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Abstract. In this paper we consider a product preserving functor F of order r and a
connection Γ of order r on a manifold M . We introduce horizontal lifts of tensor fields and
linear connections fromM to F(M) with respect to Γ. Our definitions and results generalize
the particular cases of the tangent bundle and the tangent bundle of higher order.
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1. Introduction

Let F be a product preserving functor (see [4]), then FM is a fiber bundle, with
standard fiber F0( ! n ), associated with the principal fiber bundle LrM of frames of

order r, where n is the dimension of M and r is the order of F .
Tangent bundles, tangent bundles of higher order, tangent bundles of pr-velocities,

Weil bundles (bundles of infinitely near points) are examples of product preserving
functors. The properties of product preserving functors can be found in [7] and [4].

The horizontal lifts of tensor fields and linear connections to the tangent bundle,

with respect to a linear connection, were introduced and studied in [9] and [10]. A
similar study for the tangent bundle of higher order is developed in [3] and [5].
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In this paper we present the horizontal prolongations of tensor fields of type (1, 1)
and linear connections from M to FM with respect to a connection Γ of order r
on M , that is a connection on the principal fiber bundle LrM , which generalize the
results given in [10], [3] and [5]. Let us remark that we do not use local coordinates.

2. Product preserving functors and connections of higher order

A product preserving functor is a covariant functor F from the category of all
manifolds and all mappings into the category of fibered manifolds satisfying the
following conditions:

(1) for each manifold M , F(M) is a fibered manifold over M ;

(2) for each differentiable map ϕ : M → N the induced map F(ϕ) : FM → FN
projects on ϕ and if ϕ : M → N is an immersion between two manifolds with the
same dimension, then for each point x ∈ M the restriction F(ϕ)|Fx(M) : Fx(M) →
Fϕ(x)(N) is a diffeomorphism;
(3) for all pairs of manifolds M1 and M2 the map

(F(π1),F(π2)) : F(M1 ×M2) → F(M1)×F(M2)

is a diffeomorphism, where πi : M1×M2 →Mi is the projection onto the i-th factor.

From Palais-Terng’s theorem (see [8]) we know that there exists an integer r such

that F is of order r. One deduces that F(M) is an associated bundle with fiber
F0( ! n ) to the principal fiber bundle LrM , that is the frame bundle of order r of M

with structure group Lr
n where n = dimM .

In this paper we fix a manifoldM of dimension n, a product preserving functor F
of order r and a connection Γ of order r on M , that is an arbitrary connection on
the principal fiber bundle LrM of r-frames. Let us denote by A = F( ! ) the Weil
algebra of F . We have that A = ! · 1 ⊕ N , where N = F0( ! ) is the ideal of the
nilpotent elements of A (see [7]).

Γ defines a covariant derivation DX of sections of each vector bundle associated

with LrM , in particular, a covariant derivation of sections of Jk(M, ! )0 , Jk(M, ! )
and Jk−1(TM), with k 6 r. Let us recall this definition.

Let µ be an action of Lr
n on a vector space V , and let E be the vector bundle

with fiber V associated with LrM . Each r-frame p ∈ LrM defines an isomorphism
p̃ : V → Eπ(p) of vector spaces. There exists a bijective correpondence between

sections of E and equivariant maps ψ̃ : LrM → V satisfying the condition ψ̃(p ·a) =
(µa−1 ◦ ψ̃)(p). If ψ : M → E is a section and ψ̃ : LrM → V is the equivariant map
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associated with ψ, then

(2.1) ψ̃(p) = (p̃−1 ◦ ψ ◦ πr)(p),

where πr : LrM →M is the projection.
If X is a vector field on M , we shall denote by XHr and XH the horizontal lifts

to LrM and FM , respectively. If ψ : M → E is a section, then XHr(ψ̃) : LrM → V

is an equivariant map and by definition DXψ : M → E is the section associated with

XHr(ψ̃), that is

(2.2) DXψ(πr(p)) = (p̃ ◦XHr

(ψ̃))(p).

Let X , Y be two vector fields on M and let ψ : M → E be a section; we define

R(X,Y )ψ = (DX ◦ DY − DY ◦ DX − D[X,Y ])(ψ). It is not difficult to prove that
R(X,Y )ψ is C∞(M)-linear with respect to ψ, and therefore R(X,Y ) : E → E is

an endomorphism of vector bundles over M . This map R(X,Y ) will be called the
curvature transformation of Γ.
In the case E = Jr(M, ! )0 the curvature transformation R(X,Y ) : Jr(M, ! )0 →

Jr(M, ! )0 is a derivation (see [2]).
Let us recall that a homomorphism f : Jr(M, ! )0 → Jr(M, ! )0 is a derivation if

f(y1y2) = f(y1)y2 + y1f(y2) for any y1, y2 ∈ Jr
x(M, ! )0 .

3. Vector fields on F(M)

Let λ : A → ! be a linear function. If f is a function on M , then we define the
λ-lift of f by f (λ) = λ ◦ F(f).
If τ : M → Jr(M, ! )0 is a section, we define τ (λ)(y) = f

(λ)
π(y)(y), where τ(π(y)) =

jr
π(y)fπ(y). This is a generalization of the λ-lift of functions.

Proposition 3.1. XH is the unique vector field on F(M) such that

(3.1) XH(f (λ)) = (DXj
rf)(λ)

for any function f onM and any linear function λ : A→ ! , where jrf is the section

of Jr(M, ! ) defined by f and DX is the covariant derivation defined by Γ.
"$#&%'%)(

. Let ϕt be the 1-parameter group of the vector field X . Let us denote
by ϕ̂t and ϕ̃t the 1-parameter groups of XH and XHr, respectively; then for each

p ∈ LrM and for each z ∈ V = F0( ! n ) we have

(3.2) ϕ̂t(p̃(z)) =
*
ϕ̃t(p)(z),
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where p̃ : V → Fπr(p)M and
*
ϕ̃t(p) : V → Fϕt(πr(p))M are the diffeomorphisms de-

fined by the r-frames p and ϕ̃t(p), respectively.
Since we shall prove the formula (3.1) locally, without loss of generality we can

assume that LrM is a trivial bundle. We fix a section σ : M → LrM with σ(x) =
jr
0γx.

For each point x ∈ M the two r-frames ϕ̃t(σ(x)) and σ(ϕt(x)) are at the same
fiber of LrM . Therefore there exists an element jr

0ξt,x ∈ Lr
n such that

(3.3) ϕ̃t(σ(x)) = σ(ϕt(x)) · jr
0ξt,x = jr

0(γϕt(x) ◦ ξt,x).

Now, from (3.2) and (3.3) we have

(3.4) ϕ̂t(σ̃(x)(z)) = F(γϕt(x) ◦ ξt,x)(z).

Let us consider a point y = σ̃(x)(z) = F(γx)(z) ∈ Fx(M). From the definition of
the λ-lift of f and the linearity of the maps f → F(f) and λ we deduce that

(3.5) XH(f (λ))(y) =
d
dt

(f (λ)(ϕ̂t(y)))|t=0 = λ ◦ F
( d

dt
(f ◦ γϕt(x) ◦ ξt,x)

∣∣
t=0

)
(z).

On the other hand, from (2.2), (3.3) and the linearity of the map f → jr
0f , we obtain

(DXj
rf)(x) = jr

0

( d
dt

(f ◦ γϕt(x) ◦ ξt,x)
∣∣
t=0

◦ γ−1
x

)
,

and therefore from the definition of the λ-lifts of sections we obtain

(3.6) (DXj
rf)(λ)(y) = λ ◦ F

( d
dt

(f ◦ γϕt(x) ◦ ξt,x)
∣∣
t=0

)
(z).

So (3.1) follows from (3.5) and (3.6).
We define now a new vector field on F(M) associated with each derivation of

Jr(M, ! )0 .

Proposition 3.2. If S : Jr(M, ! )0 → Jr(M, ! )0 is a derivation, then there
exists one and only one vertical vector field S� on F(M) such that

S�(f (λ)) = (S ◦ jrf)(λ)

for any function f on M and any linear function λ : A→ ! .
"$#&%'%)(

. Let us denote by V = Jr
0 ( ! n , ! )0 the fiber of Jr(M, ! )0 . For each

point p ∈ LrM we consider Sp = p̃ ◦ Sπ(p) ◦ p̃ : V → V , where Sπ(p) = S|Jr
π(p)(M, + )0

is the restriction of S.
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Using the natural identifications (as vector spaces) between V n and the Lie alge-

bra lrn of L
r
n, we define an element A(S, p) of lrn by A(S, p) = (Sp× . . .×Sp)(e) where

e = jr
0(id + n).

Let y = p̃(z) ∈ F(M), where p ∈ LrM and z ∈ F0( ! n ). Let Ψz : LrM → F(M)
be the map given by Ψz(p) = p̃(z). Then we have

S�(y) = (Ψz)∗(p)(A∗(S, p)p),

where A∗(S, p) is the fundamental vector field defined by the element A∗(S, p)p ∈ lrn.
Let X be a vector field. In [4] the a-lift X (a) of X is defined for each element

a ∈ A. It is the unique vector field on F(M) such that X (a)(f (λ)) = (Xf)(λ◦la) for

any function f and any λ, where la : A → A is the translation.
If a ∈ A is nilpotent, then X(a) is a vertical vector field. For each nilpotent

element a, we can generalize the a-lift of functions for sections of J r−1TM setting

Σ(a)(y) = X
(a)
π(y)(y),

where Xπ(y) is a vector field on M such that Σ(π(y)) = jr−1
π(y)Xπ(y). This generaliza-

tion is possible because if a is nilpotent then the vector X (a)
π(y)(y) depends only on

the (r − 1)-jet jr−1
π(y)Xπ(y).

Now we can prove

Proposition 3.3. Let X and Y be vector fields on M and a ∈ N a nilpotent

element of the Weil algebra. Then

[XH , Y H ] = [X,Y ]H +R(X,Y )�, [XH , Y (a)] = (DXj
r−1Y )(a),

where R(X,Y ) is the curvature transformation of Γ, and jr−1X : x ∈M → jr−1
x X ∈

Jr−1(TM) is the section defined by X .
"$#&%'%)(

. The first formula is an immediate consequence of Propositions 3.1, 3.2

and of the definition of R(X,Y ).
To prove the other one we observe that the sections τ : M → J r(M, ! )0 and Σ:

M → Jr−1TM define a new section Σ · τ of Jr−1(M, ! ) by (Σ · τ)(x) = jr−1
x (Xxfx),

where Σ(x) = jr−1
x Xx and τ(x) = jr

xfx. Obviously if X is a vector field and f is a

function we have jr−1(fX) = jrf · jr−1X . Now we have the formulas

(3.7) X(a)(τ (λ)) = (jr−1
0 Y · τ)(λ◦la), Σ(a)(f (λ)) = (Σ · jrf)(λ◦la).

Since the operation (Σ, τ) → Σ · τ is bilinear we obtain

(3.8) DX(Σ · τ) = DX(Σ) · τ + Σ ·DX(τ).
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From Proposition 3.1, the identities (3.8), (3.7) and the definition of the a-lift of

vector fields we deduce

[XH , Y (a)](f (λ)) = (DXj
r−1Y )(a)(f (λ)).

Since the vector field is determined by its action on the λ-lifts of functions (see [4])

the above formula give us the second formula of the proposition.

4. Horizontal lifts of tensors fields of type (1, 1)

For each tensor field t of type (1, 1), the horizontal lift tH of t to F(M) is the
tensor field of type (1, 1) on F(M) defined by

tH(XH) = (tX)H , tH(X(a)) = (tX)(a),

where X is any vector field on M and a is any nilpotent element of A. tH is called

the horizontal lift of t with respect to Γ. These formulas determine tH .
From the definition we deduce that if w(x) is a polynomial with real coefficients

and t is a tensor of type (1, 1) on M , then w(tH ) = (w(t))H .
In order to study the integrability of the lifted structures we must compute the

Nijenhuis tensor of tH . To compute NtH we shall use the following operation: given
two sections Σ: M → Jr−1TM and Φ: M → Jr−1(TM ⊗ T ∗M) we define a new
section

Φ · Σ: M → Jr−1TM

by
(Φ · Σ)(x) = jr−1

x (txXx),

where Φ(x) = jr−1
x tx and Σ(x) = jr−1

x Xx.

If we suppose that Nt = 0, then

NtH (XH , Y H) = (t2)H
(
R(X,Y )�)

+R(tX, tY )� − tH
(
(R(tX, Y ) +R(X, tY ))�)

,

NtH (XH , Y (a)) = (DtXj
r−1t · Jr−1Y − jr−1t ·DXj

r−1t · Jr−1Y )(a),

NtH (X(a), Y (b)) = 0,

where X,Y are vector fields on M , a, b ∈ N and D denotes the covariant derivation
of sections of TM ⊗ T ∗M with respect to Γ. Using these formulas we easily deduce

Theorem 4.1. Let J be a complex structure (a tangent structure) and let Γ be
a connection of order r on M such that DXj

r−1J = 0. If R(JX, JY ) = R(X,Y )
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(R(JX, Y ) = 0), then JH is a complex structure (a tangent structure, respectively)

on F(M) where R(·, ·) denotes the curvature transformation of Γ.

5. Horizontal lifts of linear connections

Proposition 5.1. Let ∇ be a linear connection and Γ a connection of order r
onM . Then there exists one and only one linear connection ∇H on F(M) such that

∇H
XHY

H = (∇XY )H , ∇H
XHY

(a) = [XH , Y (a)],

∇H
X(a)Y

H = 0, ∇H
X(a)Y

(b) = (∇XY )(ab).

The linear connection∇H on F(M) will be called the horizontal lift of∇ with respect
to Γ.

We point out that in Proposition 5.1 we do not suppose any relationship between∇
and Γ on M .
In the case F(M) = T rM = Jr

0 ( ! ,M), the tangent bundle of order r, this propo-
sition was proved in [6]. If F(M) is the tangent bundle TM and if ∇ = Γ, this
lift coincides with the horizontal lift of linear connections to the tangent bundle
introduced by Yano and Ishihara [9], [10].

Let T and T̃ be torsion tensors of ∇ and ∇H respectively, then

(5.1)

{
T̃ (XH , Y H) = (T (X,Y ))H −R(X,Y )�, T̃ (XH , Y (a)) = 0,

T̃ (X(a), Y (b)) = (T (X,Y ))(ab)

where X,Y are vector fields on M , a, b are nilpotent elements of the Weil algebra
and R(X,Y ) is the curvature transformation of Γ.
From (5.1) we deduce that if ∇ is torsion-free onM and the curvature transforma-

tion of Γ vanishes identically, then the horizontal lift ∇H is a torsion-free connection

on F(M).
The curvature tensor of ∇H is more difficult to compute because we do not have a

formula for [R(X,Y )�, Y (a)]. But it is not hard to check that if ∇ has neither torsion
nor curvature and the curvature transformation of Γ vanishes identically, then ∇H

is torsion-free and its curvature vanishes.
One must remark that in the particular case of the tangent bundle F(M) = TM

our horizontal lifts of tensors and linear connections, and their properties, coincide
with the results of Yano and Ishihara [9], [10]. Also the results of this paper generalize

the results obtained for the tangent bundle of higher order F(M) = T rM in [3], [5]
and [6].
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If we consider our horizontal lifts of tensors and connections to T n,1M and Tn,2M ,

their restrictions to LM and L2M give the horizontal lifts of tensors and connections
to the principal fiber bundles LM and L2M as developed in [1].
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