+1, . . . , sk ∈ G1. Put

x1 = n1s1 + n2s2 + . . .+ nmsm.

We obtain x1 ∈ G1 and 0 < x1 ∈ x.
Assume that si /∈ G1 and ni � 2 for some i ∈ 1, 2, . . . ,m. Then 0 < 2si � x,

whence 2si ∈ S0(G), but 0 < si = si ∧ si = si ∧ (2si − si), hence 2si fails to be
singular. Then 2si /∈ S0(G), which is a contradiction. Thus ni = 1 and hence x1 can

be written in the form

x1 = s1 ∨ s2 ∨ . . . ∨ sm

with s1, s2, . . . , sm ∈ S0(G). Therefore x1 ∈ S0(G). �

Let f be a mapping of S0(G) into B/A = B which is defined as follows. For
x ∈ S0(G) we put

f(x) = x̃1,

where x1 is as in 4.2.

If x1, x2 ∈ B and both x1 and x2 satisfy the condition (ii) from 4.2, then x1 =
x = x2. Thus in view of 4.1 we obtain x̃1 = x̃2. Hence the mapping f is correctly

defined.

Let z̃ ∈ B̃. Then f(z) = z̃, hence f is an epimorphism. Suppose that x, y ∈ S0(G)
and f(x) = f(y). In other words, we have f(x) = x̃1, f(y) = ỹ1 and x̃1 = ỹ1. Then

4.1 yields that x1 = y1. Since x1 = x and y1 = y we get x = y. Therefore f is a
monomorphism.

Further, in view of 4.1 we conclude that the mapping f is regular with respect to

the lattice operations (i.e., if x, y ∈ S0(G), then f(x∨y) = f(x)∨f(y), and similarly
for the operation ∧). Thus we have

Lemma 4.3. f is an isomorphism of the generalized Boolean algebra S0(G) onto

the generalized Boolean algebra B.

Now let X be a nonempty class of Specker groups and Y = ϕ(X), where ϕ is as

in Section 3.

Lemma 4.4. The following conditions are equivalent:

(i) X is closed with respect to homomorphic images.
(ii) Y is closed with respect to homomorphic images.
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�����. a) Assume that (i) is valid. Let B ∈ Y and let A be an element of

J(B). We have to verify that B = B/A belongs to Y .
There exists G ∈ X with ϕ(G) = B. Let G1 be as in 2.6. In view of (i) we have

G/G1 = G ∈ X . Hence S0(G) ∈ Y . According to 4.3, S0(G) is isomorphic to B.

Therefore B ∈ Y .
b) Conversely, suppose that (ii) holds. Let G ∈ X and G1 ∈ C(G). We have to

verify that G = G/G1 belongs to X .
Denote B = S0(G). Thus ϕ(G) = S0(G) = B ∈ Y . According to 4.3, S0(G) is a

homomorphic image of B and hence, in view of (ii), S0(G) belongs to Y . Since

ϕ(G) = S0(G)

we obtain that G must belong to X . �

Let T s and T b be the collection of all torsion classes of Specker groups or the
collection of all torsion classes of generalized Boolean algebras, respectively.

Further, let ϕ1 be the mapping ϕ reduced to the collection T s.
From 3.5 and 4.4 we conclude

Theorem 4.5. ϕ1 is a one-to-one mapping of T s onto T b such that for X1, X2 ∈
T s we have

X1 ⊆ X2 ⇔ ϕ1(X1) ⊆ ϕ1(X2).

Let K be the class of all infinite cardinals. For each α ∈ K we denote by A(α) the
class of all generalized Boolean algebras B such that, whenever [x, y] is an interval

of B, then
card[x, y] � α.

It is obvious that in the definition of A(α) it suffices to take into account the
intervals [x, y] with x = 0.

Lemma 4.6. Let α ∈ K. Then A(α) is a radical class of generalized Boolean
algebras.

�����. In view of the definition, A(α) is closed with respect to ideals. It
remains to verify that it is closed with respect to joins. Let B ∈ B and {Ai}i∈I be
as in 2.8. Suppose that all Ai belong to A(α). We apply the notation as in 2.8. We
have to show that A belongs to A(α).
Let a ∈ B. In ivew of 2.8 and according to Lemma 3.1 from [11] we infer that the

element a can be written in the form

a = y1 ∨ y2 ∨ . . . ∨ yn
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such that yj ∈
⋃
Ai (i ∈ I) for each j = 1, 2, . . . , n, and yj(1) ∧ yj(2) = 0 whenever

j(1) and j(2) are distinct elements of the set {1, 2, . . . , n}.
Then Lemma 3.2 of [11] yields that

[0, a] � [0, y1]× [0, y2]× . . .× [0, yn],

whence card[0, a] � α and thus A ∈ A(α). �

Lemma 4.7. Let α ∈ K, B ∈ B and let [x, y] be an interval ofB with card[x, y] �
α. Let A be an ideal of B; put B = B/A. For z ∈ B let z be the class in B/A

containing the element z. Then card[x, y] � α.

�����. Consider the mapping f = [x, y] → [x, y] defined by f(z) = z for

each z ∈ [x, y]. Let t ∈ B, t ∈ [x, y]. Put t1 = (t ∨ x) ∧ y. Then t1 ∈ [x, y] and
t1 = t, whence f(t1) = t. Therefore the mapping f is surjective. Thus card[x, y] �
card[x, y] � α. �

From 4.6 and 4.7 we conclude

Proposition 4.8. Let α ∈ K. Then A(α) is a torsion class of generalized
Boolean algebras.

For α ∈ K let Bα be the free Boolean algebra with α free generators. Then

(i) Bα ∈ A(α);
(ii) if β ∈ K and β > α, then Bβ /∈ A(α).
We put f1(α) = A(α) for each α ∈ K. In view of 4.8, (i) and (ii) we have

Lemma 4.9. f1 is an injective mapping of the class K into T b.

Let ϕ1 be as in 4.5. For each α ∈ K we set

f2(α) = ϕ
−1
1 (f1(α)).

From 4.5 and 4.9 we obtain

Theorem 4.10. f2 is an injective mapping of the class K into T s.
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