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Abstract. Nonimprovable, in a sense sufficient conditions guaranteeing the unique solv-
ability of the problem

u′(t) = �(u)(t) + q(t), u(a) = c,

where � : C(I,�) → L(I,�) is a linear bounded operator, q ∈ L(I,�), and c ∈ �, are
established.

Keywords: linear functional differential equations, Cauchy problem, existence and
uniqueness, differential inequalities
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1. Statement of the problem and formulation of the main results

On the segment I = [a, b] we will consider the functional differential equation

(1.1) u′(t) = �(u)(t) + q(t)

and its particular case

(1.1′) u′(t) =
m∑

k=1

pk(t)u(τk(t)) + q(t)

This work was supported by Grant No. 201/99/0295 of the Grant Agency of the Czech
Republic and by Grants Nos. 96-15-96195, 99-01-01278 of the RFBR and the Competi-
tion Centre of the FNS.
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with the initial condition

(1.2) u(a) = c.

Here � : C(I,�) → L(I,�) is a linear bounded operator, c ∈ �, pk ∈ L(I,�) (k =
1, . . . , m), q ∈ L(I,�), and τk : I → I (k = 1, . . . , m) are measurable functions.

In this paper, optimal conditions for the unique solvability of the problems (1.1),

(1.1′) and (1.2) are established which are different from the previous results (see [1,
2, 4, 5] and references therein). More precisely, they are interesting especially in the

case where the equations (1.1) and (1.1′) are not evolutional.

Throughout this paper the following notation and terms are used:

� is the set of real numbers;

�+ is the set of nonnegative real numbers;

[x]+ =
|x|+ x

2
, [x]− =

|x| − x

2
;

C(I,�) is the Banach space of continuous functions u : I → � with the norm

‖u‖C = max{|u(t)| : t ∈ I};

C(I,�+ ) = {u ∈ C(I,�) : u(t) � 0 for t ∈ I};
L(I,�) is the Banach space of Lebesgue integrable functions u : I → � with the

norm

‖u‖L =
∫ b

a

|u(t)| dt;

L(I,�+ ) = {u ∈ L(I,�) : u(t) � 0 for almost all t ∈ I};
LI is the set of linear bounded operators � : C(I,�) → L(I,�) such that the

function

t �−→ sup{|�(u)(t)| : ‖u‖C = 1}

belongs to L(I,�).

PI is the set of linear operators � : C(I,�) → L(I,�) mapping C(I,�+ ) into
L(I,�+ ).

An absolutely continuous function u : I → � is said to be a solution of the equation

(1.1) if it satisfies this equation almost everywhere on I.

1.1. Theorem on differential inequalities.
First we introduce
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Definiton 1.1. We will say that an operator � ∈ LI belongs to the set SI if the
homogeneous problem

(1.3) u′(t) = �(u)(t), u(a) = 0

has only the trivial solution and for arbitrary q ∈ L(I,�+ ) and c ∈ �+ , the solution
of (1.1), (1.2) is a nonnegative function.

Remark. If � ∈ PI , then the inclusion � ∈ SI holds if and only if the problem

(1.4) u′(t) � �(u)(t), u(a) = 0

has no nontrivial nonnegative solution.

Remark 1.2. From Definition 1.1 it follows immediately that the inclusion

� ∈ SI

holds if and only if for the equation (1.1) the classical theorem on differential in-

equalities holds (see e.g. [3]), i.e. for any absolutely continuous functions u1 and
u2 : I → � such that

u′1(t) � �(u1)(t) + q(t), u′2(t) � �(u2)(t) + q(t) a.e. on I

and

u1(a) � u2(a),

the inequality

u1(t) � u2(t) for t ∈ I

is fulfilled. So, Theorem 1.1 formulated below is in fact a theorem on differential
inequalities. On the other hand, due to the Fredholm property of the problem (1.1),

(1.2) (see [4, 5]), it is clear that if � ∈ SI then this problem is uniquely solvable for
any c ∈ � and q ∈ L(I,�).

Theorem 1.1. Let one of the following conditions be fulfilled:
(i) � ∈ PI and there exist a nonnegative integer k, a natural number m > k and a

constant α ∈ ]0, 1[ such that

(1.5) �m(t) � α�k(t) for t ∈ I,
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where

�0(t) ≡ 1, �i(t) =
∫ t

a

�(�i−1)(s) ds (i = 1, 2, . . .);

(ii) � ∈ PI and there exists an absolutely continuous function γ : I → ]0,+∞[ such
that

(1.6) γ′(t) � �(γ)(t) a.e. on I;

(iii) � ∈ PI and there exists �̄ ∈ PI such that for any v ∈ C(I,�+ ), the inequalities

(1.7) �(ϕ(v))(t) − �(1)(t)ϕ(v)(t) � �̄(v)(t) a.e. on I

and

(1.8)
∫ b

a

�̄(1)(s) exp

(∫ b

s

�(1)(ξ) dξ

)
ds < 1

are fulfilled, where

ϕ(v)(t) =
∫ t

a

�(v)(s) ds for t ∈ I;

(iv) � is a Volterra’s type operator, −� ∈ PI and there exists an absolutely continu-

ous function γ : I → ]0,+∞[ such that

(1.9) γ′(t) � �(γ)(t) a.e. on I.

Then � ∈ SI .

Corollary 1.1. Let one of the following conditions be fulfilled:
(i) pi(t) � 0 almost everywhere on I (i = 1, . . . , m) and

(1.10)
m∑

i,k=1

∫ t

a

pk(s)

(∫ τk(s)

a

pi(ξ) dξ

)
ds � α

m∑

i=1

∫ t

a

pi(s) ds for t ∈ I,

where α ∈]0, 1[;
(ii) pi(t) � 0 almost everywhere on I (i = 1, . . . , m) and

(1.11)
m∑

i=1

∫ τk(t)

t

pi(s) ds � 1
e

for t ∈ I (k = 1, . . . , m);
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(iii) pi(t) � 0 almost everywhere on I (i = 1, . . . , m) and

(1.12)
∫ b

a

m∑

k=1

pk(s)σk(s)
∫ τk(s)

s

m∑

i=1

pi(ξ) dξ exp

(∫ b

s

m∑

j=1

pj(ξ) dξ

)
ds < 1,

where σk(t) = 1
2

(
1 + sgn(τk(t)− t)

)
for almost all t ∈ I (k = 1, . . . , m);

(iv) pi(t) � 0 almost everywhere on I (i = 1, . . . , m) and

(1.13)
m∑

i=1

∫ t

τk(t)
|pi(s)| ds � 1

e
for t ∈ I (k = 1, . . . , m),

where τk(t) � t for almost all t ∈ I (k = 1, . . . , m). Then the operator

�(v)(t)
def
=

m∑

k=1

pk(t)v(τk(t))

belongs to the set SI .

1.2. Existence and uniqueness theorems.

Theorem 1.2. Let one of the following conditions be fulfilled:
(i) there exist �i ∈ PI (i = 0, 1) and an absolutely continuous function γ : I →
]0,+∞[ such that � = �0 − �1 and

γ′(t) � �0(γ)(t) + �1(1)(t) a.e. on I,(1.14)

γ(b) � 3;(1.15)

(ii) −� ∈ PI and there exists an absolutely continuous function γ : I → ]0,+∞[
such that (1.9) is satisfied.

Then the problem (1.1), (1.2) has a unique solution.

Corollary 1.2. Let

∫ b

a

m∑

k=1

[pk(s)]− exp

(∫ b

s

m∑

i=1

[pi(ξ)]+ dξ

)
ds < 3,(1.16)

(
t− τk(t)

)
[pk(t)]+ � 0 a.e. on I (k = 1, . . . , m).(1.17)

Then the problem (1.1′), (1.2) has a unique solution.
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Corollary 1.3. Let

(1.18)
∫ b

a

m∑

k=1

[pk(s)]− ds+ α+ 3β < 3,

where

α =
∫ b

a

m∑

k=1

[pk(s)]+

(∫ τk(s)

a

m∑

i=1

[pi(ξ)]− dξ

)
exp

(∫ b

s

m∑

j=1

[pj(ξ)]+ dξ

)
ds

and

β =
∫ b

a

m∑

k=1

[pk(s)]+σk(s)

(∫ τk(s)

s

m∑

i=1

[pi(ξ)]+ dξ

)
exp

(∫ b

s

m∑

j=1

[pj(ξ)]+ dξ

)
ds,

where σk(t) = 1
2

(
1 + sgn(τk(t) − t)

)
for almost all t ∈ I (k = 1, . . . , m). Then the

problem (1.1′), (1.2) has a unique solution.

Theorem 1.3. Let � = �0 − �1, where �i ∈ PI (i = 0, 1),
∫ b

a

�0(1)(s) ds < 1(1.19)

and

∫ b

a

�1(1)(s) ds < 1 + 2

(
1−

∫ b

a

�0(1)(s) ds

)1
2

.(1.20)

Then the problem (1.1), (1.2) has a unique solution.

Remark 1.3. The conditions in Theorems 1.2 and 1.3, in general, do not guar-
antee � ∈ SI . Let

�(u)(t) = −ε

∫ b

t

u(s) ds, ε > 0.

It is easy to verify that for a sufficiently small ε, the conditions of Theorems 1.2 and
1.3 are fulfilled. Suppose that � ∈ SI . Let u0 be the solution of the problem (1.1),

(1.2), with c = 0 and

(1.21) q(t) =

{
0 for a � t < 1

2 (a+ b),

1 for 12 (a+ b) � t � b.

Then

(1.22) u0(t) � 0, u0(t) �≡ 0 for t ∈ I.

Therefore we can find a1 ∈ ]a, 12 (a+b)[ such that �(u0)(t) < 0 for t ∈ [a, a1[. It follows

from (1.1) and (1.21) that u′0(t) < 0 for t ∈ [a, a1[, which together with u(a) = 0
contradicts (1.22). Consequently, � �∈ SI .
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Remark 1.4. If �1 ≡ 0, then the condition (1.20) becomes unimportant and for
the solvability of (1.1), (1.2) we get the condition (1.19), which corresponds to the
result obtained in [4].

At the end of this section let us present an example verifying the optimality of the
above formulated conditions in existence and uniqueness theorems.

Example 1.1. Let a = 0, b = 3, ε > 0,

(1.23) τ(t) =

{
3 for 0 � t � 1,
1 for 1 < t � 3,

�(v)(t) = −v(τ(t)).

It is clear that �0 ≡ 0, �1(v)(t) = v(τ(t)), the function γ(t) = t + ε satisfies the
inequality (1.14) and γ(3) = 3 + ε. On the other hand, the problem (1.3) has the

nontrivial solution

u(t) =

{
t for 0 � t � 1,
2− t for 1 < t � 3.

Consequently, the condition (1.15) cannot be replaced by the condition

γ(b) � 3 + ε

for an arbitrarily small ε > 0. This example shows also that the strict inequalities

in (1.16), (1.18) and (1.20) cannot be replaced by nonstrict ones.

Remark 1.5. Let the operator � be defined by (1.23). Then for an arbitrarily
small ε > 0, the function γ(t) ≡ ε satisfies the inequality

(1.24) γ′(t) � �(γ)(t) + ε.

On the other hand, as shown above, the problem (1.3) has a nontrivial solution.

Consequently, the inequality (1.9) cannot be replaced by the inequality (1.24) for an
arbitrarily small ε.
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2. Proofs of the main results

����� of Theorem 1.1. (i) Let u : I → �+ be an absolutely continuous function
which satisfies (1.4). According to Remark 1.1, it is sufficient to show that u(t) ≡ 0.
Denote by �̃i (i = 0, 1, . . .) the operators defined by

�̃0(u)(t) = u(t), �̃i(u)(t) =
∫ t

a

�
(
�̃i−1(u)

)
(s) ds (i = 1, 2, . . .).

Then we have

�̃i(1)(t) = �i(t) (i = 0, 1, . . .)

and

�̃m(u)(t) = �̃m−k(�̃k(u))(t).(2.1)

Now (1.4) and the nonnegativeness of � result in

u(t) � �̃i(u)(t) (i = 0, 1, . . .)(2.2)

and

u(t) � ‖u‖C · �̃k(1)(t) = ‖u‖C · �k(t).(2.3)

Let

(2.4) v(t) =




0 if �k(t) = 0,

u(t)
�k(t)

if �k(t) �= 0.

Then (2.3) implies


 = ess sup{v(t) : t ∈ I} < +∞

and

u(t) � 
�k(t) = 
�̃k(1)(t).

Hence by (2.1), (2.2) and (1.5) we find

u(t) � �̃m−k(u)(t) � 
�̃m−k(�̃k(1))(t) = 
�̃m(1)(t) = 
�m(t) � α
�k(t),
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whence in view of (2.4) we obtain

v(t) � α


and, consequently,


 � α
.

Since α ∈ ]0, 1[, we have 
 = 0, which implies u(t) ≡ 0.
(ii) Let u be a nontrivial solution of the problem (1.3). Due to � ∈ PI and (1.3),

we obtain

(2.5) |u(t)|′ = �(u)(t) sgnu(t) � �(|u|)(t) a.e. on I.

We can find t∗ ∈ ]a, b] such that

|u(t∗)|
γ(t∗)

= λ∗,

where

λ∗ = max

{ |u(t)|
γ(t)

: t ∈ I

}
.

Put v(t) = λ∗γ(t)− |u(t)| for t ∈ I. It is obvious that

(2.6) v(t) � 0 for t ∈ I, v(a) = λ∗γ(a) > 0, v(t∗) = 0.

By (1.6), (2.5) and (2.6) we have

v′(t) � λ∗�(γ)(t)− �(|u|)(t) = �(v)(t) � 0 a.e. on I,

which contradicts (2.6). Consequently, the problem (1.3) has only the trivial solution.
Now let u0 be the solution of the problem (1.1), (1.2) with c � 0 and q ∈ L(I,�+ ).

Suppose that [u0(t)]− �≡ 0. By virtue of � ∈ PI and (1.1) we find

[u0(t)]′− =
1
2

(
�(u0)(t) sgnu0(t)− �(u0)(t)

)
+
1
2
q(t)

(
sgnu0(t)− 1

)
(2.7)

� �([u0]−)(t) a.e. on I.

We can choose t0 ∈ ]a, b] such that

[u0(t0)]−
γ(t0)

= λ0,

where

λ0 = max

{
[u0(t)]−

γ(t)
: t ∈ I

}
.

521



Put v0(t) = λ0γ(t)− [u0(t)]− for t ∈ I. It is clear that

(2.8) v0(t) � 0 for t ∈ I, v0(a) = λ0γ(a) > 0, v0(t0) = 0.

By (1.6), (2.7) and (2.8) we have v′0(t) � �(v0)(t) � 0 almost everywhere on I,
which contradicts (2.8). The contradiction obtained proves that [u0(t)]− ≡ 0. Con-
sequently, u0(t) � 0 for t ∈ I.
(iii) According to Remark 1.1, it is sufficient to show that the problem (1.4) has

no nontrivial nonnegative solution. Assume to the contrary that there exists an
absolutely continuous function u : I → �+ such that u(t) �≡ 0 and (1.4) is fulfilled.
Clearly,

(2.9) u′(t) = �(u)(t)− q(t),

where q(t) = �(u)(t) − u′(t) � 0 almost everywhere on I. In view of (2.9) we find
that u satisfies also the inequality

u′(t) = �(1)(t)u(t) +
(
�(ϕ(u))(t)− �(1)(t)ϕ(u)(t)

)

+
(
�(1)(t)Q(t)− �(Q)(t)− q(t)

)
a.e. on I,

where

Q(t) =
∫ t

a

q(s) ds � 0 for t ∈ I.

From the last inequality according to the Cauchy formula we get

u(t) =
∫ t

a

[
�(ϕ(u))(s) − �(1)(s)ϕ(u)(s)(2.10)

+H(s)
]
exp

(∫ t

s

�(1)(ξ) dξ

)
ds for t ∈ I,

where

H(t) = �(1)(t)Q(t)− �(Q)(t)− q(t) a.e. on I.

It is evident that
∫ t

a

(
�(1)(s)Q(s)− q(s)

)
exp

(
−

∫ s

a

�(1)(ξ) dξ

)
ds = −Q(t) exp

(
−

∫ t

a

�(1)(s) ds

)
.

By virtue of this equality and (1.7), we obtain from (2.10) that

u(t) �
∫ t

a

�̄(u)(s) exp

(∫ t

s

�(1)(ξ) dξ

)
ds for t ∈ I.

Hence by (1.8) we get the contradiction ‖u‖C < ‖u‖C .
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(iv) It is well-known (see e.g. Theorem 1.2′ in [4]) that if � is a Volterra operator,

then the problem (1.1), (1.2) has a unique solution. Let u0 be a solution of (1.1),
(1.2), where q ∈ L(I,�+ ) and c � 0. It remains to show that

u0(t) � 0 for t ∈ I.

First note that if c = 0 and ‖q‖L �= 0, then u0 must assume positive values, since

(1.1) and −� ∈ PI would yield the contradiction u′0(t) � 0. Consequently,

(2.11) max{u0(t) : t ∈ I} > 0.

Let

(2.12) c0 = max

{
u0(t)
γ(t)

: t ∈ I

}
.

Then the inequalities

(2.13) c0 > 0, c0γ(t)− u0(t) � 0 for t ∈ I

are fulfilled. Moreover, there exists t1 ∈ I such that

(2.14) c0γ(t1)− u0(t1) = 0.

Due to the nonpositiveness of � we have

(
c0γ(t)− u0(t)

)′ � �(c0γ − u0)(t)− q(t) � 0.

Hence

(2.15) u0(t) > 0 for t ∈ [t1, b]

and, consequently, u0(b) > 0.

Now let b1 ∈ ]a, b] be an arbitrarily but fixed point. Denote by �1, u01, γ1 and q1
the restrictions of �, u0, γ and q to the interval [a, b1]. Since � is a Volterra operator,

we have

γ′1(t) � �1(γ1)(t) a.e. on [a, b1]

and

u′01(t) = �1(u01)(t) + q1(t) a.e. on [a, b1].

From the above it immediately follows that either u01(t) ≡ 0 or u01(b1) > 0. The
arbitrariness of b1 ∈ ]a, b] and (1.2) result in u0(t) � 0 for t ∈ I. �
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����� of Corollary 1.1. Put

�(u)(t) =
m∑

i=1

pi(t)u(τi(t))(2.16)

and

�̄(u)(t) =
m∑

k=1

pk(t)σk(t)
∫ τk(t)

t

m∑

i=1

pi(ξ)u(τi(ξ)) dξ,(2.17)

where σk(t) = 1
2 (1 + sgn

(
τk(t)− t)

)
for almost all t ∈ I (k = 1, . . . , m).

(i) By (2.16) and (1.10) we have

�2(t) � α�1(t) for t ∈ I,

where

�1(t) =
∫ t

a

�(1)(s) ds, �2(t) =
∫ t

a

�(�1)(s) ds

and the assumptions of Theorem 1.1 are fulfilled.

(ii) Define a function

γ(t) = exp

(
e

m∑

k=1

∫ t

a

pk(s) ds

)
.

Then by (2.16) and (1.11) we get

�(γ)(t) = γ(t)
m∑

i=1

pi(t) exp

(
e

m∑

k=1

∫ τi(t)

t

pk(s) ds

)

� eγ(t)
m∑

i=1

pi(t) = γ′(t) a.e. on I

and the assumptions of Theorem 1.1 are fulfilled.

(iii) By (2.16), (2.17) and (1.12), for any u ∈ C(I,�+ ) we have

�(ϕ(u))(t) − �(1)(t)ϕ(u)(t) =
m∑

k=1

pk(t)
∫ τk(t)

t

m∑

i=1

pi(ξ)u(τi(ξ)) dξ � �̄(u)(t)

and the assumptions of Theorem 1.1 are fulfilled.
(iv) Define a function

γ(t) = exp

(
−e

m∑

k=1

∫ t

a

|pk(s)| ds
)

.
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Then by (2.16) and (1.13) we get

�(γ)(t) = γ(t)
m∑

i=1

pi(t) exp

(
e

m∑

k=1

∫ t

τi(t)
|pk(s)| ds

)

� eγ(t)
m∑

i=1

pi(t) = γ′(t) a.e. on I

and the assumptions of Theorem 1.1 are fulfilled. �

Remark 2.1. As has been said above, the problem (1.1), (1.2) has the Fredholm
property. Therefore to prove Theorems 1.2 and 1.3 it is sufficient to show that the

corresponding homogeneous problem (1.3) has only the trivial solution.

����� of Theorem 1.2. (i) We shall show that the homogeneous problem (1.3)

has only the trivial solution. Assume on the contrary that there exists a nontrivial
solution u. Put

(2.18) m = −min{u(t) : t ∈ I}, M = max{u(t) : t ∈ I}.

From (1.14) by Theorem 1.1 (ii) we have �0 ∈ SI . Hence by Definition 1.1 we find
that u must change sign on I, i.e.

(2.19) m > 0, M > 0.

Denote by γi (i = 0, 1) the solutions of the problems

γ′0(t) = �0(γ0)(t) +
1
M

�1([u]+)(t), γ0(a) = 0,(2.20)

γ′1(t) = �0(γ1)(t) +
1
m

�1([u]−)(t), γ1(a) = 0.(2.21)

Due to �0 ∈ SI , by (2.20) and (2.21) we have

γ0(t) �0, γ1(t) � 0 for t ∈ I,(2.22)

γ′0(t) �0, γ′1(t) � 0 a.e. on I.(2.23)
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It is clear that

(
Mγ0(t) + u(t)

)′
= �0(Mγ0 + u)(t) + �1([u]−)(t),(2.24)

Mγ0(a) + u(a) = 0,
(
mγ1(t)− u(t)

)′
= �0(mγ1 − u)(t) + �1([u]+)(t),(2.25)

mγ1(a)− u(a) = 0,
(
γ(t)− γ0(t)− γ1(t)

)′
= �0(γ − γ0 − γ1)(t) + h(t),

γ(a)− γ0(a)− γ1(a) > 0,

where

h(t) = �1

(
1− [u]+

M
− [u]−

m

)
(t) a.e. on I.

Hence, taking into account that �0 ∈ SI and

[u(t)]+
M

+
[u(t)]−

m
� 1 for t ∈ I,

we have

−Mγ0(t) � u(t) � mγ1(t) for t ∈ I,(2.26)

γ0(t) + γ1(t) < γ(t) for t ∈ I.(2.27)

From (2.24), (2.25), together with �i ∈ PI (i = 0, 1) and (2.26), we get

(2.28)
(
Mγ0(t) + u(t)

)′ � 0,
(
mγ1(t)− u(t)

)′ � 0 a.e. on I.

We can choose t1 ∈ ]a, b] and t2 ∈ ]a, b] such that

(2.29) u(t1) =M, u(t2) = −m.

Now we suppose that t1 < t2 (t2 < t1). Integrating the first (the second) inequality

of (2.28) from t1 to t2 (from t2 to t1), by (2.22) and (2.23) we get

M +m � M
(
γ0(t2)− γ0(t1)

)
� Mγ0(b),(2.30)

(
M +m � m

(
γ1(t1)− γ1(t2)

)
� mγ1(b)

)
.(2.31)

On the other hand, from (2.26) together with (2.22), (2.23) and (2.29) we have

(2.32) m � Mγ0(t2) � Mγ0(b), M � mγ1(t1) � mγ1(b).
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Now by (2.27), (2.30), (2.31) and (2.32) it is clear that

3 � 1 + M

m
+

m

M
� γ0(b) + γ1(b) < γ(b),

which contradicts (1.15).

(ii) It is sufficient to show that the homogeneous problem (1.3) has only the trivial
solution.

Assume on the contrary that there exists a nontrivial solution u0 of the prob-

lem (1.3). Note that u0 must change its sign and, consequently, (2.11) holds. Let c0
be the number defined by (2.12). Then (2.13) holds and

(
c0γ(t)− u0(t)

)′ � �(c0γ − u0)(t).

Hence, by (2.13) and the fact that � is nonpositive, we find that c0γ − u0 is a
nonincreasing function and for some t1 ∈ I the inequality (2.14) holds. Then (2.15)

holds and, consequently,

(2.33) u0(b) > 0.

Now, if we put

(2.34) v(t) = −u0(t)

then we have that v is a solution of (1.3). Consequently, we can show as above that
v(b) > 0, which is a contradiction to (2.33) and (2.34). �

����� of Corollary 1.2. It follows from (1.16) that we can find ε > 0 such that

∫ b

a

m∑

k=1

[pk(s)]− exp

(∫ b

s

m∑

i=1

[pi(ξ)]+ dξ

)
ds � 3− ε exp

(∫ b

a

m∑

i=1

[pi(ξ)]+ dξ

)
.

Put

γ(t) = ε exp

(∫ t

a

m∑

i=1

[pi(ξ)]+ dξ

)
+

∫ t

a

m∑

k=1

[pk(s)]− exp

(∫ t

s

m∑

i=1

[pi(ξ)]+ dξ

)
ds

for t ∈ I. Clearly, (1.15) is fulfilled and

(2.35) γ′(t) =
m∑

i=1

[pi(t)]+γ(t) +
m∑

k=1

[pk(t)]− a.e. on I.

527



Since γ is nondecreasing, from (1.17) we have

(
γ(t)− γ(τk(t)

)
[pk(t)]+ � 0 a.e on I (k = 1, . . . , m).

Therefore (2.35) implies (1.14), where

�0(v)(t) =
m∑

k=1

[pk(t)]+v(τk(t)), �1(v)(t) =
m∑

k=1

[pk(t)]−v(τk(t)).

�

����� of Corollary 1.3. From (1.18) we have β < 1. Consequently, by Corol-
lary 1.1 we find that �0 ∈ SI , where

�0(v)(t) =
m∑

k=1

[pk(t)]+v(τk(t)).

Choose δ > 0 and ε > 0 such that

(1 − β)−1
(∫ b

a

m∑

k=1

[pk(s)]− ds+ α

)
< 3− δ,(2.36)

ε < δ(1 − β) exp

(
−

∫ b

a

m∑

k=1

[pk(s)]+ ds

)
.(2.37)

Denote by γ the solution of the problem

u′(t) =
m∑

k=1

[pk(t)]+u(τk(t)) +
m∑

k=1

[pk(t)]−, u(a) = ε.

Due to �0 ∈ SI we find that γ is a nondecreasing function. It is also clear that γ is
a solution of the equation

u′(t) =
m∑

k=1

[pk(t)]+u(t) +
m∑

k=1

[pk(t)]+

∫ τk(t)

t

m∑

i=1

[pi(s)]+γ(τi(s)) ds

+
m∑

k=1

[pk(t)]+

∫ τk(t)

t

m∑

i=1

[pi(s)]− ds+
m∑

k=1

[pk(t)]−.

Hence the Cauchy formula yields

γ(b) � βγ(b) +

(∫ b

a

m∑

k=1

[pk(s)]− ds+ α

)
+ ε exp

(∫ b

a

m∑

i=1

[pi(s)]+ ds

)
.

This inequality and (2.36), (2.37) result in γ(b) < 3. Consequently, the assumptions
of Theorem 1.2 are fulfilled. �
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����� of Theorem 1.3. We shall show that the homogeneous problem (1.3)

has only the trivial solution. Assume on the contrary that there exists a nontrivial
solution u. Let m and M be numbers defined by (2.18). Taking into account that
�i ∈ PI (i = 0, 1) and (1.19), from Theorem 1.1 (i) we find that (2.19) holds. Choose

t1, t2 ∈ ]a, b] such that (2.29) is fulfilled. Without loss of generality we can assume
that t1 < t2. If we integrate the equation (1.3) from a to t1 and from t1 to t2, then

in view of (2.18), (2.19), (2.29) and �i ∈ PI (i = 0, 1) we get

(2.38) M � M · C +m ·A, M +m � M · B +m ·D,

where

A =
∫ t1

a

�1(1)(s) ds, B =
∫ t2

t1

�1(1)(s) ds,(2.39)

C =
∫ t1

a

�0(1)(s) ds, D =
∫ t2

t1

�0(1)(s) ds.(2.40)

From (1.19), (2.38), (2.39) and (2.40) we have

C < 1, D < 1, B > 1,

M � A

1− C
m, m � B − 1

1−D
M.

These inequalities imply

(2.41) (1− C)(1 −D) � A(B − 1).

On the other hand, we have

(1− C)(1−D) � 1− (C +D) � 1−
∫ b

a

�0(1)(s) ds

and

4A(B − 1) � (A+B − 1)2 �
(∫ b

a

�1(1)(s) ds− 1
)2

.

Hence by (2.41) we get

∫ b

a

�1(1)(s) ds � 1 + 2
(
1−

∫ b

a

�0(1)(s) ds

)1
2

,

which contradicts (1.20). �
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