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Abstract. In this paper we study primary elements in Prüfer lattices and characterize
α-lattices in terms of Prüfer lattices. Next we study weak ZPI-lattices and characterize
almost principal element lattices and principal element lattices in terms of ZPI-lattices.

Keywords: principal element, primary element, Prüfer lattice

MSC 2000 : 06F10, 06F05, 06F99, 13A15

An element e of a multiplicative lattice L is said to be principal if it satisfies the
dual identities (i) a ∧ be = ((a : e) ∧ b)e and (ii) (a ∨ be) : e = (a : e) ∨ b. Elements

satisfying the first identity are called meet principal and elements satisfying the
second identity are said to be join principal. An element e of L is said to be a

cancellation element if, for any a, b ∈ L, ae = be implies a = b. By a C-lattice we
mean a (not necessarily modular) complete multiplicative lattice with least element 0

and compact greatest element 1 (a multiplicative identity), which is generated under
joins by a multiplicatively closed subset C of compact elements. In a principally

generated C-lattice, principal elements are compact [1, Theorem 1.3] and a finite
product of principal elements is again a principal element [7].

Throughout this paper we assume that L is a C-lattice generated by principal

elements. C-lattices can be localized. For any prime element p of L, Lp denotes the
localization at F = {x ∈ C | x �� p}. For basic properties of localization, the reader
is referred to [9]. We also note that in a C-lattice, a = b if and only if am = bm

for all maximal elements m of L. For any prime element p of L, p∆ denotes the

meet of all p-primary elements of L. A prime element p of L is said to be branched
(unbranched) if p > p∆ (p = p∆). Let p, m be two prime elements of L. We say

m covers p if m > p and there is no prime element p1 of L such that m > p1 > p.
An element q is said to be p-semiprimary if p is a prime element and

√
q = p.
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L is said to be reduced if 0 is the only nilpotent element of L. A multiplicative

lattice L in which every element is principal is called a principal element lattice.
Similarly, L is said to be an almost principal element lattice if Lm is a principal
element lattice for every maximal element m of L. For various characterizations of

almost principal element lattices and principal element lattices, the reader is referred
to [5], [8] and [10]. It is well known that L is a principal element lattice if and only

if every prime element is principal. L is said to be a Prüfer lattice if every compact
element is principal. It is well known that L is a Prüfer lattice if and only if Lp is

totally ordered for every prime p of L. For more information on Prüfer lattices, the
reader is referred to [1, Theorem 3.4] and [15]. π-lattices were introduced in [1]. A

multiplicative lattice L0 is said to be a π-lattice if L0 is generated by a set S of
elements (not necessarily principal) each of which is a product of prime elements. A

ZPI-lattice is a multiplicative lattice in which every element is a product of prime
elements. A C-lattice L0 is said to be an M-normal lattice if every prime element

contains a unique minimal prime element. For various characterizations of M-normal
lattices the reader is referred to [3] and [13].

In this paper we study primary elements in Prüfer lattices and characterize
α-lattices. In fact, it is established that a reduced lattice L is an α-lattice if and only

if L is a Prüfer lattice in which every non minimal prime is non idempotent if and
only if L is a Prüfer lattice in which the a.c.c. (ascending chain condition) for prime

elements is valid and every idempotent prime is unbranched (see Theorem 6). Next
we study weak ZPI-lattices. We prove that L is an almost principal element lattice if

and only if Lm is a ZPI-lattice for every maximal element m of L. Using this result,
we characterize principal element lattices and almost principal element lattices in

terms of ZPI-lattices (see Theorem 8 and Theorem 9). For general background and
terminology, the reader may consult [1], [4] and [9].

We shall begin with several lemmas.

Lemma 1. Let q be p-semiprimary. Assume that, for each maximal element m

of L, qm is pm-primary in Lm. Then q is p-primary.

�����. Since
√

q = p, it follows that qp is p-primary ([9, Proposition 0.5]).

We show that qm = (qp)m for every maximal element m of L. Let p � m for some
maximal element m of L and let xm � (qp)m for some principal element x of L. Then

xy � qp for some y �� m. Again xyz � q for some z �� p. Note that xmzm � qm and
zm �� pm. Since qm is pm-primary, it follows that xm � qm and hence qm = (qp)m.

Consequently, q = qp and hence q is p-primary. �

Lemma 2. Let p be a prime element of L such that p is comparable with other

elements. If 0p � pn (n ∈ �+), then pn is p-primary.

586



�����. Suppose xy � pn and y �� p for some principal elements x, y ∈ L. As

y �� p, by hypothesis, p � y, so p = yy′ for some y′ ∈ L. Note that y′ � p, so
that xy � pn = pn−1p = pn−1yy′ and therefore x � pn−1y′ ∨ 0 : y. Again since
y �� p, it follows that (0 : y) � 0p � pn and hence x � pn. This shows that pn is

p-primary. �

Lemma 3. Let L be totally ordered and let a be a non zero element of L. Then

exactly one of the following cases occurs:

(i) a = a2 is prime;

(ii) an+1 < an for all n,
∞∧

n=1
an is prime and

∞∧
n=1

an =
∞∧

n=1
en for any principal

element e � a with e �� a2;

(iii) an = 0 for some n.

�����. The proof of the lemma is similar to that of Theorem 3.1 of [2]. �

Lemma 4. Let L be a totally ordered lattice and let p be a non idempotent prime
element. If q is p-primary and q < p, then q = pk for some k ∈ �+.

�����. Suppose q < p is p-primary. Since p �= p2, by Lemma 3, either
∞∧

n=1
pn

is prime or pn = 0 for some n ∈ �+. Since q is p-primary, we can find an integer k

such that pk � q < pk−1. We claim that q = pk. Let x � q and choose any principal

element y � pk−1 such that y �� q. Then x � q < y � pk−1. Since y is principal, we
have x = yz for some z ∈ L. As yz � q, y �� q and q is p-primary, it follows that

z � p and hence x = yz � pk−1p = pk. This shows that q = pk. �

Theorem 1. Suppose L is a Prüfer lattice. If p is a prime element and 0p � pn,

then pn is p-primary.

�����. Suppose p is a prime element and 0p � pn. Letm be a maximal element

of L such that p � m. By hypothesis, Lm is totally ordered. It can be easily verified
that 0pm � pn

m and hence by Lemma 2, p
n
m is a pm-primary element of Lm. Now the

proof of the theorem follows from Lemma 1. �

Theorem 2. Suppose L is a Prüfer lattice. Let p be a prime element and let

0p � pn. Then there exists no primary element q such that pn < q < pn−1.

�����. By Theorem 1, pi is p-primary for i = 1, 2, . . . , n. If p = p2, then we are

through. Suppose p �= p2. Then pp �= p2p. As Lp is totally ordered, with pp as the non
idempotent maximal element, by Lemma 4, if q is p-primary, then q = qp = (pp)k

for some k ∈ �+. Hence pn < q < pn−1 fails to hold for any p-primary element q

of L. �
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Lemma 5. Let L be a totally ordered lattice. Suppose p is a prime element for

which pn is not primary for some n ∈ �+. Then pn = 0.

�����. Let n be the least positive integer such that pn is not primary. Then by
Theorem 1, pn < 0p � pn−1. As pn < 0p, it follows that p is a minimal prime, so 0p
is p-primary and hence by Lemma 4, 0p = pn−1. Now pn = pn−1p = 0pp. Observe
that 0pp =

∨{xp | x is principal and x � 0p}. Again if x is principal and x � 0p,
then (0 : x) �� p, so p � (0 : x), and hence xp = 0. This shows that pn = 0. �

Theorem 3. Suppose L is a Prüfer lattice. Let p be a non minimal prime element.

Then pn is p-primary for all n ∈ �+.

�����. Suppose pk is not p-primary for some k ∈ �+. By Lemma 1, there
exists a maximal element m such that p � m and pk

m is not pm-primary. As Lm is

totally ordered, by Lemma 5, pk
m = 0m. As p is non minimal, it follows that p0 < p

for some prime element p0 of L. But pk � 0m � p0 < p, which is a contradiction.

Hence pn is p-primary for all n ∈ �+ and the proof is complete. �

Theorem 4. Suppose L is a Prüfer lattice. Let p be a non minimal prime element

of L. Then
∞∧

n=1
pn is a prime element.

�����. If p = p2, then we are through. Suppose p �= p2. By Theorem 3,

pn = pn
p for all n ∈ �+. As Lp is totally ordered, by Lemma 3,

∞∧
n=1

pn
p is prime (

∧
is

the meet in Lp) in Lp. Now it can be easily verified that
∞∧

n=1
pn is a prime element

in L. �

Theorem 5. Suppose L is a Prüfer lattice and p �= p2 is a prime element. If p is

non minimal, then {pn}∞n=1 is the set of all p-primary elements. If p is minimal and
if q > 0p is a p-primary element, then q is a power of p.

�����. Suppose p is non minimal. Then by Theorem 3, pn is p-primary for
all n ∈ �+. Also by Theorem 4, pn �= pn+1 for all n ∈ �+. Again by Lemma 4, every
p-primary element is a power of p. Therefore {pn}∞n=1 is the set of all p-primary
elements. Suppose p is minimal. If pn is p-primary for all n ∈ �

+, then pp is a

non idempotent prime element of Lp. Therefore by Lemma 4, if q is p-primary, then
q = qp = pk

p = pk. Now assume that pn is not p-primary for some n ∈ �+. By
Lemma 1, there exists a maximal element m of L such that p � m and pn

m is not pm-
primary in Lm. Let k be the least positive integer for which there exists a maximal

element m such that pk
m is not pm-primary. By Lemma 5, pk

m = 0m. Again if t < k,
then pt is p-primary. Therefore we have pk � 0m � 0p � pk−1. Note that as L is a
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Prüfer lattice, the set of all p-primary elements is linearly ordered. If q is p-primary

and pk−1 � q, then by Theorem 2, q is a power of p. Suppose 0p < q � pk−1. Then
0p < qp � pk−1

p in Lp and hence by Lemma 4, qp = pk−1
p in Lp. Consequently,

q = pk−1. This completes the proof of the theorem. �

L is said to satisfy the condition (α) if every primary element is a power of its

radical. Multiplicative lattices satisfying the condition (α) have been studied in [11]
to characterize principal element lattices.

Definition 1. L is said to be an α-lattice if the ascending chain condition for
prime elements is valid in L and every primary element is a power of its radical.

If R is an α-ring (see [6]), then the lattice of all ideals of R is an α-lattice. Also

almost principal element lattices are examples of α-lattices (see [8, Theorem 5] and
[10, Theorem 1]). Using the properties 0.7 and 0.8 of [9], it is not hard to show that

if L is an α-lattice, then Lp is again an α-lattice for every prime element p of L.

Lemma 6. If L is a quasi-local α-lattice, then the prime elements are comparable.

�����. By using [11, Theorem 3] and by imitating the proof of Theorem 4.3
of [6] we can get the result. �

Lemma 7. Let L be a reduced quasi-local α-lattice. Then L is totally ordered.

�����. By Lemma 6, L is a domain. Suppose there exist non comparable
principal elements. Let

Ψ = {p ∈ L | p is the radical of two non comparable principal elements}.

By our assumption, Ψ �= ϕ. As the prime elements are linearly ordered, it follows that

every p ∈ Ψ is a prime element. Again by the a.c.c. for prime elements, Ψ contains
a maximal element, say m. Let m =

√
x ∨ y, where x and y are non comparable

principal elements. We claim that m is branched. As m �= 0, by the a.c.c. for prime
elements, there exists a prime element p such that m covers p. So either x �� p or

y �� p. Without loss of generality, assume that x �� p. Then m is minimal over
p ∨ x. Again by [9, Property 0.5] and [10, Lemma 12], m is branched. Also by [11,

Theorem 3], m∆ is prime and m covers m∆. Therefore either x �� m∆ or y �� m∆,
so either xm or ym is m-primary and hence xm and ym are comparable. Since L is

quasi-local, every principal element is (completely) join irreducible. Using this fact,
it can be easily shown that there exist two principal elements z, z1 ∈ L such that

xz = yz1 and either z �� m or z1 �� m (see also [4, Theorem 9]). Note that z and
z1 are non comparable as x and y are non-comparable. Let m0 =

√
z ∨ z1. Then

m0 ∈ Ψ and m < m0, a contradiction. Therefore L is totally ordered and the proof
is complete. �
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Theorem 6. Let L be a reduced lattice. Then the following statements are

equivalent:

(i) L is an α-lattice.

(ii) L is a Prüfer lattice in which every non minimal prime element is non idempo-

tent.

(iii) L is a Prüfer lattice in which every idempotent prime is unbranched and the

a.c.c. for prime elements is valid.

�����. (i) ⇒ (ii). Suppose (i) holds. By Lemma 7, L is a Prüfer lattice. Let
p be a non minimal prime. By the a.c.c. for prime elements, there exists a prime

element q < p such that p covers q. So p is minimal over q ∨ x for any principal
element x � p such that x �� q. Again by [10, Lemma 12] and [9, Property 0.5], p is

branched and hence by [11, Theorem 3], p can not be an idempotent element.

(ii) ⇒ (iii). Suppose (ii) holds. We show that L satisfies the a.c.c. for prime
elements. By localizing if necessary, we may assume that L is totally ordered. Let

p1 < p2 < . . . < pn < . . . be an infinite strictly increasing chain of prime elements.

Then p =
∞∨

i=1
pi � p2 is an idempotent prime element, a contradiction. Therefore

L satisfies the a.c.c. for prime elements. Let p be an idempotent prime element.
By (ii), p is minimal. As L is reduced, it follows that p is unbranched. Therefore
(iii) holds.

(iii) ⇒ (i) follows from Theorem 5 and the fact that in a reduced lattice L the
minimal prime elements are unbranched. �

Next we define weak ZPI-lattices and characterize almost principal element lattices
and principal element lattices in terms of ZPI-lattices.

Definition 2. A multiplicative lattice L0 is said to be a weak ZPI-lattice, if L0
is generated by a set S of elements (not necessarily principal) such that for every
x, y ∈ S, x ∨ y is a finite product of prime elements.

Observe that principal element lattices and ZPI-lattices are examples of weak
ZPI-lattices. Obviously, every weak ZPI-lattice is a π-lattice.

Lemma 8. Let L be quasi-local with a maximal element m. Suppose the join

of any two principal elements is a finite product of prime elements. Then L is a

principal element lattice.

�����. Observe that L is a π-lattice, and so by [1, Lemma 4.1] and [4, Propo-
sition 2], every minimal prime of L is principal. Let p < m be a non-zero principal

prime and let y be a principal element satisfying y � m and y �� p. Then L/p is
generated under joins by elements of the form e∨ p, with e principal in L, and every
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such element is a product of primes. As e is join principal in L, e ∨ p is weak join

principal ([1], Proposition 1.1) and a product of primes in L/p. As a factor of a
cancellation element is a cancellation element in a domain, the factorization of e∨ p

as a product of primes is unique. As in the proof of [1, Lemma 4.8], it follows that

p � p2∨y, from which it follows that 1 = (p2∨y) : p = p∨(y : p). As L is quasi-local,
it follows that 1 = y : p. Therefore p � y and hence p = py. Again since p is join

principal, it follows that 1 = y ∨ (0 : p). This shows that either p = 0 or m is the
only prime of L. If m is minimal, then we are through. If m is non minimal, then

L is a one dimensional π-domain and hence by [5, Theorem 2.3 and Theorem 2.4],
L is a principal element lattice. �

Theorem 7. L is an almost principal element lattice if and only if Lm is a

ZPI-lattice for every maximal element m.

�����. Suppose L is an almost principal element lattice. Let m be a maximal
element. Then every element of Lm is principal. By [14, Theorem 5], Lm is a

ZPI-lattice. The converse follows from Lemma 8. �

Globally, we have the following

Theorem 8. The following statements on L are equivalent:

(i) L is a principal element lattice.

(ii) L is a ZPI-lattice.

(iii) The join of any two principal elements of L is a finite product of prime elements.

(iv) L is a weak ZPI-lattice.

�����. (i) ⇒ (ii). Suppose (i) holds. By [4, Theorem 1], L is an almost
principal element lattice and every element of L is compact. Again by [8, Theorem 5],
L is distributive and hence L is a Noether lattice. Now the result follows from [14,

Theorem 5].

(ii)⇒ (iii)⇒ (iv) is obvious.
(iv) ⇒ (i). Suppose (iv) holds. By definition, there exists a set S such that

S generates L under joins and for every x, y ∈ S, x ∨ y is a finite product of prime

elements. Observe that each x ∈ S has only finitely many minimal primes. Next we
show that each principal element has only finitely many minimal primes. Let a be

a principal element of L. As a is compact, we have a =
n∨

i=1
xi, x′

s

i ∈ S. Let p be a

minimal prime over a. Then ap = (xi)p for some i in Lp. By [9, Property 0.5], p is
a minimal prime over xi. Consequently, a has only finitely many minimal primes.

Again by [10, Theorem 8], it is enough if we show that L is an almost principal
element lattice. Let m be a maximal element of L. Let am, bm be two principal
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elements of Lm. Then by [4, Proposition 2], am = xm and bm = ym for some

x, y ∈ S. Therefore am ∨ bm = (x ∨ y)m is a finite product of prime elements in Lm.
So by Lemma 8, L is an almost principal element lattice. �

Theorem 9. Suppose L �= {0, 1} is a reduced lattice. Then the following state-
ments on L are equivalent:

(i) L is an almost principal element lattice.

(ii) Lm is a ZPI-lattice, for every maximal element m of L.

(iii) dimL � 1 and every primary element is a power of its radical.
(iv) L is a Prüfer lattice, dimL � 1 and every non minimal prime is non idempotent.
(v) L is an M-normal lattice and every element of L is locally join principal.

�����. (i)⇔ (ii) follows from Theorem 7, (i)⇒ (iii) follows from [10, Lemma 2
and Theorem 1] and (iii) ⇒ (iv) follows from Theorem 6. Now we prove that

(iv)⇒ (v). Suppose (iv) holds. Note that by [12, Lemma 2], L is an M-normal
lattice. Let m be a maximal element of L. If m is minimal, then by [12, Lemma

3], Lm is a two element chain. If m is non minimal, then Lm is a one dimensional
totally ordered domain. Again by [8, Lemma 7], Lm is a principal element domain.

This shows that (v) holds.

(v)⇒ (i). Suppose (v) holds. As L is a reduced M-normal lattice, by [12, Lemma 1
and Theorem 1], Lm is a domain for every maximal element m of L. By the proof
of [1, Theorem 1.5] and by [4, Theorem 1], every compact element is principal in L.

We show that every non minimal prime is maximal. By localizing if necessary, we
can assume that L is a quasi-local totally ordered domain. Let p be a non zero prime

and let e be a principal element such that e �� p. Then ep � e2, so ep = e2x for
some x ∈ L (e2 is principal). Again since e2x � p and e2 �� p, it follows that x � p.

Therefore ep = e2x � e2p and hence e � e2 (as p is join principal). As e is join
principal, we have 1 = e. Consequently, dimL = 1 and so the maximal element is
non idempotent. Now the result follows from [8, Lemma 7]. �
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