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OSCILLATION AND NONOSCILLATION OF HIGHER ORDER

SELF-ADJOINT DIFFERENTIAL EQUATIONS
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Abstract. Oscillation and nonoscillation criteria for the higher order self-adjoint differen-
tial equation

(∗) (−1)n(tαy(n))(n) + q(t)y = 0

are established. In these criteria, equation (∗) is viewed as a perturbation of the condition-
ally oscillatory equation

(−1)n(tαy(n))(n) − µn,α

t2n−α
y = 0,

where µn,α is the critical constant in conditional oscillation. Some open problems in the
theory of conditionally oscillatory, even order, self-adjoint equations are also discussed.

Keywords: self-adjoint differential equation, oscillation and nonoscillation criteria, vari-
ational method, conditional oscillation

MSC 2000 : 34C10

1. Introduction

The aim of this paper is to investigate oscillatory properties of the even order,

self-adjoint, linear differential equation

(1) (−1)n(tαy(n))(n) + q(t)y = 0,

where α 6∈ {1, 3, . . . , 2n−1} and no sign restriction is imposed on the function q. The
problem of oscillation/nonoscillation of higher order self-adjoint differential equations

Authors supported by Grant A1019902/199 of Grant Agency of the Academy of Sciences
of the Czech Republic and by the Grant 201/99/0295 of Grant Agency of the Czech
Republic.
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of the form

(2) (−1)n(r(t)y(n))(n) + q(t)y = 0

was investigated in several recent papers [4], [6], [7], [8], [10], [12], [16], [17] and
various conditions for oscillation/nonoscillation of this equation were established. In

these papers equation (2) is mostly viewed as a “perturbation” of the nonoscillatory
one-term equation

(3) (−1)n(r(t)y(n))(n) = 0

and conditions on the “perturbation function” q are given which guarantee that (2)
is oscillatory/nonoscillatory.

In our paper we employ a somewhat different approach. Motivated by the pa-
pers [8], [12], equation (1) is not investigated as a perturbation of the equation

(4) (−1)n(tαy(n))(n) = 0,

but as a perturbation of the Euler-type equation

(5) (−1)n(tαy(n))(n) − µn,α

t2n−α
y = 0,

where µn,α is the so-called critical constant in (5) (which will be specified later).

We show that if the value q(t) + µn,αtα−2n is sufficiently negative/not too negative,
then the perturbed equation (1) remains nonoscillatory/becomes oscillatory. This

method was used in [8], [12] to study the oscillatory properties of the equation

(−1)ny(2n) + q(t)y = 0

(which corresponds to the case α = 0 in (1)), viewed as a perturbation of the Euler
equation

(−1)ny(2n) − µn

t2n
y = 0 with µn :=

[(2n− 1)!!]2

4n
,

so our results can be viewed as a direct extension of the criteria given there.

Similarly to the above mentioned papers, we use a variational technique which is
based on the relationship between the nonoscillation of even order self-adjoint equa-

tions and the positivity of a certain associated quadratic functional. An important
role is also played by the connection between the self-adjoint equations investigated

and the linear Hamiltonian systems. Finally, note that the (non)oscillation crite-
ria for the self-adjoint, even order, differential equations are closely related to the

834



spectral properties of the associated differential operators and were investigated in

several recent papers [1], [5], [8], [14], [16], [17].

The paper is organized as follows. In the next section we recall basic oscillatory

properties of the self-adjoint, even order, differential equations, in particular, the
relationship between the oscillatory properties of these equations and the positiv-

ity of a certain associated quadratic functional. The third section is devoted to
nonoscillation criteria for (1) and the following section to their oscillation counter-
parts. Section 5 contains remarks and comments concerning the results of the paper.

In the last section we collect some technical results used in the previous sections.

2. Auxiliary results

In this section we recall basic oscillatory properties of self-adjoint, even order,
differential equations

(6) L(y) :=
n∑

k=0

(−1)k(rk(t)y(k))(k) = 0, rn(t) > 0.

Oscillatory properties of these equations can be investigated within the scope of the
oscillation theory of linear Hamiltonian systems (further LHS)

(7) x′ = Ax + B(t)u, u′ = C(t)x− AT u,

where A, B, C are n × n matrices with B, C symmetric. Indeed, if y is a solution

of (6) and we set

x =




y

y′
...

y(n−1)


 , u =




(−1)n−1(rny(n))(n−1) + . . . + r1y
′

...

−(rny(n))′ + rn−1y
(n−1)

rny(n)


 ,

then (x, u) solves (7) with A, B, C given by

B(t) = diag{0, . . . , 0, r−1
n (t)}, C(t) = diag{r0(t), . . . , rn−1(t)},(8)

A = Ai,j =

{
1, if j = i + 1, i = 1, . . . , n− 1,

0, elsewhere.

In this case we say that the solution (x, u) of (7) is generated by the solution y of (6).
Moreover, if y1, . . . , yn are solutions of (6) and the columns of the matrix solution
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(X, U) of (7) are generated by the solutions y1, . . . , yn, we say that the solution

(X, U) is generated by the solutions y1, . . . , yn.

Recall that two different points t1, t2 are said to be conjugate relative to system (7)
if there exists a nontrivial solution (x, u) of this system such that x(t1) = 0 = x(t2).
Consequently, by the above mentioned relationship between (6) and (7), these points
are conjugate relative to (6) if there exists a nontrivial solution y of this equation

such that y(i)(t1) = 0 = y(i)(t2), i = 0, 1, . . . , n − 1. System (7) (and hence also
equation (6)) is said to be oscillatory if for every T ∈ � there exists a pair of points
t1, t2 ∈ [T,∞) which are conjugate relative to (7) (relative to (6)), in the opposite
case (7) (or (6)) is said to be nonoscillatory.

Using the relation between (6), (7) and the so-called Roundabout Theorem for

linear Hamiltonian systems (see [18], [19]), one can easily prove the following varia-
tional lemma which plays a crucial role in our investigation of oscillatory properties

of (1).

Lemma 2.1 ([15]). Equation (6) is nonoscillatory if and only if there exists T ∈ �
such that

I(y; T,∞) :=
∫ ∞

T

[ n∑

k=0

rk(t)(y(k)(t))2
]

dt > 0

for any nontrivial y ∈ W n,2(T,∞) with compact support in (T,∞).

We also use the following Wirtinger-type inequality.

Lemma 2.2 ([16]). Let y ∈ W 1,2(T,∞) have compact support in (T,∞) and let
M be a positive differentiable function such that M ′(t) 6= 0 for t ∈ [T,∞). Then

∫ ∞

T

|M ′(t)|y2 dt 6 4
∫ ∞

T

M2(t)
|M ′(t)|y

′2 dt.

We say that y1, . . . , yn, ỹ1, . . . , ỹn form an ordered system of solutions of equa-

tion (6) (at ∞) if yi > 0, ỹi > 0, i = 1, . . . , n and

yi

yi+1
→ 0,

ỹi

ỹi+1
→ 0,

yn

ỹ1
→ 0, i = 1, . . . , n− 1,

for t →∞.
In Section 4 devoted to oscillation criteria for (1) we use the following statement

proved essentially (i.e. with a minor modification with respect to the presentation
given here) in [8].
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Theorem 2.1. Let y1, . . . , yn, ỹ1, . . . , ỹn, be an ordered system of solutions of (3)

and let (X, U), (X̃, Ũ) be the solutions of matrix LHS (7) generated by y1, . . . , yn

and ỹ1, . . . , ỹn, respectively. Further, let L = XT Ũ−UT X̃ (this is a constant matrix

as can be verified directly by differentiation). If there exists i ∈ {1, . . . , n} such that

(9) lim sup
t→∞

W̃ (t)
Li,lW̃l,i(t)

∫ ∞

t

q(s)y2
i (s) ds < −1,

where l = min{j ∈ {1, . . . , n}, Li,j 6= 0} (Li,j are entries of L) and

W̃ (t) = W (ỹ1, . . . , ỹn), W̃i,j(t) = W (ỹ1, . . . , ỹi−1, yj , ỹi+1, . . . , ỹn),

then equation (2) is oscillatory. Moreover, if q(t) 6 0 eventually, then lim sup in (9)
can be replaced by lim inf .

Theorem 2.2. Let y1, . . . , yn, ỹ1, . . . , ỹn, (X, U), (X̃, Ũ) and L be the same as in

the previous theorem,

W (t) := W (y1, . . . , yn), Wi,j(t) = W (y1, . . . , yi−1, ỹj , yi+1, . . . , yn).

If there exists i ∈ {1, . . . , n} such that

(10) lim sup
t→∞

W (t)
Ll,iWl,i(t)

∫ t

q(s)ỹ2
i (s) ds < −1,

where l = min{j ∈ {1, . . . , n}, Lj,i 6= 0}, then equation (2) is oscillatory. Moreover,
if q(t) 6 0 eventually, then lim sup in (10) can be replaced by lim inf .
���������

. Since this statement is not contained in any of the referred papers, we

briefly sketch the proof. This proof is based on [5], Theorem 3.2 which claims that
(2) is oscillatory provided there exists c ∈ � n such that

lim sup
t→∞

∫ t
q(s)(c1ỹ1(s) + . . . + cnỹn(s))2 ds

cT
(∫∞

t
X̃−1(s)B(s)X̃T−1(s) ds

)−1
c

< −1.

We take c = ei = (0, . . . , 0, 1, 0, . . . , 0)T (1 being the i-th entry) in the previous limit
and show that

(11) eT
i

(∫ ∞

t

X̃−1(s)B(s)X̃T−1(s) ds

)−1

ei ∼
Ll,iWl,i(t)

W (t)
as t →∞;
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here f(t) ∼ g(t) for a pair of functions means lim
t→∞

f(t)/g(t) = 1. Indeed, by a direct
computation we have

(X̃−1X)′ = −X̃−1BX̃T−1LT

and hence by Lemma 6.1

(∫ ∞

t

X̃−1BX̃T−1 ds

)−1

i,i

= (LT X−1X̃)i,i =
n∑

j=1

Lj,i(X−1X̃)j,i =
n∑

j=1

Lj,i
Wj,i

W
.

Consequently, using Lemma 6.2 we see that (11) really holds. �

3. Nonoscillation criteria

Theorem 3.1. Let α 6∈ {1, 3, . . . , 2n − 1}, let νn,α be the value of the greatest

local minimum of the polynomial

(12) Pn,α(λ) :=
(−1)n

∏n−1
j=0 (λ − j)(λ− n + α− j)− µn,α

(
λ− 2n−1−α

2

)2 ,

where

(13) µn,α = (−1)n
n−1∏

j=0

(λ− j)(λ− n + α− j) = |λ= 2n−1−α
2

,

and suppose that

(14)
∫ ∞[

q(t) +
µn,α

t2n−α

]
−

t2n−1−α dt > −∞,

where [f(t)]− := min{0, f(t)} denotes the negative part of the function indicated.
If

(15) lim inf
t→∞

lg t

∫ ∞

t

s2n−α−1
[
q(s) +

µn,α

s2n−α

]
−

ds >
νn,α

4
,

then equation (1) is nonoscillatory.
���������

. Denote

Q(t) :=
[
q(t) +

µn,α

t2n−α

]
−

.

According to (15) there exists T ∈ � such that

lg t

∫ ∞

t

s2n−α−1Q(s) ds >
νn,α

4
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for t > T . Then for any y ∈ W n,2(T,∞) with supp y ⊂ (T,∞) we have
∫ ∞

T

Q(t)y2(t) dt = 2
∫ ∞

T

Q(t)t2n−1−α

[∫ t

T

y(s)

s
2n−1−α

2

(
y(s)

s
2n−1−α

2

)′
ds

]
dt

= 2
∫ ∞

T

y(t)

t
2n−1−α

2

(
y(t)

t
2n−1−α

2

)′ 1
lg t

lg t

[∫ ∞

t

s2n−1−αQ(s) ds

]
dt

>
νn,α

2

∫ ∞

T

∣∣∣∣
y(t)

t
2n−1−α

2

∣∣∣∣
∣∣∣∣
(

y(t)

t
2n−1−α

2

)′∣∣∣∣
1

lg t
dt

> νn,α

∫ ∞

T

t
[(

t−
2n−1−α

2 y(t)
)′]2

dt

by Lemma 2.2 with M(t) = 1/ lg t. Hence
∫ ∞

T

[tα(y(n)(t))2 + q(t)y2(t)] dt

>
∫ ∞

T

[
tα(y(n)(t))2 − µn,α

t2n−α
y2(t) + Q(t)y2(t)

]
dt

>

∫ ∞

T

[
tα(y(n)(t))2 + νn,αt

[(
y(t)t−

2n−1−α
2

)′]2
− µn,α

t2n−α
y2(t)

]
dt.

To prove that (1) is nonoscillatory we need to show that the last integral is positive for

any nontrivial y ∈ W n,2(T,∞) with supp y ⊂ (T,∞). The Euler-Lagrange equation
corresponding to this integral is

(16) (−1)n(tαy(n))(n) − νn,α

t
2n−1−α

2

[
t

(
y

t
2n−1−α

2

)′]′
− µn,α

t2n−α
y = 0

and the characteristic equation of (16) is

(−1)n
n−1∏

j=0

(λ− j)(λ + α− n− j)− νn,α

(
λ− 2n− 1− α

2

)2

− µn,α

=
(
λ− 2n− 1− α

2

)2

[Pn,α(λ)− νn,α] = 0.

Since νn,α is the value of the greatest local minimum of the polynomial Pn,α, the

equation Pn,α(λ)−νn,α = 0 has 2n−2 real roots (counting multiplicity), which means
that differential equation (16) possesses an ordered system of solutions. Hence any of

its nontrivial solution has at most 2n−1 zeros in the interval [T,∞) if T is sufficiently
large, so this equation is disconjugate on this interval. Lemma 2.1 implies that

∫ ∞

T

[
(tαy(n))2 + νn,αt

[(
yt−

2n−1−α
2

)′]2
− µn,α

t2n−α
y2

]
dt > 0

for every nontrivial y ∈ W n,2(T,∞) with supp y ⊂ (T,∞) and this, again in view of
Lemma 2.1, implies that (1) is nonoscillatory. �
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The next theorem deals with the case when the solution y = t
2n−1−α

2 of (5) in the

integral (14) is replaced by the solution ỹ = t
2n−1−α

2 lg t.

Theorem 3.2. Let α, µn,α, νn,α be the same as in the previous theorem. If

(17) lim inf
t→∞

1
lg t

∫ t

a

[
q(s) +

µn,α

s2n−α

]
−

s2n−1−α lg2 s ds >
νn,α

4
,

then equation (1) is nonoscillatory.

���������
. Using the same method as in the previous proof (with t

2n−1−α
2 replaced

by t
2n−1−α

2 lg t) we get

∫ ∞

T

Q(t)y2(t) dt > νn,α

∫ ∞

T

t lg2 t

[(
y(t)

t(2n−1−α)/2 lg t

)′]2

dt

and hence

∫ ∞

T

tα[(y(n))2 + q(t)y2] dt

>

∫ ∞

T

{
tα(y(n))2 − µn,α

t2n−α
y2 + νn,αt lg2 t

[(
y(t)

t(2n−1−α)/2 lg t

)′]2}
dt.

Again, the equation

(−1)n(tαy(n))(n) − νn,α

t(2n−1−α)/2 lg t

[
t lg2 t

(
y

t(2n−1−α)/2 lg t

)′]′
− µn,α

t2n−α
y = 0

possesses an ordered system of solutions and this, by the same argument as above,
implies that ∫ ∞

T

[tα(y(n))2 + q(t)y2] dt > 0

for every y ∈ W n,2(T,∞) with supp y ⊂ (T,∞). This means, by Lemma 2.1, that
(1) is nonoscillatory. �
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Oscillation criteria

In this section we present oscillatory counterparts of the results given in the pre-

vious section.

Theorem 4.1. Let α 6∈ {1, 3, . . . , 2n − 1}, let Pn,α, µn,α be given by (12), (13),

respectively,

Kn,α := Pn,α

(2n− 1− α

2

)
< 0

and suppose that the integral

(18)
∫ ∞[

q(t) +
µn,α

t2n−α

]
t2n−1−α dt

is convergent. If

(19) lim sup
t→∞

lg t

∫ ∞

t

[
q(s) +

µn,α

s2n−α

]
s2n−1−α ds < Kn,α

then equation (1) is oscillatory. Moreover, if

q(t) +
µn,α

t2n−α
6 0

eventually, then lim sup in (19) can be replaced by lim inf .
���������

. Our proof is based on a modified version of Theorem 2.1. A closer
examination of the proof of this statement reveals that the result remains valid if
the operator (−1)n(r(t)y(n))(n) is replaced by any self-adjoint operator L(y) of the
form (6) such that the equation L(y) = 0 possesses an ordered system of solutions.
Obviously, equation (5) meets this assumption and y1 = tα1 , . . . , yn−1 = tαn−1 ,

yn = t
2n−1−α

2 , ỹ1 = t
2n−1−α

2 lg t, ỹ2 = t2n−α−1−αn−1 , . . . , ỹn = t2n−α−1−α1 is an
ordered system of solutions of this equation, where α1, . . . , αn−1 are the first n − 1
roots (ordered by size) of the polynomial

(−1)n
n−1∏

j=0

(λ− j)(λ + α− n− j)− µn,α.

Let (X, U), (X̃, Ũ) be the matrix solutions of the LHS associated with (5) generated
by y1, . . . , yn and ỹ1, . . . , ỹn, respectively, and let L := XT Ũ−UT X̃. Since the entry

Ln,1 of this matrix appearing in the left lower corner is nonzero (see Lemma 6.5
given in the last section), we take l = 1 and i = n in Theorem 2.1.
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In the next part we compute the Wronskians

W̃ (t) := W (ỹ1, . . . , ỹn), W̃1,n(t) := W (yn, ỹ2, . . . , ỹn).

Denote
λk :=

2n− α− 1− 2αk

2
, k = 1, . . . , n− 1.

Then using Lemma 6.3 (given again in the last section) and the Laplace rule for

computing determinants we obtain

W̃ (t) = t
n(2n−1−α)

2

{
lg t

(n−1∏

i=1

λi

)
W (tλn−1−1, . . . , tλ1−1)

− tλn−1

(n−2∏

i=1

λi

)
W (t−1, tλn−2−1, . . . , tλ1−1) + . . .

+ (−1)n+1tλ1

(n−1∏

i=2

λi

)
W (t−1, tλn−1−1, . . . , tλ2−1)

}

∼ t
n(2n−1−α)

2 W (tλn−1−1, . . . , tλ1−1)
(n−1∏

i=1

λi

)
lg t

according to Lemma 6.2. Concerning the Wronskian W̃1,n, we have (by Lemma 6.4)

W̃1,n(t) = t
n(2n−1−α)

2 W (tλn−1−1, . . . , tλ1−1)
(n−1∏

i=1

λi

)
.

Consequently,
W̃ (t)

Ln,1W̃1,n(t)
∼ lg t

Ln,1

and the theorem is proved since Ln,1 = −Kn,α by Lemma 6.5. �

Using Theorem 2.2, Lemma 6.5 and a slight modification of the previous proof we
get the following statement.

Theorem 4.2. Let α, µn,α and Kn,α be the same as in the previous theorem. If

(20) lim sup
t→∞

1
lg t

∫ t[
q(s) +

µn,α

s2n−α

]
s2n−1−α lg2 s ds < Kn,α,

then equation (1) is oscillatory. Moreover, if

q(t) +
µn,α

t2n−α
6 0

eventually, then lim sup in (20) can be replaced by lim inf .
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���������
. Put i = 1 in Theorem 2.2. This theorem and the fact that Lj,1 = 0,

j = 1, . . . , n− 1, see Lemma 6.5, imply

W (t)
Ln,1Wn,1(t)

∼ 1
Ln,1 lg t

.

�

5. Remarks and comments

(i) The oscillation and nonoscillation criteria proved in Sections 3, 4 are closely
related to the concept of conditionally oscillatory equations. The equation

(21) L(y) + q(t)y = 0,

with q(t) > 0 and a nonoscillatory self-adjoint 2n-th order differential operator given

by (6) is said to be conditionally oscillatory if there exists λ0 < 0 such that (21),
with λq(t) instead of q(t), is oscillatory for λ < λ0 and nonoscillatory for λ > λ0.

Theorems 3.1, 4.1 (and also Theorems 3.2, 4.2) show that the equation

(22) (−1)n(tαy(n))(n) −
[

µn,α

t2n−α
− λ

t2n−α lg2 t

]
y = 0

is oscillatory for λ < Kn,α and nonoscillatory for λ >
νn,α

4 , where νn,α, Kn,α are
given in Theorems 3.1, 4.1, respectively (observe that really νn,α > 4Kn,α > 0);
consequently, it is conditionally oscillatory. Conditionally oscillatory equations play
an important role in the spectral theory of singular differential operators as is shown

later.

(ii) Theorems 3.1, 3.2 can be formulated in a slightly more general form than that

considered in Section 3. These theorems are a special case of the following statement
which can be proved using the same ideas as for Theorems 3.1, 3.2.

Theorem 5.1. Suppose that the 2n-order equation L(y) = 0 (L is the same as
above) possesses an ordered system of solutions y1, . . . , y2n. Further suppose that

there exist i ∈ {1, . . . , 2n}, a positive differentiable function M satisfying M ′(t) 6= 0
for large t and a constant ν such that the equation

L(y) +
ν

yi

(
M2(t)
|M ′(t)|

( y

yi

)′)′
= 0
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is nonoscillatory. Then equation (21) is also nonoscillatory provided one of the

following conditions holds:

(i) i ∈ {1, . . . , n} and

lim inf
t→∞

1
M(t)

∫ ∞

t

q(s)y2
i (s) ds > ν,

(ii) i ∈ {n + 1, . . . , 2n} and

lim inf
t→∞

1
M(t)

∫ t

q(s)y2
i ds > ν.

In Theorems 3.1, 3.2 we took yi = yn = t
2n−1−α

2 , M(t) = 1
lg t or, respectively, yi =

yn+1 = t
2n−1−α

2 lg t, M(t) = lg t. Observe also that if we took another solution than

yn, yn+1, then we would get results in a certain sense worse than in Theorems 3.1,
3.2. Indeed, these theorems are in view of the oscillation criteria given in Section 4

“optimal”. The application of Theorem 2.1 with (4) replaced by (5) and e.g. i = 1
gives a sufficient condition for oscillation

lim sup
t→∞

t2n−1−α−2α1

∫ ∞

t

[
q(s) +

µn,α

s2n−α

]
s2α1 < Kn,α

(the negative constant Kn,α can be computed explicitly, but it is not important at
this moment) and this condition, in contrast to that given in Theorem 4.1, does not

apply to the equation

(−1)n(tαy(n))(n) −
[

µn,α

t2n−α
− λ

t2n−α lg2 t

]
y = 0

which is oscillatory if λ < −Kn,α by Theorem 4.1. A similar situation we have
in the case of the nonoscillation criteria presented in Section 3. The reason for this

phenomenon is, roughly speaking, that the “gap” between the solutions yn = t
2n−1−α

2

and yn+1 = t
2n−1−α

2 lg t is less than the “gap” between other consecutive solutions of

the ordered system of solutions of (5).
(iii) In Theorem 4.1 we have supposed that the improper integral in (18) is con-

vergent. If this integral diverges to ∞, then equation (21) is oscillatory by a higher
order modification of the classical Leighton-Wintner oscillation criterion, see [6],

which reads as follows.

Theorem 5.2. Suppose that the 2n-order operator L of the form (6) possesses

an ordered system of solutions y1, . . . , yn, yn+1, . . . , y2n. If
∫ ∞

q(t)y2
i (t) dt = −∞ for some i ∈ {1, . . . , n},

then equation (21) is oscillatory.
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In our setting

L(y) = (−1)n(tαy(n))(n) − µn,α

t2n−α
y and yi = t

2n−1−α
2 .

(iv) In Sections 3, 4 we have considered the case α 6∈ {1, 3, . . . , 2n− 1}. If α is in
the “critical set” {1, 3, . . . , 2n− 1}, then µn,α = 0 and the equation

(23) (−1)n(tαy(n))(n) +
λ

t2n−α
y = 0

is oscillatory for any λ < 0. Indeed, let y1, . . . , yn, ỹ1, . . . , ỹn be an ordered system of
solutions of the one term equation (4). One can verify by a direct computation that

this ordered system can be chosen in such a way that yn = t
2n−1−α

2 (see also [10])
and by the previous Theorem 5.2 (23) it is oscillatory, since

∫ ∞ λ

t2n−α
y2

n(t) dt =
∫ ∞ λ

t
dt = −∞.

Therefore, equations (4) and (5) coincide and the approach where (1) is considered

as a perturbation of (4) has been already applied in [8], [13], [14] and other papers.
On the other hand, as pointed out in [8], the “right term” which is to be added to (4)

is µtα−2n lg−2 t since the equation

(24) (−1)n(tαy(n))(n) +
λ

t2n−α lg2 t
y = 0

is conditionally oscillatory. However, we generally do not know the value of the
constant of conditional oscilation λ0 (i.e. the constant such that (24) is oscillatory

for λ < λ0 and nonoscillatory for λ > λ0), so we cannot proceed in the same way as
for α 6∈ {1, 3, . . . , 2n− 1}.
(v) A slight modification of the proofs of Theorem 4.1 in [12] and Theorem 5.2

in [11] gives the following criterion of conjugacy of (1). Recall that equation (6) is

said to be conjugate in an interval (a, b) if there exists a nontrivial solution of this
equation having at least two conjugate points in (a, b).

Theorem 5.3. Suppose that

lim sup
t1↓0,t2↑∞

∫ t2

t1

t
2n−1−α

2

[
q(t) +

µn,α

t2n−α

]
dt 6 0

and

q(t) +
µn,α

t2n−α
6≡ 0, t ∈ (0,∞).

Then (1) is conjugate in the interval (0,∞).
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(vi) The oscillation theory of self-adjoint equations (6) is closely related to the

spectral theory of singular differential operators. In particular, the spectrum of the
operator

y 7−→ w−1(t)L(y)

(with a positive weight function w and L given by (6)) in the weighted Hilbert space
L2

w(T,∞) is discrete and bounded below (the so-called property BD) if and only if
the equation L(y) = λw(t)y is nonoscillatory for every λ ∈ � , see [15]. Consequently,
by Theorems 3.1, 4.1 the operator

y 7−→ 1
w(t)

[
(−1)n(tαy(n))(n) − µn,α

t2n−α
y
]

has property BD if and only if

lim
t→∞

lg t

∫ ∞

t

w(s)s2n−α−1 ds = 0.

(vii) In all oscillation and nonoscillation criteria for (1), where this equation is
viewed as a perturbation of (5), we have multiplied the function q (under the integral

sign) by the square of a solution of this equation, compare (15), (17), (19), (20)
and also other criteria along this line. In [7] we used a slightly different approach.

Equation (2) is viewed there as a perturbation of the one term equation (4), but in
oscillation criteria the function q is multiplied by the square of a general function and

the only restriction on this function is that it can be, in a certain sense, “inserted”
into the ordered system of solutions of (4). Of course, this method can be used also

in the general setting when dealing with the general equation L(y)+q(t)y = 0 viewed
as a perturbation of (6).

6. Technical lemmata

We close the paper with technical results needed in the previous sections. Proofs
of these statements can be found in [3].

Lemma 6.1. Let y1, . . . , yn, ỹ1, . . . , ỹn ∈ Cn−1 be a system of linearly indepen-

dent functions and let X , X̃ be the Wronski matrices of y1, . . . , yn and ỹ1, . . . , ỹn,

respectively. Then

[X̃−1X ]i,j =
W (ỹ1, . . . , ỹi−1, yj , ỹi+1, . . . , ỹn)

W (ỹ1, . . . , ỹn)
.
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Lemma 6.2. Let y1, . . . ym ∈ Cm−1 be an ordered system of functions (at ∞).
Then

lim
t→∞

W (yi1 , . . . , yik
)

W (yj1 , . . . , yjk
)

= 0, k = 1, . . . , m,

whenever i1 6 j1, . . . , ik 6 jk and at least one of the inequalities is strict.

Lemma 6.3. Let y1, . . . , ym ∈ Cm−1, r ∈ Cm−1 and r 6= 0. Then

W (ry1, . . . , rym) = rmW (y1, . . . , ym).

Particularly, if y1 6= 0 we have

W (y1, . . . , ym) = ym
1 W ((y2/y1)′, . . . , (ym/y1)′).

Lemma 6.4. Let y1 = tα1 , . . . , yn = tαn , αi ∈ � , i = 1, . . . , n. Then

W (y1, . . . , yn) =
n∏

16i<j

(αj − αi)t
n�

k=1
αk−n(n−1)

2
.

Lemma 6.5. Let y1 = tα1 , . . . , yn−1 = tαn−1 , yn = t
2n−1−α

2 , ỹ1 = t
2n−1−α

2 lg t,

ỹ2 = t2n−1−α−αn−1 , . . . , ỹn = t2n−1−α−α1 be an ordered system of solutions of (5)
and let (X, U), (X̃, Ũ) be the matrix solutions of the associated LHS (7) generated
by y1, . . . , yn and ỹ1, . . . , ỹn, respectively. Further, let L := XT Ũ − UT X̃ and let

Li,j , i, j = 1, . . . , n, be the entries of this (constant) matrix. Then Lj,1 = 0 for
j = 1, . . . , n− 1 and

Ln,1 = −Pn,α

(2n− 1− α

2

)
,

where the polynomial Pn,α is given by (12).

���������
. Let (xj , uj), j = 1, . . . , n − 1, (x̃, ũ) be vector solutions of (7) with A

given by (8) and

B(t) = diag{0, . . . , 0, t−α}, C(t) = diag
{ µn,α

t2n−α
, 0 . . . , 0

}
,
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generated by yj , j = 1, . . . , n− 1, and ỹ1, respectively. Then Lj,1 = [xT
j ũ− uT

j x̃] are
real constants. Further, let λ ∈ � , y(t) = tλ,

x(t) =




y

y′
...

y(n−1)


 =




tλ

λtλ−1

...
n−2∏
i=0

(λ− i)tλ−n+1




,

u(t) =




(−1)n−1(tαy(n))(n−1)

...
−(tαy(n))′

tαy(n)


 =




(−1)n−1

λ+α−2n+1

n−1∏
i=0

(λ − i)(λ + α− n− i)tλ+α−2n+1

...

−(λ + α− n)
n−1∏
i=0

(λ− i)tλ−n+α−1

n−1∏
i=0

(λ− i)tλ−n+α




.

By a direct computation one can verify that

F (t) := xT (t)ũ(t)− uT (t)x̃(t) = tλ−
2n−1−α

2 [S(λ) lg t + R(λ)],

where S, R are certain polynomials of degrees 2n− 1 and 2n− 2, respectively. Now
F is a constant function if λ is a root of the polynomial

(−1)n
n−1∏

i=0

(λ− i)(λ− n + α− i)− µn,α =
(
λ− 2n− 1− α

2

)2

Pn,α(λ),

which means that

F ′(t) = tλ−
2n+1−α

2

{(
λ− 2n− 1− α

2

)
[S(λ) lg t + R(λ)] + S(λ)

}
= 0

for these λ. This implies that R(λ) = 0 if λ = αi and λ = 2n − 1 − α − αi,

i = 1, . . . , n − 1. Hence, since the leading coefficients of P (λ) and R(λ) are (−1)n

and (−1)n−1, respectively, we have R(λ) = −Pn,α(λ). By a similar argument

S(λ) =
(
λ− 2n− 1− α

2

)
Pn,α(λ).

Consequently,

Lj,1 = tαi− 2n−1−α
2 Pn,α(αi)

{(
αi −

2n− 1− α

2

)
lg t− 1

}
= 0, i = 1, . . . , n− 1,

and

Ln,1 = −Pn,α

(
λ− 2n− 1− α

2

)
.

�
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