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ON UNSTABLE NEUTRAL DIFFERENTIAL EQUATIONS

OF THE SECOND ORDER
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Abstract. The aim of this paper is to present sufficient conditions for all bounded solutions
of the second order neutral differential equation

�
x(t)− px(t− τ ) � ′′ − q(t)x

�
σ(t) � = 0

to be oscillatory and to improve some existing results. The main results are based on the
comparison principles.
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We consider the second order neutral differential equation of the form

(1)
(
x(t)− px(t− τ)

)′′ − q(t)x
(
σ(t)

)
= 0.

In the sequel we will assume that

(i) 0 < p < 1 and τ > 0 are constants;
(ii) q, σ ∈ C( � + , � + ), lim

t→∞
σ(t) = ∞, σ(t) < t;

(iii) σ is nondecreasing.

We put z(t) = x(t)−px(t−τ). By a proper solution of Eq. (1) we mean a function
x : [Tx,∞) → � which satisfies (1) for all sufficiently large t and sup{|x(t)| : t > T} >

0 for any T > Tx so that z(t) is twice continuously differentiable. Such a solution is
called oscillatory if it has a sequence of zeros tending to infinity; otherwise it is called

nonoscillatory. Eq. (1) is said to be oscillatory if all its solutions are oscillatory.
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Recently, research on the oscillation theory of functional differential equations of

neutral type has been very active and fruitful and many papers devoted to differ-
ential equations and systems with neutral terms have appeared. Many good results
known for differential equations without neutral terms have been extended to neutral

equations. The recent books by D.D. Bainov and D. P. Mishev [1], by I. Győri and
G. Ladas [4], and by L.H. Erbe, Q. Kong and B.G. Zhang [3], gather some important

work in this area and reflect the overall new developments in the theory of neutral
equations.

We recall the following result presented in [3, Theorem 4.6.1]:

Theorem A. Assume that (i)–(iii) hold and

(2) lim sup
t→∞

∫ t

σ(t)

(
s− σ(t)

)
q(s) ds > 1.

Then every bounded solution of Eq. (1) is oscillatory.

The first objective of this paper is to present several bounded oscillation criteria

for the second order neutral differential equation of unstable type. We are interested
in such criteria which include the coefficient p explicitly. It is known that Eq. (1)

always has an unbounded nonoscillatory solution (see e.g. [3]). Therefore we only
need to find conditions for all bounded solutions of (1) to be oscillatory.

Theorem 1. Assume that (i)–(iii) hold. Let there exist an integer n > 0 such
that

(3) lim sup
t→∞

∫ t

σ(t)

(
s− σ(t)

)
q(s) ds >

1− p

1− pn+1
.

Then every bounded solution of Eq. (1) is oscillatory.
���������

. Assume the contrary and let x(t) be an eventually positive bounded
solution of Eq. (1). Define

(4) z(t) = x(t) − px(t− τ).

We have z′′(t) > 0 for all large t, say t > t0. If z′(t) > 0 eventually, then lim
t→∞

z(t) =

∞, which contradicts the boundedness of x. Therefore z′(t) < 0. There are two
possibilities for z(t):

(a) z(t) > 0 for t > t1 > t0,
(b) z(t) < 0 for t > t1.
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In the case (a), Eq. (1) can be written in the form

z′′(t) = q(t)x
(
σ(t)

)
.

Using (4) we get

z′′(t) = q(t)z
(
σ(t)

)
+ pq(t)x

(
σ(t)− τ

)
.

Repeating this procedure we arrive at

z′′(t) = q(t)
n∑

i=0

piz
(
σ(t)− iτ

)
+ pn+1q(t)x

(
σ(t) − (n + 1)τ

)
.

Therefore

z′′(t) > q(t)
n∑

i=0

piz
(
σ(t)− iτ

)
.

For simplicity denote
n∑

i=0

pi = k. Then in view of the monotonicity of z(t) one gets

(5) z′′(t) > kq(t)z(σ(t)).

Integration of (5) from s to t yields

z′(t)− z′(s) >
∫ t

s

kq(u)z(σ(u)) du.

Then integrating with respect to s from σ(t) to t we see that

z′(t)(t− σ(t)) − z(t) + z(σ(t)) >
∫ t

σ(t)

∫ t

s

kq(u)z(σ(u)) du ds

>
∫ t

σ(t)

kq(s)
(
s− σ(t)

)
z(σ(s)) ds

> z(σ(t))
∫ t

σ(t)

kq(s)
(
s− σ(t)

)
ds.

Hence for t > t1 we obtain

(6) 0 > z′(t)(t− σ(t)) > z(σ(t))
(

k

∫ t

σ(t)

q(s)
(
s− σ(t)

)
ds− 1

)
,

which contradicts the positiveness of z(t) and (3).
In the case (b) we have

x(t) < px(t− τ) < p2x(t− 2τ) < . . . < pnx(t− nτ)

for t > t1 +nτ and we conclude that lim
t→∞

x(t) = 0. Consequently, lim
t→∞

z(t) = 0. This
is a contradiction. �
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The conclusion of Theorem 1 can be strengthened as follows:

Theorem 2. Assume that (i)–(iii) hold. Further assume that

(7) lim sup
t→∞

∫ t

σ(t)

(
s− σ(t)

)
q(s) ds > 1− p.

Then every bounded solution of Eq. (1) is oscillatory.
���������

. Denote a = lim sup
t→∞

∫ t

σ(t)

(
s− σ(t)

)
q(s) ds. Let an integer n be chosen so

that

a >
1− p

1− pn+1
.

Then by Theorem 1 the solutions of Eq. (1) have the claimed property. �

Remark 1. Theorem 1 improves the result of Theorem A, since there is the
coefficient p included in our criterion.

Remark 2. Theorem 2 is also true for the “singular case” when p = 0. This
result is due to Koplatadze and Čanturia [2] (see also [6, Theorem 4.3.1]).

Example 1. Consider the neutral differential equation

(8)
(
x(t)− px(t− τ)

)′′ − 1
t2

x
(
λt

)
= 0,

where p ∈ (0, 1), λ ∈ (0, 1) and τ > 0. Condition (7) for Eq. (8) reduces to

(9) ln
( 1

λ

)
+ λ > 2− p

and so for example for p = 1/2 and λ = 1/4 condition (9) is fulfilled and therefore
all bounded solutions of Eq. (7) are oscillatory. On the other hand, the criterion (2)
fails.

The following comparison theorem is intended to cover also the case when the

condition (7) is violated.

For our forthcoming consideration we need functions a(t) and β(t) satisfying

a ∈ C1((t0,∞)), a(t) > 0 and a′(t) 6 0,(10)

β ∈ C1((t0,∞)), β(t) < t and β′(t) > 0.(11)

Moreover, denote by k = 1−pn+1

1−p , where n > 0 is an integer.
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Theorem 3. Assume that (i)–(iii) hold. Let there exist functions a(t) and β(t)
satisfying (10) and (11), respectively. Assume that

(12) β(β(t)) > σ(t).

Further assume that there exists an integer n > 0 such that

(13) kq(t) > −a′(t)
a(t)

1
t− σ(t)

{
1− k

∫ t

σ(t)

[s− σ(t)]q(s) ds

}
+ a(t)a(β(t))β′(t).

If the first order differential inequality

(14) v′(t) + a(β(t))β′(t)v(β(t)) > 0

has no eventually negative solutions, then all bounded solutions of (1) are oscillatory.
���������

. Let x(t) be a positive solution of (1). Let z(t) be defined by (4). Then
proceeding exactly as in the case (a) of the proof of Theorem 1 we arrive at (6).

The case when (3) holds is covered by Theorem 1 and so we may assume that (3) is
violated. Set

(15) y(t) = z′(t)− a(t)z(β(t)).

Then y(t) is negative for sufficiently large t. Differentiation of both sides of (15)

yields

y′(t) = z′′(t)− a′(t)z(β(t)) − a(t)β′(t)z′(β(t)).

Hence

y′(t) + a(t)β′(t)y(β(t)) = z′′(t)− a′(t)z(β(t))− a(t)a(β(t))β′(t)z(β(β(t))),

which together with (15), (10) and the monotonicity of z implies

(16) y′(t)− a′(t)
a(t)

y(t) + a(t)β′(t)y(β(t))

> z′′(t)− a′(t)
a(t)

z′(t)− a(t)a(β(t))β′(t)z(σ(t)).

Combining the last inequality with (6) and (13) one gets

y′(t)− a′(t)
a(t)

y(t) + a(t)β′(t)y(β(t)) > z′′(t)− kq(t)z(σ(t)) > 0.
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Consequently, the differential inequality

(17) y′(t)− a′(t)
a(t)

y(t) + a(t)β′(t)y(β(t)) > 0

has an eventually negative solution. Put

(18) y(t) = a(t)v(t),

then (17) becomes (14). Noting that the transformation (18) preserves the existence

of negative solutions we have a contradiction with the hypothesis. The case (b) can
be led to contradiction exactly as in the proof of Theorem 1. �

Corollary 1. Assume that (i)–(iii) are satisfied. Let (10)–(13) hold. If

(19) lim inf
t→∞

∫ t

β(t)

a(β(s))β′(s) ds >
1
e

then (1) does not allow bounded nonoscillatory solutions.
���������

. It is known (see [6]) that (19) is sufficient for (14) to have no eventually

negative solutions. The assertion of this corollary follows from Theorem 1. �

Remark 3. As a matter of fact we can use any sufficient condition for (14) to
have no eventually negative solutions and Theorem 1 guarantees bounded oscillation
of (1).

The following illustrative example is intended to show that Theorem 3 together

with Corollary 1 extends the result of Theorem 2.

Example 2. We consider the differential equation

(20)
(
x(t)− 1

2
x(t− τ)

)′′
− 1

t2
x(λt) = 0.

From Example 1 we know that all bounded solutions of (20) are oscillatory provided
that

ln
( 1

λ

)
+ λ > 1.5 (i.e. λ < 0.3017).

Theorem 3 enables us to dilate the set of values of λ for which all bounded solutions

of (20) are oscillatory. Put β(t) =
√

λt and a(t) = c/t, where c is a positive constant
which will be given later. Then (13) for n →∞ reduces to

2 > 1
1− λ

(3 + 2 ln λ− 2λ) + c2.
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We let c =
√
−1−2 ln λ

1−λ (provided that λ < e0.5). Hence, by Corollary 1 all bounded
solutions of (20) are oscillatory provided

− c

2
ln λ >

1
e

(i.e. λ 6 0.4711).

And so, indeed, Theorem 3 (and Corollary 1) conveniently supplements Theorem 2.

In the assumptions of Theorem 3 the function q(t) is required to satisfy condition
(13). That means roughly speaking that function q(t) should be greater than the
square of a positive decreasing function a(t). If q(t) is greater than the square of a
positive nondecreasing function then the conclusion of Theorem 3 can be reformu-

lated as follows.

Theorem 4. Assume that (i)–(iii) are satisfied. Let (11)–(12) hold. Assume that

(21) a ∈ C1((t0,∞)), a(t) > 0 and a′(t) > 0.

Further assume that

(22)
1

1− p
q(t) > a(t)a(β(t))β′(t).

If the differential inequality (14) has no eventually negative solutions, then all
nonoscillatory solutions (1) are unbounded.

���������
. To obtain contradiction assume that (1) has an eventually positive solu-

tion x(t). Let an integer n > 0 be chosen so that

1− pn+1

1− p
q(t) > a(t)a(β(t))β′(t).

Then proceeding exactly as in the proof of Theorem 3 we arrive at (16), which in

view of (21) and (22) implies

y′(t)− a′(t)
a(t)

y(t) + a(t)β′(t)y(β(t)) > z′′(t)− a(t)a(β(t))β′(t)z(σ(t))

> z′′(t)− kq(t)z(σ(t)) > 0.

Taking the transformation (18) into account, one gets that (14) has an eventually
negative solution, which contradicts the hypothesis. The proof is complete. �
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Corollary 2. Assume that (i)–(iii) are satisfied. Let (11), (12), (21), (22) and
(19) hold. Then (1) does not allow bounded nonoscillatory solutions.

Corollary 3. Assume that (i)–(iii) hold. If σ > 0 and there exists a constant q

such that

(23) q(t) > q > (1− p)
4

σ2e2
,

then all bounded solutions of

(24)
(
x(t)− px(t− τ)

)′′ − q(t)x
(
t− σ

)
= 0

are oscillatory.

���������
. Let ε > 0 be such that q(t) > (1 − p) (2+ε)2

σ2e2 . Set a(t) = 2+ε
σ e and

β(t) = t− σ
2 . Then the proof immediately follows from Corollary 2. �

Remark 4. In the case when q(t) ≡ q is a constant, (23) is also a necessary
condition for the bounded oscillation of (24).

Remark 5. The conclusion of Corollary 3 holds also for p = 0 and Corollary 3
improves Corollary 4.3.1 in [6].

Remark 6. The results which are known for ordinary differential equations are
often extended to neutral differential equations. In this paper we have obtained a
new result for neutral differential equations w ich is new even in the case when p = 0.
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[4] I. Győri and G. Ladas: Theory of Delay Differential Equations with Applications.
Clarendon Press, Oxford, 1991.

[5] J. Jaros and T. Kusano: Sufficient conditions for oscillations in higher order linear
functional differential equations of neutral type. Japan. J. Math. 15 (1989), 415–432.

[6] G.S. Ladde, V. Lakshmikantham and B.G. Zhang: Oscillation theory of differential
equations with deviating arguments. Dekker, New York, 1987.

[7] J. S. Yu and Z.C. Wang: Some further result on oscillation of neutral differential equa-
tions. Bull. Austral. Math. Soc. 46 (1992), 149–157.

746



[8] J. S. Yu and B.G. Zhang: The existence of positive solution for second order neutral
differential equations with unstable type. Systems Sci. Math. Sci. To appear.

[9] B.G. Zhang: Oscillation of second order neutral differential equations. Kexue Tongbao
34 (1989), 563–566.

[10] B.G. Zhang and J.S. Yu: On the existence of asymptotically decaying positive solutions
of second order neutral differential equations. J. Math. Anal. Appl. 166 (1992), 1–11.

Author’s address: Department of Mathematical Analysis, Faculty of Sciences, Šafárik
University, Jesenná 5, 041 54 Košice, Slovakia, e-mail: dzurina@kosice.upjs.sk.

747


		webmaster@dml.cz
	2020-07-03T13:48:54+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




