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Abstract. Let T be a locally compact Hausdorff space and let C0(T ) be the Banach
space of all complex valued continuous functions vanishing at infinity in T , provided with
the supremum norm. Let X be a quasicomplete locally convex Hausdorff space. A simple
proof of the theorem on regular Borel extension of X-valued σ-additive Baire measures
on T is given, which is more natural and direct than the existing ones. Using this result the
integral representation and weak compactness of a continuous linear map u : C0(T ) → X
when c0 6⊂ X are obtained. The proof of the latter result is independent of the use of
powerful results such as Theorem 6 of [6] or Theorem 3 (vii) of [13].

Keywords: weakly compact operator on C0(T ), representing measure, lcHs-valued σ-
additive Baire (or regular Borel, or regular σ-Borel) measures

MSC 2000 : 28B05, 28C05, 28C15

1. Introduction

Let T be a locally compact Hausdorff space and C0(T ) the Banach space of all
complex valued continuous functions vanishing at infinity in T , endowed with the
supremum norm.

If X is a Banach space with c0 6⊂ X and S is a compact Hausdorff space, then

Pelczyński [14] proved that each continuous linear map u : C(S) → X admits an
integral representation with respect to a σ-additive X-valued Borel measure on T

*The research was done before I. Dobrakov died.
** Supported by the project C-845-97-05-B of the C.D.C.H.T. of the Universidad de los
Andes, Mérida, Venezuela.
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and that u is weakly compact. His proof is a modification of the proof of Theo-

rem VI.7.6 of Dunford and Schwartz [4], where the argument of reduction to the
compact metrizable case plays a key role.

Later, in 1970, this result was extended in Theorem 5.3 of Thomas [17] to con-

tinuous linear maps u : C0(T ) → X , where X is a locally convex Hausdorff space
(briefly, an lcHs) which is quasicomplete and Σ-complete in the sense of [17], and
this includes the converse, too. Thomas also used the technique of reduction to the
compact metrizable case. While Pelczyński [14] used the Bartle-Dunford-Schwartz

representation theorem (Theorem VI.7.2 of [4]), Thomas [17] used the Grothendieck
characterizations of weakly compact operators on C(K), K a compact Hausdorff

space, as given in Theorem 6 of [6]. We also note that by Theorem 4 of Tumarkin [18]
the Σ-completeness of X as given in [17] is equivalent to the condition that c0 6⊂ X .

The proof of Thomas is highly technical as it uses not only his theory of Radon
vector measures but also Theorem 6 of [6] whose proof depends on some deep results

such as Theorems 2 and 3 and Proposition 11 of [6].

The aim of the present note is to give a simple direct proof of the Borel extension
theorem for quasicomplete lcHs valued Baire measures on T and then, as an appli-

cation, to deduce Theorem 5.3 of Thomas [17]. For the latter we just use Lemma 1
and Theorem 2 of Grothendieck [6] (no other result of Grothendieck [6] is used—

even in the Banach space situation its analogue has been used in the proof of [14])
and the first part of Theorem 1 of [13] (which is the locally convex space analogue

of the Bartle-Dunford-Schwartz representation theorem for continuous linear maps
on C0(T )). The present proof dispenses with the argument of reduction to the com-
pact metrizable case unlike the above mentioned proofs of [4], [14], [17].

The present proof emphasizes the fact that the weak compactness of the operators
in question is due to the existence of a regular Borel extension of X-valued Baire

measures on T . We would like to observe that this fact is not at all brought out
explicitly both in the earlier proofs (based on the technique of reduction to the

compact metrizable case) of [4], [14], [17] and in the recent proof of Theorem 13
of [13].

2. Preliminaries

In this section we fix the notation and terminology. For the convenience of the

reader we also give some definitions and results from literature.

In the sequel T will denote a locally compact Hausdorff space and C0(T ) the
Banach space of all complex valued continuous functions vanishing at infinity in T ,
endowed with a norm ‖ · ‖T given by ‖f‖T = sup

t∈T
|f(t)|.
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Let K (or K0) be the family of all compacts (compact Gδs, respectively) in T .

B0(T ), Bc(T ) and B(T ) are the σ-rings generated by K0, K and the class of all open
sets in T , respectively. The members of B0(T ) are called Baire sets of T and those
of Bc(T ) are called σ-Borel sets of T . The members of B(T ) are called Borel sets
of T . Since a subset E of T belongs to Bc(T ) if and only if E is a σ-bounded Borel
set, the members of Bc(T ) are called σ-Borel sets.

Definition 1. Let S be a σ-ring of sets in T such that K ⊂ S or K0 ⊂ S. A
complex (σ-additive) measure µ on S is said to be S-regular if, given E ∈ S and
ε > 0, there exist a compact K ∈ S and an open set U ∈ S with K ⊂ E ⊂ U such
that |µ(B)| < ε for every B ∈ S with B ⊂ U\K. When S = B(T ) (S = Bc(T ),
S = B0(T )), we use the terminology Borel (σ-Borel, Baire, respectively) regularity
in place of S-regularity.

The following proposition is well known. See, for example, Theorem 3.7 of [10]
and Theorem 2.4 of [11].

Proposition 1. Every complex Baire measure µ0 on T is regular and has a

unique extension µ on B(T ) (µc on Bc(T )) such that µ is a Borel (σ-Borel, respec-

tively) regular complex measure. Moreover, µ|Bc(T ) = µc. Besides, µ and µc are

positive and finite if µ0 is so.

M(T ) is the Banach dual of C0(T ) and hence it is identified with the space of
all bounded complex Radon measures on T with their domain restricted to B(T ) so
that each µ ∈ M(T ) is a regular (bounded) complex Borel measure on T and has a

norm ‖ · ‖ given by ‖µ‖ = var(µ, T ) where the variation of µ is taken with respect
to B(T ). We denote var(µ, E) by |µ|(E), for E ∈ B(T ).

A vector measure is an additive set function defined on a ring of sets with values

in an lcHs. In the sequel X denotes an lcHs with a topology τ . Γ is the set of all
τ -continuous seminorms on X . The dual of X is denoted by X∗.

The strong topology β(X∗, X) of X∗ is the locally convex topology induced by
the seminorms {pB : B bounded in X}, where pB(x∗) = sup

x∈B
|x∗(x)|. X∗∗ denotes

the dual of (X∗, β(X∗, X)) and is endowed with the locally convex toplogy τe of

uniform convergence on equicontinuous subsets of X∗. Note that (X∗, β(X∗, X))
and (X∗∗, τe) are lcHs.

It is well known that the canonical injection J : X → X∗∗ given by 〈Jx, x∗〉 =
〈x, x∗〉 for all x ∈ X and x∗ ∈ X∗, is linear. On identifying X with JX ⊂ X∗∗, one
has τe|JX = τe|X = τ .
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Let E = {A ⊂ X∗ : A is equicontinuous}. Then the family of seminorms ΓE =
{pA : A ∈ E} induces the topology τ of X and the topology τe of X∗∗, where pA(x) =
sup

x∗∈A
|x∗(x)| for x ∈ X and pA(x∗∗) = sup

x∗∈A
|x∗∗(x∗)| for x∗∗ ∈ X∗∗.

Definition 2. A linear map u : C0(T ) → X is called a weakly compact operator

on C0(T ) if {uf : ‖f‖T 6 1} is relatively weakly compact in X .

The following result is the same as Lemma 2 of [13], where the hypothesis of

quasicompleteness of X is redundant.

Proposition 2. Let X be an lcHs and let u : C0(T ) → X be a continuous linear

map. Then u∗A is bounded in M(T ) for each A ∈ E .

The following result (Corollary 9.3.2 of Edwards [5] which is essentially due to

Lemma 1 of Grothendieck [6]) plays a key role in Section 4.

Proposition 3. Let E and F be lcHs with F quasicomplete and let u : E → F

be linear and continuous. Then the following assertions are equivalent:

(i) u∗∗(E∗∗) ⊂ F .

(ii) u maps bounded subsets of E into relatively weakly compact subsets of F .

(iii) u∗(A) is relatively σ(E∗, E∗∗)-compact for each equicontinuous subset A of F ∗.

The following result is due to Theorem 2 of Grothendieck [6], and is needed in

Section 4.

Proposition 4. A bounded set A in M(T ) is relatively weakly compact if and
only if, for each disjoint sequence {Un}∞1 of open sets in T ,

sup
µ∈A

|µ(Un)| → 0

as n →∞.

For each τ -continuous seminorm p on X , let p(x) = ‖x‖p, x ∈ X , and let Xp =
(X, ‖ · ‖p) be the associated seminormed space. The completion of the quotient
normed space Xp/p−1(0) is denoted by X̃p. Let Πp : Xp → Xp/p−1(0) ⊂ X̃p be the

canonical quotient map.

Let S be a σ-ring of subsets of a non empty set Ω. Given a vector measure
m : S → X , for each τ -continuous seminorm p on X let mp : S → X̃p be given by
mp(E) = Πp ◦m(E) for E ∈ S. Then mp is a Banach space valued vector measure
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on S. We define the p-semivariation ‖m‖p of m by

‖m‖p(E) = ‖mp‖(E) for E ∈ S

and

‖m‖p(Ω) = ‖mp‖(Ω) = sup
E∈S

‖mp‖(E)

where ‖mp‖ is the semivariation of the vector measure mp. When m is σ-additive,
mp is a Banach space valued σ-additive vector measure and hence, by a well known
theorem on vector measures, ‖m‖p(Ω) = ‖mp‖(Ω) 6 4 sup

E∈S
‖m(E)‖p < ∞.

An X-valued vector measure m on a σ-ring S of subsets of Ω is said to be bounded
if {m(E) : E ∈ S} is bounded in X or equivalently, if ‖m‖p(Ω) < ∞ for each

τ -continuous seminorm p on X .
For the theory of integration of bounded S-measurable scalar functions with

respect to a bounded quasicomplete lcHs-valued vector measure defined on the
σ-ring S, the reader may refer to [12] or [13]. We need the following results from
Lemma 6 of [12] and Proposition 7 of [13].

Proposition 5. Let X be a quasicomplete lcHs. Then:

(i) If f is a bounded S-measurable scalar function and m is an X-valued bounded

vector measure on S, then f is m-integrable and

x∗
(∫

Ω

f dm

)
=

∫

Ω

f d(x∗m)

for each x∗ ∈ X∗.

(ii) (Lebesgue bounded convergence theorem). Ifm is anX-valued σ-additive vector

measure on S and (fn) is a bounded sequence of S-measurable scalar functions
with lim

n
fn(w) = f(w) for each w ∈ Ω, then f is m-integrable and

∫

E

f dm = lim
n

∫

E

fn dm

for each E ∈ S.

The following result is due to the first part of Theorem 1 of [13] and is analogous

to Theorem VI.2.1 of [2] for lcHs-valued continuous linear maps on C0(T ). It plays
a key role in Section 4.

Proposition 6 (Generalized Bartle-Dunford-Schwartz representation theorem).
Let X be an lcHs and let u : C0(T ) → X be a continuous linear map. Then there
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exists a unique X∗∗-valued vector measure m on B(T ) possessing the following prop-
erties:

(i) x∗(m) ∈ M(T ) for each x∗ ∈ X∗ and consequently, m : B(T ) → X∗∗ is

σ-additive in the σ(X∗∗, X∗)-topology.
(ii) The mapping x∗ → x∗m of X∗ into M(T ) is weak*-weak* continuous. More-
over, u∗x∗ = x∗m, x∗ ∈ X∗.

(iii) x∗uf =
∫

T f dx∗m for each f ∈ C0(T ) and x∗ ∈ X∗.

(iv) The range of m is τe-bounded in X∗∗.

(v) m(E) = u∗∗(χE) for E ∈ B(T ).

Definition 3. Let u : C0(T ) → X be a continuous linear map. Then the vector

measure m given in Proposition 6 is called the representing measure of u.

3. Regular Borel (σ-Borel) extension of quasicomplete

lcHs-valued Baire measures

The regular Borel extension theorem for Banach space- and complete lcHs-valued
Baire measures on T are well known since the publication of [3], [8] and has also been

generalized to group-valued measures by Sion [16] and to semigroup-valued measures
by Weber [19]. Using Lemma 2 and Theorem 2 of [3] and the lemma in § 68 of

Berberian [1] we give here a simple direct proof of the theorem on regular Borel and
σ-Borel extensions of a quasicomplete lcHs-valued Baire measure on T . We would like

to remark that even for the case of Banach space-valued Baire measures, the proof
given in [8] is quite involved, presupposing several results from the earlier papers

of the author. Unlike [8], the present proof further dispenses with the technique of
one-point compactification.

Let us begin with the following definitions.

Definition 4. A σ-additive vector measure m : B0(T ) → X (Bc(T ) → X ,

B(T ) → X) is called an X-valued Baire (σ-Borel, Borel respectively), measure on T .

Definition 5. Let S be one of B0(T ), Bc(T ) or B(T ). An X-valued vector

measure m on S is said to be S-regular if, given E ∈ S, a seminorm p ∈ Γ and ε > 0,
there exist a compact K ∈ S and an open set U ∈ S with K ⊂ E ⊂ U such that
‖m(B)‖p < ε for every B ∈ S with B ⊂ U\K. When S = B′(T ) (or Bc(T ), B(T ))
we use the terminology Baire (or σ-Borel, Borel, respectively) regular.

Theorem 1. Letm be anX-valued Baire measure on T and letX be a quasicom-

plete lcHs. Then there exists a unique X-valued Borel (or σ-Borel) regular σ-additive

extension m̂ (or mc) of m on B(T ) (Bc(T ), respectively). Moreover, m̂|Bc(T ) = mc.
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���������
. For each p ∈ Γ, mp : B0(T ) → X̃p is σ-additive. Since the proof of

Theorem I.2.4 of [2] holds for σ-rings too, for each p ∈ Γ there exists a finite positive
measure µp on B0(T ) such that

lim
µp(A)→0

‖mp(A)‖p = 0, A ∈ B0(T ).

By Proposition 1 µp has a unique extension µ̂p (or µc
p) on B(T ) (or Bc(T )) such

that µ̂p (or µc
p) is a (σ-additive) regular Borel (σ-Borel, respectively) finite positive

measure. Moreover, µ̂p|Bc(T ) = µc
p.

For p ∈ Γ, let %p(E, F ) = µ̂p(E∆F ), for E, F ∈ B(T ). Then %p(E, F ) = µc
p(E∆F )

for E, F ∈ Bc(T ). Let s(Γ) be the uniform structure defined by the family {%p}p∈Γ of
semidistances on B(T ) (or Bc(T )) and let Θ (or Θc) be the topology induced by s(Γ)
on B(T ) (on Bc(T ), respectively). Then clearly, Θ|Bc(T ) = Θc.

Assertion 1. B0(T ) is Θ-dense (Θc-dense) in B(T ) (Bc(T ), respectively).

In fact, given A ∈ B(T ) (or Bc(T )), p ∈ Γ and ε > 0, it suffices to show that there
exists E ∈ B0(T ) such that %p(A, E) < ε. Since µ̂p is Borel regular (µc

p is σ-Borel
regular), there exist a compact K and an open set U (an open set U ∈ Bc(T ))
such that K ⊂ A ⊂ U and µ̂p(U\K) < ε (and µc

p(U\K) < ε, respectively). As
K ∈ Bc(T ) and µ̂p|Bc(T ) = µc

p is σ-Borel regular, by the lemma in § 68 of Berberian [1]

there exists E ∈ B0(T ) such that µ̂p(K∆E) = µc
p(K∆E) = 0. Then %p(A, E) 6

µ̂p(A∆K) + µ̂p(K∆E) 6 µ̂p(U\K) < ε (%p(A, E) 6 µc
p(U\K) < ε, respectively).

Hence the assertion holds.
Let X̃ be the completion of X . Then by Assertion 1 and by Theorem 2 of Din-

culeanu and Kluvánek [3] there exists an additive set function m̂ : B(T ) → X̃ (or
mc : Bc(T ) → X̃) such that m̂|B0(T ) = m (or mc|B0(T ) = m) and for every p ∈ Γ we
have

lim
µ̂p(A)→0

‖m̂(A)‖p =0, A ∈ B(T )(1)

( lim
µc

p(A)→0
‖mc(A)‖p =0, A ∈ Bc(T ), respectively).(1′)

Moreover, given A ∈ B(T ) (or A ∈ Bc(T )), by Assertion 1 there exists a net
{Eα} ⊂ B0(T ) such that Eα → A in Θ and hence by Lemma 2 and Theorem 2 of [3]
we have

m̂(A) = lim
α

m(Eα)(2)

(mc(A) = lim
α

m(Eα), respectively).(2′)
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Since m is σ-additive on B0(T ), m is bounded and hence there exists a τ -bounded

closed set H in X such that m(B0(T )) ⊂ H . Since (m(Eα)) is τ -Cauchy in X

by (2) (or (2′)) and is contained in the τ -bounded closed set H , it follows from the
quasicompleteness of X that m̂(A) (or mc(A), respectively) belongs to H . Hence

the range of m̂ (or mc) is contained in X . Moreover, by (2) and (2′) we also have
that m̂(A) = mc(A) for A ∈ Bc(T ). Thus m̂|Bc(T ) = mc.

From (1) (or (1′)) and the fact that µ̂p (or µc
p) is a finite Borel (or σ-Borel) regular

positive measure, it follows that m̂ (or mc) is a σ-additive (X-valued) regular Borel

(σ-Borel, respectively) vector measure.
If m̂′ (or m′

c) is another X-valued σ-additive regular Borel (or σ-Borel) extension

of m, then for each x∗ ∈ X∗, x∗m̂′ and x∗m̂ (or x∗mc and x∗m′
c) are regular Borel

(σ-Borel, respectively) complex measures extending x∗m. Then by the uniqueness

part of Proposition 1 and by the Hahn-Banach theorem we conclude that m̂ = m̂′

(mc = m′
c, respectively). Thus the extension is unique.

This completes the proof of the theorem. �

Remark 1. The above proof is much simpler than that given by Kluvánek [8]
for Banach spaces. A sophisticated operator theoretic proof of the above theorem is

found in [13].

4. Proof of Theorem 5.3 of Thomas [17] by the method

of Borel extension

In this section we employ the Borel extension theorem to give (see Theorem 2) a
direct simple proof of Theorem 5.3 of Thomas [17] for which he employed his theory

of Radon vector measures, the Grothendieck characterizations of weakly compact
operators on C(K), K a compact Hausdorff space (as given in Theorem 6 of [6])

and the technique of reduction to the compact metrizable case. This result was also
recently obtained in Theorem 13 of [13] as an application of some deep results of the

earlier sections of [13], without employing the technique of reduction to the compact
metrizable case. The present proof is based just on Propositions 3 and 4 (namely,

Lemma 1 and Theorem 2 of Grothendieck [6]), Proposition 6 (namely, the first part
of Theorem 1 of [13]) and Theorem 1. As mentioned in Introduction, the reader can

note that the present proof is much simpler than the proofs in [13], [17].

Lemma 1. Let u : C0(T ) → X be a continuous linear map where X is a quasi-

complete lcHs. Let m be the representing measure of u and let m0 = m|B0(T ). If the

range of m0 is contained in X , then the following assertions hold.

(i) m0 is σ-additive in τ .
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(ii) m is an X-valued σ-additive (in τ) regular Borel measure.

(iii) uf =
∫

T f dm, f ∈ C0(T ).
(iv) m is uniquely determined by (ii) and (iii).
(v) u is a weakly compact operator.
���������

. As m0 is X-valued and x∗ ◦ m0 is σ-additive by Proposition 6 (i), it
follows by the Orlicz-Pettis theorem for lcHs (see [9]) that m0 is σ-addive in τ . Thus

(i) holds.
As m0 is an X-valued Baire measure on T and X is quasicomplete, by Theo-

rem 1 there exists a unique X-valued σ-additive regular Borel measure m̂0 on T

such that m̂0|B0(T ) = m0. By Theorem 51.B of Halmos [7], each f ∈ C0(T ) is B0(T )-
measurable and clearly also bounded. Consequently, f is m0-integrable in the sense
of Definition 1 of [12] and

(3)
∫

T

f dm0 ∈ X, f ∈ C0(T )

since m0 is an X-valued bounded vector measure on B0(T ). Then by (3), Proposi-
tion 5 (i) and Proposition 6 (iii), we have

x∗
(∫

T

f dm0

)
=

∫

T

f d(x∗m0) =
∫

T

f d(x∗m) = x∗uf

and
∫

T

f d(x∗m0) =
∫

T

f d(x∗m̂0)

for x∗ ∈ X∗ and f ∈ C0(T ). Thus the bounded linear functional x∗u on C0(T ) is
represented by the regular complex Borel measures x∗m and x∗m̂0 and consequently,

by the uniqueness part of the Riesz representation theorem we conclude that x∗m =
x∗m̂0. Since this holds for all x∗ ∈ X∗, m̂0 is X-valued and m is X∗∗-valued, it
follows that m = m̂0. Thus m is X-valued, σ-additive in τ and Borel regular. Hence

(ii) holds.
(iii) By Proposition 6 (vi) and by (ii) above, m is a bounded X-valued vector

measure as τe|X = τ . Let f ∈ C0(T ). Then f is bounded and by Theorem 51.B of
[7], it is Borel measurable so that f is the uniform limit of a sequence of Borel simple

functions. Hence by Lemma 7 of [12], f is m-integrable in the sense of Definition 2
of [12] and

∫
T

f dm ∈ X . Then by Proposition 5(i) and by Proposition 6(iii) we have

x∗
(∫

T

f dm

)
=

∫

T

f d(x∗m) = x∗uf

for each x∗ ∈ X . Then by the Hahn-Banach theorem (iii) holds.
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If m̃ : B(T ) → X satisfies (ii) and (iii), then x∗m and x∗m̃ ∈ M(T ) and by
Proposition 5 (i), they represent the bounded linear functional x∗u on C0(T ). Hence
x∗m = x∗m̃ for each x∗ ∈ X∗. Then by the Hahn-Banach theorem we conclude that
m = m̃. Thus (iv) holds.

Let (Un) be a disjoint sequence of open sets in T and let A be an equicontinuous
subset of X∗. Recall that the topology τ is the same as the topology τe|X of uniform
convergence on equicontinuous subsets of X∗. Thus, if U =

∞⋃
1

Un, then (ii) implies

that ‖m(Un)‖pA → 0 as n → ∞, where pA(x) = sup
x∗∈A

|x∗(x)| for x ∈ X . Then by

Proposition 6 (ii) we have lim
n

sup
x∗∈A

|x∗ ◦m(Un)| = lim
n

sup
µ∈u∗A

|µ(Un)| = 0. As u∗(A) is

bounded inM(T ) by Proposition 2, it follows by Proposition 4 that u∗A is relatively

weakly compact in M(T ). Consequently, by Proposition 3 we conclude that u is a
weakly compact operator. Thus (v) holds.

This completes the proof of the lemma. �

Theorem 2 (Theorem 5.3 of Thomas [17]). Let u : C0(T ) → X be a continuous

linear map and let X be a quasicomplete lcHs with c0 6⊂ X . If m is the representing

measure of u and m0 = m|B0(T ), then m0 has range in X . Consequently, assertions

(i)–(v) of Lemma 1 hold and in particular, u is weakly compact.

Conversely, if X is a quasicomplete lcHs such that each continuous linear map
u : C0(T ) → X is weakly compact for every locally compact Hausdorff space T , then

c0 6⊂ X .

In other words, a quasicomplete lcHs X contains no copy of c0 (or equivalently,

is Σ-complete in the sense of Definition 5.2 of Thomas [17] by Theorem 4 of Tu-
markin [18]) if and only if each continuous linear map u : C0(T ) → X is weakly

compact for every locally compact Hausdorff space T .
���������

. Let c0 6⊂ X and let u : C0(T ) → X be a continuous linear map. By

Proposition 6 there exists a unique X∗∗-valued vector measure m on B(T ) such that

(4) x∗uf =
∫

T

f d(x∗m) f ∈ C0(T )

and x∗m ∈ M(T ) for each x∗ ∈ X∗.
Let C ∈ K0. Then by Theorem 55.B of Halmos [7] there exists a decreasing

sequence (fn) in C0(T ) such that fn ↘ χC pointwise in T . Then by (4) and by the
Lebesgue dominated convergence theorem we have

(5) x∗m(C) = lim
n

∫

T

fn d(x∗m) = lim
n

x∗ufn

for each x∗ ∈ X∗.
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Let ufn = xn. For x∗ ∈ X∗ we have x∗m ∈ M(T ) and hence there exist finite
positive measures µx∗,j on B(T ), j = 1, 2, 3, 4, such that

x∗m = (µx∗,1 − µx∗,2) + i(µx∗,3 − µx∗,4).

Again by (4) and by the Lebesgue dominated convergence theorem we have

∞∑

n=1

|(x∗(xn − xn+1)| =
∞∑

n=1

∣∣∣∣
∫

T

(fn − fn+1) d(x∗m)
∣∣∣∣

6
4∑

j=1

( ∞∑

n=1

∫

T

(fn − fn+1) dµx∗,j

)

=
4∑

j=1

(∫

T

f1 dµx∗,j + µx∗,j(C)
)

< ∞.

Hence

|x∗(x1)|+
∞∑

n=1

|x∗(xn − xn+1)| < ∞

for each x∗ ∈ X∗. Since c0 6⊂ X , by Theorem 4 of Tumarkin [18] the formal series

x1 +
∞∑

n=1
(xn+1 − xn) converges unconditionally in the topology τ to some vector

x0 ∈ X . In other words, lim
n

xn = x0. Then by (5) we have

x∗(x0) = lim
n

x∗(xn) = lim
n

x∗ufn = x∗m(C)

for each x∗ ∈ X∗. Since m(C) ∈ X∗∗, it follows that m(C) = x0 ∈ X . Thus we have
proved that m(K0) ⊂ X .

Now let Σ = {E ∈ B0(T ) : m(E) ∈ X}. As K0 is contained in Σ, it follows that
the ring R(K0) generated by K0 is also contained in Σ. Let (En) be a monotone
sequence in Σ with E = lim

n
En. When En ↗, put Fn = En − En−1 with E0 = ∅

and n ∈ � . When En ↘, put Fn = En − En+1 for n ∈ � . Clearly, m(Fn) ∈ X for

all n. Then E =
∞⋃
1

Fn when En ↗ and E1\E =
∞⋃
1

Fn when En ↘. Since x∗m is

σ-additive on B(T ), we have

x∗m(E) =
∞∑

1

x∗m(Fn) if En ↗

and

x∗m(E1)− x∗m(E) =
∞∑

1

x∗m(Fn) if En ↘ .
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Then in both the cases we have
∞∑
1
|x∗m(Fn)| < ∞ for each x∗ ∈ X∗. As c0 6⊂ X ,

then by Theorem 4 of Tumarkin [18] the formal series
∞∑
1

m(Fn) is unconditionally

convergent to some vector in X in the topology τ . Then it follows in both the cases

that there exists a vector w0 ∈ X such that lim
n

m(En) = w0 (in the topology τ).

Since x∗m is σ-additive and complex valued, we have

x∗m(E) = lim
n

x∗m(En) = x∗w0

for all x∗ ∈ X∗. As m(E) ∈ X∗∗, we conclude that m(E) = w0. This shows that

E ∈ Σ and hence Σ is a monotone class. Now by Theorem 6.B of Halmos [7] it
follows that Σ = B0(T ) and so m(B0(T )) ⊂ X . Consequently, the assertions (i)–(v)

of Lemma 1 hold and thus, in particular, u is weakly compact.

To prove the converse, let ω be the set � endowed with the discrete topology.
Then ω is a locally compact Hausdorff space. Let (xn) be a sequence in X such

that
∞∑
1
|x∗(xn)| < ∞ for each x∗ ∈ X∗. For each n ∈ � , let u(χ{n}) = xn and

let u be extended linearly onto the set S of all P( � )-simple functions. By the
hypothesis on (xn), the set {uf : f ∈ S, ‖f‖  6 1} is weakly bounded and hence
τ -bounded. Then by Theorem 1.32 of Rudin [15], u is continuous. Since X is

sequentially complete and S is norm dense in C0(ω), u has a unique continuous
linear extension to the whole of C0(ω); let us denote the extension again by u.

Let m be the representing measure of u. By hypothesis, u is weakly compact and
hence by Proposition 3, u∗∗ has range in X so that by Proposition 6 (v) we have

m(E) = u∗∗(χE) ∈ X for all E ⊂ � . Then by Proposition 6 (i) and by the Orlicz-
Pettis theorem for lcHs we conclude that m is σ-additive in the toplogy τ of X and

hence
∞∑
1

xn =
∞∑
1

u(χ{n}) =
∞∑
1

u∗∗(χ{n}) =
∞∑
1

m({n}) = m( � ) ∈ X . Thus the series

∞∑
1

xn is unconditonally convergent in X . Now Theorem 4 of Tumarkin [18] implies

that c0 6⊂ X .

This completes the proof of the theorem. �

Remark 2. The reader can note that the proof of the first part of the above the-
orem is much simpler than those of Thomas [17] and Panchapagesan [13]. Moreover,
the argument given in the last part is also much simpler than the corresponding one

in the proof of Theorem 13 of [13].
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