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Abstract. For sequences of rational functions, analytic in some domain, a theorem of
Montel’s type is proved. As an application, sequences of rational functions of the best
Lp-approximation with an unbounded number of finite poles are considered.
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1. Introduction

Given a domain B in the complex plane � , let F be a family of functions, analytic
and single valued in B (F ∈ A (B)). We presume the functions f , f ∈ F to be
equipped with the sup-(uniform) norm ‖ . . . ‖K on compact subsets K of B.
By Montel’s classical theorem, if there are two points a and b, a, b ∈ � , a �= b, such

that each function f ∈ F takes the values of a and b no more than N times with N
being a finite number, then F is a normal family in B (cf. [7]). If, in addition, the
family F converges uniformly to a function f on a regular compact subset K of B,
then it necessarily converges locally uniformly inside (l.u.in.) B (uniformly in the
sup-norm on compact subsets of B). We remark that in such a case the function f
admits an analytic continuation from K into the entire domain B.
Thus, a natural question arises as to what happens if a family of analytic functions

converges on a regular continuum K in a domain B and omits merely one finite
value in B? As is known, in general only these conditions alone do not guarantee
uniform convergence inside the domain itself. This question appears to make sense
for sequences of approximating rational functions. To make things clear, we recall a

*This paper is conducted while visiting the University of Lodz.
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well known result by Blatt-Saff-Simkani (cf. [3]). First, for a compact set E, E �= 0,
a function f , f ∈ C(E) and a nonnegative integer n we introduce the notation
Pn(f,E), n = 1, 2, . . ., for a polynomial of degree not exceeding n that approximates
the function best in the uniform metric on E.

Theorem 1 ([3]). Let E be a regular compact set in � with a connected comple-
ment. Given a function f , f ∈ A(E◦) ∩ C(E) and f �≡ 0 on each component of E,
assume there is a domain U with nonempty intersection with E such that the num-
ber of zeros of Pn(f,E) behaves on each arbitrary but fixed compact subset K of U
like o(n) as n→∞. Then the function f admits an analytical continuation into the
entire domain U . Even more, under the above conditions the sequence {Pn(f,E)}
converges l.u.in. the smallest domain E�, canonical with respect to Green’s function
of E that contains the domain U (and hence, f is analytically continuable into E�).

This result is a consequence of the fundamental theorem of Jentzsch’s type con-
cerning the distribution of zeros of polynomials of best uniform approximation. The
proof of the last theorem is due to H.P. Blatt, E.B. Saff and M. Simkani (cf. [3]).
Another approach, based on Leja’s results, is given in [6]. The method used in [3]
is extended to rational functions Rn,m(f,E) (n—the numerator’s degree, m—the
denominator’s degree) of best uniform approximation with n → ∞ and m fixed.
An analogue of the main theorem is proved with an analytic continuation replaced
by a meromorphic one with no more than m poles and rational functions converg-
ing to f l.u.in. U—(the poles of f (the poles being counted with regard to their
multiplicities)). This case was considered independently in [12].

In these statements, the essential role is played by the fact that the denominator’s
degrees are fixed. It is an open problem whether a result like Blatt-Saff-Simkani’s
Theorem holds for rational sequences Rn,mn(f,E) of best uniform approximation
when mn → ∞. Nevertheless, in some cases there is uniform convergence, namely
when the sequence in question converges “fast” on some compact subset.

In the present paper, sequences of rational functions with unbounded numbers of
finite poles are considered. Roughly spoken, we will show that the “fast” convergence
on some regular compact subset E of the domain B and only one finite value in
Montel’s conditions guarantee uniform convergence inside B itself.

Before presenting the results we introduce some notation. Given a compact set K
and a function h(z) defined onK, ν(h,K) will stand for the number of all zeros of h(z)
on K. For an infinite sequence {fn} and a domain B, the notation {fn} ∈ N (B)
means that a) {fn} ∈ A (B) and b) ν(fn,K) = o(n) as n → ∞ for every compact
subset K of B. In the sequel we will express by {fn} ∈ L (B) that {fn} converges
l.u.in. B. Finally, given a domainD, a regular compact set S, S ⊂ D and a function f
defined on S, we will write f ∈ AS(D) if there is a function F ∈ A (D) such that
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F ≡ f on S. Analogously, we define f ∈ AG(D) with G being a domain containing
a regular subset.
For the sake of clarity we recall that a compact set is said to be regular, if its

complement Ec := � − E possesses Green’s function GE(z,∞) with a logarithmic
pole at infinity which is continuous in Ec −∞. It is known that if a compact set E
is regular then its Green capacity CapE is positive (cf. [7], Chapter V).

2. Statement of the results

The main result of the present paper is

Theorem 2. Let S be a regular continuum in � and B a domain, B ⊃ S .
Let F := {fn}n=1,2,... be a sequence of rational functions, F ∈ A (B), with a total
number of poles in � of every fn not exceeding n. Assume there is a function f ,
f �≡ 0 on a regular subset of S such that

(1) lim sup
n→∞

‖fn − f‖1/n
S < 1.

If
ν(fn,K) = o(n) as n→∞

for each compact subset K of B, then F converges locally uniformly inside B; thus,
f ∈ A (B).

Theorem 2 is applicable to several kinds of approximating sequences. The results
known to us will be listed in Section 3.
In the present paper, we apply Theorem 2 to sequences of rational functions of

best Lp-approximation.
Let γ be a curve in � , p—a positive number and let f be a function of the

class Lp(γ). We adopt the notation ‖f‖Lp(γ) := {
∫

γ
|f(t)|p|dt|}1/p. For any pair

(n,m) of nonnegative integers, let R
(γ,p)
n,m be a rational function of the class rn,m of

best Lp-approximation to f on γ.

Theorem 3. Let (n,mn) be a sequence of nonnegative pairs, mn � n, mn �
mn+1, n → ∞. Given a closed analytic rectifiable curve Γ with an interior G , a
positive number p and a function f , f ∈ Lp(Γ), assume

(2) ‖R(Γ,p)
n,mn

− f‖Lp(Γ) → 0 as n→∞.

Let U be a domain U , U ⊃ G such that {R(Γ,p)
n,mn} ∈ N (U). Then {R(Γ,p)

n,mn} ∈ L (U)
and f ∈ A (U).
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Remark 1. Given a weight function ω, nonnegative and integrable over the
curve Γ, assume now f ∈ Lp,w(Γ), that is ‖f‖Lp,w(Γ) := {

∫
Γ |f(z)|pw(z)|dz|}1/p <∞;

letR(p,ω)
n,mn be a rational function of order (n,mn) of best Lp,w aproximation of f on Γ.

If 1/wq is, in addition, integrable over Γ for a positive number q then Theorem 3 is
extendable to the functions {R(p,ω)

n,mn(z)}∞n=1.

As a particular case covered by Theorem 3 we point out rational functions of best
Lp-approximation of functions of the class Hp(T ), T being the unit circle, as well
as Lp-weighted approximations of functions of the same class. It is a known fact that
condition (2) is automatically fulfilled in Hp. Indeed, ‖Pn−f‖Lp(T ) → 0 as n→∞
with Pn being a trigonometric polynomial of best Lp-approximation of degree n
of f on T (cf. for instance, [20], Chapter I). Statement (2) results now from the
minimality property of R(T ,p)

n,mn .
Set now ∆ := [−1, 1]. Given a weight function w(x), assume the function f(x) to

be of the class Lp,w(∆); f(x) is presumed to be real-valued on ∆.
Given a pair of nonnegative integers (n,m), let R(p,w)

n,m be a rational function of
order (n,m) of best Lp,w-approximation of f on ∆. We apply Theorem 2 to establish
the validity of

Theorem 4. Let w(x) be a real-valued weight function, a.e. positive on ∆, inte-
grable over ∆ together with w−q(x) for a number q > 0 and let f ∈ Lp,w(∆); f(x)—
real-valued on ∆. Let the sequence of pairs (n,mn) be as in Theorem 3. If there is
a domain U such that a) U ⊃ ∆ and b) {R(p,w)

n,mn} ∈ N (U), then {R(p,w)
n,mn} ∈ L (U)

and f ∈ A∆(U).

As before, we observe that

(3) ‖R(p,w)
n,mn

− f‖Lp,w(∆) → 0 as n→∞.

3. Background

The first result imposing the question to explore the connection between zeros and
analytic continuability is the following known Bernstein’s theorem:

Theorem 5 ([1]). Let a function f be real-valued and continuous on an interval∆.
Assume that there is an ellipse E with foci at ±1 such that the polynomials Pn(f,∆),
n = 1, 2, . . . are, starting with a number n0, nowhere zero in E . Then Pn(f,∆)
converge as n→∞ locally uniformly inside E (and, hence, f ∈ A∆(E )).

In the same paper, S. N. Bernstein pointed out that the theorem holds only for
polynomials of best approximation.
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We now summarize some results of Montel’s type:

Theorem 6 ([2]). Let f(z) =
∞∑

n=0
fnz

n be a power series with a positive radius of

convergence, {πn}n=1,2,...—the diagonal sequence in Padé’s table associated with f
and U—a disk centred at z = 0 such that {πn} ∈ N (U) for every n. Then {πn} ∈
L (U).

Originally, Theorem 6 was established under the assumption that {πn} ∈ U (U).
It is easy to show that {πn} ∈ N (U) leads to uniform boundedness of {πn} inside
U . Later, in 1982, the statement of Theorem 6 was established by A.A. Gonchar
under essentially weaker conditions, involving only that {πn} ∈ A (D), n = 1, 2, . . .
(cf. [8]).
Further results of Montel’s type are obtained in [11], [13] and in [10].
Let now f(x) be a function, real valued and continuous on the interval ∆. The

next theorems (Theorem 7 and 8) provide, similarly to Blatt-Saff-Simkani’s theorem,
a local characterization of the function f(x).
Set, for any pair (n,m) of nonnegative integers,

en,m := en,m(f) := ‖f −Rn,m(f,∆)‖∆.

Theorem 7 ([14]). Given f as above, let (n,mn) be a sequence of pairs of
nonnegative integers such that mn � n, mn � mn+1 � 1 +mn and mn = o(n) as
n→∞. Assume

lim inf
n→∞

n

(
en,m(n)

en+1,m(n+1)
− 1

)
> 0.

Then {Rn,mn(f,∆)} ∈ L (U) for every domain U of nonempty intersection with ∆
for which {Rn,mn} ∈ N (U) (and hence f ∈ A∆∩U (U)).

Theorem 8 ([14]). Under the same conditions as in Theorem 7 on the func-
tion f(x), the domain U and the sequence {Rn,n(f,∆)} (namely, U ∩ ∆ �= 0 and
{Rn,n(f,∆)} ∈ N (U)), assume there is a domain W of ∆ such that the numbers
γn = γn(W ) of those poles of Rn,n(f,∆) which lie outside W satisfy

(i) lim inf
n→∞

γn

n
> 0.

If

(ii) lim inf
n→∞

n

(
en

en+1
− 1

)
> 0

with en := en,n, then {Rn,n(f,∆)} ∈ L (U) (and thus f ∈ A∆∩U (U)).
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As an illustration of Theorem 8, consider the function f(x) = |x|. It was proved in
[4] that both the poles and the zeros of the rational function Rn,n of best uniform ap-
proximation lie interlacing each other on the imaginary axis and go, as n→∞, to in-
finity. Hence, condition (i) holds. Further, it was shown in [19] that lim

n→∞
e�
√

nen = 8.

This implies (ii).
In view of Theorem 10, f(x) = |x| would be analytically continuable in any domain

intersecting the segment [−1, 1] and nonintersecting the imaginary axis (as |x| = z,
if Re z > 0, and |x| = −z otherwise).
This is a known fact established in [4]; it was shown there that Rn(z) → z uni-

formly inside the right half-plane {z,Re z > 0} and to −z inside the left half-plane
{z,Re z < 0}.
Other functions which fulfil conditions (i) and (ii) are the exponential function

(cf. [5]) and the function f(x) := |x|α, α > 0, α �= 0, 2, 4, . . . (cf. [18]). For the
former,

en =
2−2n(n!)2

(2n)!(2n+ 1)!
(1 + o(1)),

hence (ii) is true. On the other hand, both the poles and the zeros of f = ez tend to
infinity. For the latter,

|sin((�α/2)| exp(−�√nα) � en � exp(−�√nα)

and all poles and zeros cluster to the axis {z,Re z = 0}. On the other hand, it
is shown in [18] that {Rn,n(z)} converges to zα in {z,Re z > 0} and to (−z)α in
{z,Re z < 0}.

4. Preliminaries

Let f, g ∈ Lp[a, b]. We first recall the basic fact that

‖f + g‖p
Lp[a,b] � C(‖f‖p

Lp[a,b] + ‖g‖
p
Lp[a,b])

with C = max[1, 2p−1] (cf. [21]). If p � 1 then Minkowski’s inequality is valid, i.e.

‖f + g‖Lp[a,b] � ‖f‖Lp[a,b] + ‖g‖Lp[a,b].

Given a set e of positive Lebesgue measure (we write m(e) > 0), let functions
{fn}∞n=1 be defined on e. The sequence is said to converge in measure on e, if for
every positive ε and δ m{z, z ∈ e, |fn(z) − fm(z)| � ε} < δ holds for all n, m large
enough (cf. [16]). By a theorem of Natanson, if a sequence {fn}∞n=1 converges to a
function f in Lp[a, b], then it converges in measure on [a, b], too (cf. [16]).
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A function f is said to belong to the class Hp if a) f is analytic in the unit disk
T and b) sup

�→1

∫ 2�
0 |f(� exp(iτ))|p dτ is bounded. (If p = ∞, then sup

�→1
|f(� exp(iτ))|

should be bounded, respectively.)
If f ∈ Hp, then the nontangential limits lim

z′→z,z′∈T
f(z′) exist for almost all z,

z ∈ T (T := the unit circle) (cf. [17]). One can define f(exp(iτ )) as the limit of
f(� exp(iτ )) as � → 1, τ ∈ [0, 2�]. It is customary to write f(exp (iτ)) instead of
lim
�→1

f(� exp(iτ )). Recall that the nontangential limit function f(exp(iτ )) ∈ Lp(T )

(cf. [17]). If f, g ∈ Hp and f = g for z ∈ E, E being a subset of T of positive measure,
then f ≡ g (Privalov’s uniqueness theorem for Hp cf. [17]). We recall that the
uniqueness theorem preserves its validity under the same condition (namely, f = g on
a subset ofT of positive measure) also for functions analytic and single valued in T—
the theorem of Privalov-Luzin (cf. [17]). Further, according to Ostrowski-Khinchine’s
theorem, if a sequence {fn} with fn ∈ Hp and ‖fn‖Lp(T ) � C, n = 1, 2, . . . converges
on T in measure to a function f , then {fn} ∈ LF (T ) with a limit function F
coinciding with f a.e. on T and being an element of Hp.
In the sequel, Cn, n = 1, 2, . . ., denote positive constants which do not depend on

the integer n and are different at different occurrences.

Finally, given a sequence {. . .}, we will use the notation {. . .} ∈ UB(B) to express
that {. . .} is uniformly bounded inside B (in the sup-norm on compact subsets), and
{. . .} ∈ Lf (B)—that {. . .} converges l.u.in. B to the function f .
The proofs will be preceded by a few lemmas.

Let F := {Fn}n=1,2,... be functions locally single-valued and analytic in a do-
main B except perhaps for branch points, and let each |Fn| starting with a number n0
be single-valued there. We say that a harmonic function v is a harmonic majorant
for F in B, if for every compact subset M of B the inequality

lim sup
n→∞

‖Fn‖M � exp ‖v‖M

is valid.

Lemma 1 ([22]). Let B be a domain in � , F := {Fn}∞n=1 a sequence as above
and let v be a harmonic majorant for F in B.

If there is a regular compact set M , M ⊂ B, where the strict inequality holds,
i.e. if

lim sup
n→∞

‖Fn‖M < exp ‖v‖M ,

then the strict inequality holds on every compact subset of B.

Also the next lemma will be of importance for the coming considerations.
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Lemma 2. Let γ be a closed analytic curve in � and p a positive number. Denote
by D the finite domain bounded by γ. Let g ∈ A (D)∩C(D). Then for each compact
subset F of D there exists a constant C1 = C1(F ) such that

‖g‖F � C1‖g‖Lp(γ).

The case when γ coincides with the unit circle T was considered by J. L. Walsh
(cf. [21], Chapter V). The proof for the general case proceeds along the same line of
reasoning, after mapping conformally D onto T , so we may omit it.

Lemma 3 ([9]). Let E be a regular compact set in � and D a domain, D ⊃ E.
Given a sequence {Rn} of rational functions with a total number of poles in � � n,
assume Rn ∈ A (D) for every n. Then for every compact set K in D − E there is a
constant λ1, λ1 = λ(K), λ1 > 1 such that for every n

‖Rn‖K � λn
1 ‖Rn‖E .

The constant λ1(K) is given by λ1(K) = sup
z′∈K,z′′∈Dc

GE(z′, z′′).

A similar result holds also for Lp,w-norms. To be precise, we present

Lemma 4. Let E be a regular continuum and w(x)—a weight function, a.e. pos-
itive and integrable over ∂E together with w(x)−q for some positive q. Then, under
the conditions of Lemma 4, for every p > 0 and for every compact set K, K ⊂ D−E
there is a positive constant λ2 = λ2(K, p), λ2 > 1, such that

‖Rn‖K � Cλn
2 ‖Rn‖Lp,w(∂E).

For the particular case when ∂E is an analytic closed curve, Lemma 3 was an-
nounced and proved by J. L. Walsh (cf. [21], Chapter V). The proof of the form
presented here follows the main idea of Walsh.

Analyzing the proofs of Lemma 3 and Lemma 4 we arrive at

Remark 2. Let {Kn} be a family of compact sets, . . . ⊃ Kn ⊃ Kn+1 ⊃ . . .,
E =

⋂
Ki. Then λi(Kn, p)→ 1+ as n→∞, i = 1, 2.

In the forthcoming proofs we shall need inequalities of Nikolsky’s type estimating
from above the uniform norm of a polynomial on the interval ∆ by its Lp-norm.
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Lemma 5 ([15]). For an a.e. positive weight function ω(x) satisfying

∫ 1

−1
ω(x) dx = 1

set ϕ(ω, ε) = inf{
∫
A ω(x) dx : A ⊂ [−1, 1], µ(A) � ε}, 0 < ε � �, where µ(A) is the

Chebyshev measure of A. Let εn(ω) be the unique solution of ϕ(ω, ε) = exp(−nε).
Then for every p, 0 < p � ∞ and for every polynomial pn of degree n we have

‖pn‖∆ � exp(cnεn(ω))‖pn‖Lp(∆),

where c > 0 depends only on p and ω.

We note that εn(ω)→ 0 as n→∞ (cf. [15]).

5. Proofs

����� of Theorem 2. Under the conditions of the theorem and by virtue of
Lemma 3, there is a compact set F , F ◦ �= ∅, S ⊂ F ⊂ B such that

lim sup
n→∞

‖fn+1 − fn‖1/n
F < 1.

Hence, fn → g uniformly on F as n → ∞ for some function g, g ∈ A (F ). In view
of the conditions of the theorem, g �≡ 0 on F and f ≡ g there. Let F ′ be a regular
subset of F with nonempty interior such that g �= 0 there. By means of classical
Hurwitz’s theorem,

(5) |fn|1/n → 1, as n→∞

uniformly on F ′.
Select now a simply connected domain W satisfying F ⊂ W ⊂ B. For every n,

n > n1, let πn(z) :=
kn∏
i=1
(z − χi,n) be the monic polynomial with zeros at all zeros

of fn on W . (If kn = 0, then πn(z) ≡ 1.) In view of the hypothesis of the theorem,

(6) kn := deg πn = o(n) as n→∞.

Observe that πn(z) �= 0 for z ∈ F ′, as well as for z in a neighbourhood of F ′.
Therefore, by (5) and (6),

(7) |πn(z)|1/n → 1 as n→∞

uniformly on F ′.

491



Fixing an arbitrary point b in F ′, we take into consideration the family χ :=
{χn}∞n=n1 with χn := χn = {π−1n · fn}1/n and χn being that regular branch in W for
which |argχn(b)| < 1/n. Obviously, χ ∈ A (W ).
We now claim that

(8) χn(z)→ 1 as n→∞

l.u.in. W .
Indeed, regarding (5) and (7) as well as the choice of the regular branches, we see

that (8) is valid uniformly on F ′. Hence, by Lemma 3, {χn} ∈ U (W ). Statement (8)
follows now by applying subsequently the compactness principle and Vitali’s theorem.
Moreover, from (8) and (6) we get

lim sup
n→∞

‖f‖1/n
K � 1

and

lim sup
n→∞

‖fn+1 − fn‖1/n
K � 1

with K being any compact set in W . By (1), for K = S the inequality is strict.
Hence, owing to Lemma 1, the strict inequality holds on each compact subset of W .
Consequently, {fn} ∈ L (W ), and by (1), {fn} ∈ Lf (W ). Letting W tend to B we
arrive at the statement of Theorem 2. �

����� of Theorem 3. Set R
(Γ,p)
n,mn := Rn, n = 1, 2, . . .

Fixing an arbitrary point z0 in G , let ϕ be the unique univalent function which
maps G onto {w, |w| < 1} in a way that ϕ(z0) = 0 and ϕ′(z0) > 0. The function ϕ
maps Γ onto {w, |w| = 1} in a one-to-one way. Further, both functions ϕ and ϕ′ are
analytic in G and continuous on G . We remark that (in the case considered) ϕ′ is
nonzero in G (theorems of Caratheodory and of Lindelöf, cf. [7]).
Let ψ(w) be the inverse of ϕ(z); we recall that ψ′ ∈ A (T ) ∩ C(T ) and ψ′(w) �= 0

for |w| � 1. Let (ψ′)1/p be that regular branch for which |arg(ψ′(0))1/p| < 1/n.
Set rn := (Rn ◦ ψ)(ψ′)1/p; apparently, rn ∈ Hp, n = 1, 2, . . .
By means of Natanson’s theorem, {rn} converges in measure on T as n → ∞.

With F̃ being the limit function, we note that F̃ (w) = (f ◦ψ(w))ψ′(w)1/p a.e. on T .
From (2), we get

(9) ‖rn‖Lp(T ) � C3

for all n large enough, say n � n2. Consequently, regarding Ostrowski-Khinchine’s
theorem, {rn} ∈ L (T ) and the limit function r, being an element of Hp, coincides
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with F̃ a.e. on T ; hence r(w) = (f ◦ψ)(w)ψ′(w)1/p a.e. on T . Recall that r(exp iτ )
should be regarded as lim

�→1
r(� exp iτ ).

Setting r ◦ ϕ := F , we get

(10) lim
n→∞

Rn(z) = F

l.u.in. G ; F ∈ A (G ). We remark that the nontangential limits F (z) exist for almost
all z ∈ Γ and f = F a.e. there.
Note that by virtue of Privalov’s uniqueness theorem, F �≡ 0 in G .
Using the same argument as in the proof of Theorem 2, we see that

(11) lim
n→∞

‖Rn‖1/n
K � 1

for each compact set K in W .
We are now going to prove that

(12) lim sup
n→∞

‖f −Rn‖1/n
Lp(Γ)

< 1.

For this purpose, we introduce, for a given number �, � > 1, the level curve Γ� :=
{z,GG (z,∞) = ln �} (that is, the level curve associated with the number � and
canonical with respect to Green’s function).
Select a number µ, 1 < µ < sup{�,Γ� ⊂ U}. Let Ω = {ωn}n=1,2,... be a sequence

of monic polynomials, nonzero in G c and satisfying, for every � > 1,

lim
n→∞

∥∥∥∥
ωn(u)
ωn(v)

∥∥∥∥
1/n

u∈Γ, v∈Γ�
=
1
�
.

For each n, let Wn be the polynomial of degree n which interpolates the rational
function Rn+1(z) at all zeros of ωn+1(z). The application of Hermite-Lagrange’s
interpolation formula yields, for each z ∈ T ,

Rn+1(z)−Wn(z) =
1
2�i

∫

Γµ

ωn+1(z)
ωn+1(t)

Rn+1(t)
t− z

dt.

Select now a positive number θ1 such that exp θ1 < µ. For all n sufficiently large,
say n > n3, we may write, after taking into account (11),

(13) ‖Rn+1 −Wn‖G � C5(exp θ1/µ)n.

On the other hand, we have an obvious inequality

(14) ‖Rn+1 −Wn‖Lp(Γ) � C6‖Rn+1 −Wn‖G .
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Consider first the case when p < 1. By the minimality property, we have

‖f −Rn‖p
Lp(Γ)

� ‖f −Wn‖p
Lp(Γ)

� ‖f −Rn+1‖p
Lp(Γ)

+ ‖Rn+1 −Wn‖p
Lp(Γ)

.

After taking into account (13) and (14), we obtain

(15′) ‖f −Rn‖p
Lp(Γ)

− ‖f −Rn+1‖p
Lp(Γ)

� C7{exp θ1/µ}pn.

For p � 1, after handling ‖f−Rn‖Lp(Γ) similarly and applying Minkowski’s inequal-
ity, we get

(15′′) ‖f −Rn‖Lp(Γ) − ‖f −Rn+1‖Lp(Γ) � C7{exp θ1/µ}n.

In view of the conditions of the theorem, for every n the inequality ‖f−Rn‖Lp(Γ) �
‖f − Rn+1‖Lp(Γ) holds. Consequently, (12) follows now from inequalities (15) and
from (2), after passing to the limit.

Let now E be a regular continuum in G . The application of Lemma 2 leads, thanks
to (12), to the inequality

lim sup
n→∞

‖Rn+1 −Rn‖1/n
E < 1.

Hence, regarding (11), we get

lim sup
n→∞

‖Rn − F‖1/n
E < 1.

Thus, all conditions of Theorem 2 are fulfilled with respect to the sequence {Rn}.
This proves Theorem 3. �

����� of Remark 1. Recall that ω is nonnegative on Γ and integrable together
with ω−q for a q > 0. Following [21], Chapter V, we have, by Hölder’s inequality,

∫

Γ
|f(t)−Rn(t)|pq/(1+q)|dt| �

(∫

Γ

1
ω(t)q

|dt|
)1/(1+q)

×
(∫

Γ
ω(t)|f(t)−Rn(t)|p|dt|

)q/(1+q)

.

By virtue of (12), we are able to prove analogues of Lemmas 2 and 3 for weighted
Lp-approximation. With these notations, the proof in question follows the main idea
of the proof of Theorem 3. �
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����� of Theorem 4. Set, as before, Rn := R
(p,w)
n,mn . We presume f not to

vanish identically on a subinterval of ∆∗ of positive length. We assume that ∆∗ ≡ ∆
Additionally, we assume that

∫ 1
−1 ω(x) dx = 1 and that U is a bounded domain.

Thanks to (3), we have

(9′) ‖Rn‖Lp,w(∆) � C8

with C8 being an appropriate positive constant and n � n4. We remark that (9′) pre-
serves its validity for any subinterval ∆′. Taking into account (9′), (3) and Remark 2,
we obtain

(16) lim
n→∞

‖Rn‖1/n
∆′ = 1

for any regular subinterval ∆′ of ∆.
Set Rn = Pn/Qn, Qn(z) =

∏
(z−η′n,i)

∗ ∏
(1−z/η′′n,i)

∗, where η′n and η
′′
n are those

zeros of Qn which are situated on the disk D := {z, |z| � 2 diam(U)} and outside,
respectively.
Let nowW be a domain such that ∆ ⊂W ⊂W ⊂ U . As above, let πn, n = n5, . . .

be the monic polynomial of degree kn = ν(Rn,W ), the zeros of which coincide with
all zeros of Rn on W . Recall that

kn = o(n) as n→∞.

Hence, for every regular compact set K in W ,

lim sup
n→∞

‖πn‖1/n
K � 1.

On the other hand, we have (cf. [7], Chapter V)

(17) lim inf
n→∞

‖πn‖1/kn

K � CapK.

Combing both inequalities, we get

(18) lim
n→∞

‖πn‖1/n
K → 1.

For any n, n � n5, select a number an, an ∈ ∆ such that Rn(an) �= 0 and introduce
χn := {Rnπ

−1
n }1/n with |argχn(an)| � 1/n. Apparently, the rational functions χn

do not vanish on W and {χn} ∈ A (W ).
Writing Pn = πnpn we observe that χn := (pn/Qn)1/n. We claim that

(19) χn → 1 as n→∞

l.u.in. W .
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First, we show that {χn} ∈ U (W ).
Indeed,

‖Rn‖Lp(∆) =
1

|Qn(ξn)|
‖Pn‖Lp(∆)

for an appropriate point ξn, ξn ∈ ∆; this equality together with (9′) implies

‖Pn‖Lp(∆) � C8‖Qn‖∆.

By means of Lemma 5 we obtain

‖Pn‖∆ � Cn
9 ‖Qn‖∆,

where C9 stands for exp c and n � n6 is sufficiently large and such that εn(ω) < 1.
Select now a number R, R > 1, in the way that the interior of the ellipse ER

with foci at ±1 and a ratio major axes/minor axes = (R2 + 1)/(R2− 1) contains U .
Estimating now ‖Pn‖ER by Bernstein-Walsh’s lemma, we come to

‖Pn‖ER � ‖Pn‖∆Rn � ‖Qn‖(∆)Cn
9R

n,

which implies
‖Pn‖ER � Cn

10R
n.

From here we get

‖pn‖ER � Cn
10R

n

Ckn
11

with C11 := min{|πn(z)|, z ∈ ER}. Recalling that kn = o(n) as n→∞, we arrive at

‖pn‖ER � Cn
12

with C12 depending on R and W but not on n. Given a compact subset K of W ,
we have

‖χn‖K � {‖pn‖K/min{|Qn(z)|, z ∈ K}}1/n � {‖pn‖ER/min{|Qn(z)|, z ∈W}}1/n

� C13.

Thus, {χn} ∈ U (W ).
Let now ∆′ be an arbitrary regular subinterval of ∆. Thanks to

(21) |R(z)|1/n = |πn(z)|1/n|χn(z)|

and with regard to (16) and (18), we may write

lim inf
n→∞

‖χn‖∆′ � 1.
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Hence, there exists a sequence {κn}, κn ∈ ∆′ such that lim inf
n→∞

|χn(κn)| � 1. On the
other hand, regarding again (21) and taking into account (17), we obtain that

lim sup
n→∞

|χn(τn)| � 1

for an appropriate sequence {τn}, τn ∈ ∆′, |πn(τn)| = ‖πn‖∆′ .
Let now X̃ be any limit function of the sequence {χn}, that is X̃ = lim

n∈Λ
χn (locally

uniformly insideW ) for an infinite sequence Λ. Having in mind the two last relations,
we see that |X̃| takes the unitvalue on each arbitrary regular subinterval ∆′. Hence,
|X̃| ≡ 1 on ∆. Statement (19) results immediately from the symmetry of the functions
Rn, n = 1, 2, . . . with respect to the real axis, after keeping track of the choice of the
regular branches χn.
Thanks to the arbitrariness of W , the convergence takes place everywhere (on

compact subsets) in the entire domain U .
Coming back to the functions Rn, we get

lim sup ‖Rn‖1/n
K � 1 as n→∞

for every compact subset K in U .
In the same way as in the previous proofs, we show that

lim sup ‖Rn+1 −Rn‖1/n
Lp,w(∆)

< 1

and

lim sup ‖Rn+1 −Rn‖1/n
E < 1

for an appropriate regular compact set E with nonempty interior with ∆ ⊂ E ⊂ U .
Thus, {Rn} converges uniformly on E to a function, say Φ(z), where Φ(z) ∈ A (E),
Φ(z) ≡ f a.e. on ∆ and lim sup ‖f −Rn‖1/n

E < 1. Hence all conditions of Theorem 2
are fulfilled with respect to the sequence {Rn,mn} and Theorem 2 is applicable.
Theorem 4 is proved. �
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