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Abstract. The basis number of a graph G was defined by Schmeichel to be the least
integer h such that G has an h-fold basis for its cycle space. He proved that for m, n > 5,
the basis number b(Km,n) of the complete bipartite graph Km,n is equal to 4 except for
K6,10, K5,n and K6,n with n = 5, 6, 7, 8. We determine the basis number of some particular
non-planar graphs such as K5,n and K6,n, n = 5, 6, 7, 8, and r-cages for r = 5, 6, 7, 8, and
the Robertson graph.
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1. Introduction

Throughout this paper, we assume that graphs are finite, undirected, and simple.

Our terminology and notation will be standard except as indicated. For undefined
terms, see [3] and [4].

Let G be a graph, and let e1, e2, . . . , eq be an ordering of its edges. Then any
subset S of E(G) corresponds to a (0, 1)-vector (a1, a2, . . . , aq) in the usual way,
with ai = 1 if ei ∈ S and ai = 0 if ei /∈ S. These vectors form a q-dimensional vector
space over � 2 denoted by ( � 2)q .

Let C(G), called the cycle space of G, be the subspace of ( � 2)q generated by the
vectors corresponding to the cycles in G. We shall say, however, that the cycles

themselves, rather than the vectors corresponding to the cycles, generate C(G). It is
well known that if G is a (p, q) connected graph, then the dimension of C(G) is

dim(C(G)) = γ(G) = q − p + k,
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where p is the number of vertices, q is the number of edges, k is the number of

connected components and γ(G) is the cyclomatic number of G. In fact, given any
spanning tree T in G, every graph T + e, e /∈ T , contains exactly one cycle Ce, and
the collection of cycles {Ce : e /∈ T} forms a basis of C(G), called the fundamental
basis corresponding to T . While each edge outside of T occurs in exactly one cycle of
this basis, an edge of T itself may occur in many cycles of the basis. This observation

suggests the following definition.

Definition. Let h be a positive integer. A basis of C(G) is called h-fold if each

edge of G occurs in at most h of the cycles in the basis. The basis number of G

(denoted by b(G)) is the smallest integer h such that C(G) has an h-fold basis, and

such a basis is called the required basis of G and denoted by Br(G). If B is a basis
for C(G) and e is an edge of G then the the fold of e in B (denoted by fB(e)) is
defined to be the number of cycles in B containing e.

The ring sum of two graphs (subgraphs) G1 and G2 (written G1⊕G2) is the graph
consisting of the vertex-set V (G1) ∪ V (G2) and of the edges which are either in G1

or G2 but not in both.

The girth of a graph is the length of its shortest cycle. An r-cage, r > 3, is a cubic
graph of girth r with the minimum possible number of vertices. Tutte [8] proved the

existence of r-cages for r > 3, and for r = 3, 4, . . . , 8 there is a uniqe r-cage.

The Robertson graph is the smallest graph of girth 5 and valency 4 (i.e., each
vertex is of degree 4). Robertson [6] established that, up to an isomorphism, the

Robertson graph is the only smallest graph of girth 5 and valency 4.

The first important result concerning the basis number was given by MacLane [5].

He proved the following theorem:

Theorem 1.1. A graph G is planar if and only if b(G) 6 2.

Schmeichel [7] proved that for every integer n > 5, b(Kn) = 3. Also he proved
that for m, n > 5, the basis number b(Km,n) of the complete bipartite graph Km,n

is equal to 4 except for K6,10, K5,n and K6,n, with n = 5, 6, 7, 8. Moreover, Banks
and Schmeichel [2] proved that for n > 7, b(Qn) = 4, where Qn is the n-cube.

A lower bound for the basis number of a graph is given in the following theorem
which is due to Banks and Schmeichel [2].

Theorem 1.2. For any connected graph G,

∑

v∈V (G)

⌊b(G)d(v)
2

⌋
> g(G) · γ(G),
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where d(v) denotes the degree of the vertex v, g(G) the girth of G, and γ(G) the
cyclomatic number of G.

Ali and Alsardary [1] investigated the relation between b(G) and b(G′) where G′ is

the graph obtained from a graph G by either adding or deleting an edge in certain
ways, or by contracting some edges.

In this note we first investigate the basis number of K5,n and K6,n, n = 5, 6, 7, 8.
We prove that b(K5,n) = b(K6,n) = 3 for n = 5, 6, 7, 8. Next, we investigate the basis
number of r-cages for r = 5, 6, 7, 8. We prove that b(r-cage) = 3 for r = 5, 6, 7 and
b(8-cage) = 4. Finally, we prove that the basis number of the Robertson graph is 4.

2. The basis number of K5,n and K6,n, n = 5, 6, 7, 8

Schmeichel [7] determined the basis number for all complete bipartite graphs ex-
cept K5,n, K6,n, n = 5, 6, 7, 8, and K6,10. We shall prove the basis number of these

graphs is 3, except K6,10, for which it seems likely that the basis number is 3.

It is clear that each Km,n, m, n > 3, is a non-planar graph; therefore, by Theo-
rem 1.1, we need to find a 3-fold basis for each of the complete bipartite graphs K5,n

and K6,n, n = 5, 6, 7, 8. For each of these graphs, we choose a set B of cycles such
that |B| equals the cyclomatic number of the graph and the fold of each edge in B

is not more than 3. Then, we show that B is independent.

Let X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn} be a partition of the vertices of
the complete bipartite graph Km,n into independent sets. Then the set of the edges

of Km,n will be

E(Km,n) = {[xi, yj ] : i = 1, 2, . . . , m; j = 1, 2, . . . , n}.

Denoting [xi, yj ] by ei+m(j−1), we have

E(Km,n) = {ei+m(j−1) : i = 1, 2, . . . , m; j = 1, 2, . . . , n}
= {e1, e2, . . . , emn}.

For simplicity, the cycles of Km,n will be represented by the sequences of their

vertices. To obtain the vector of a cycle C in Km,n, we find the edge representation
of C using the above notation.

2.1. A 3-fold basis for C(K5,5).
It is clear that the number of edges of K5,5 is 25 and the number of vertices is 10.

Therefore, γ(K5,5) = 16.
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Schmeichel [7] proved that

{xiyjxi+1yj+1 : i = 1, 2, . . . , m− 1; j = 1, 2, . . . , n− 1}

is a 4-fold basis for Km,n. Starting from the 4-fold basis

{xiyjxi+1yj+1 : i = 1, 2, 3, 4; j = 1, 2, 3, 4}

of K5,5, we form the cycle matrix M whose rows are the vectors of this basis. Ap-
plying some elementary row operations on M , we obtain a cycle matrixM ′ in which

each column contains not more than three non-zero entries. The set of the cycles
whose vectors are the rows of M ′ is found to be

B(K5,5) = {x1y1x2y2, x1y1x2y3, x1y3x2y4, x1y4x2y5, x2y4x3y5, x3y1x4y2,

x4y1x5y2, x4y4x5y5, x1y1x3y2, x1y4x5y5, x2y3x3y5, x3y2x4y4,

x3y3x4y5, x4y1x5y3, x4y3x5y5, x1y2x2y1x3y3}.

It is clear that B(K5,5) is a 3-fold basis for C(K5,5), and we can check that by
writing B(K5,5) in terms of the edges, we obtain

B(K5,5) = {e1e2e7e6, e1e2e12e11, e11e12e17e16, e16e17e22e21, e17e18e23e22, e3e4e9e8,

e4e5e10e9, e19e20e25e24, e1e3e8e6, e16e20e25e21, e12e13e23e22, e8e9e19e18,

e13e14e24e23, e4e5e15e14, e14e15e25e24, e6e7e2e3e13e11}.

Moreover, we can easily check that if

(1)
16∑

i=1

aiCi = ~0,

then ai = 0 for all i = 1, 2, . . . , 16, where C1, C2, . . . , C16 are the vectors of the cycles
given in B(K5,5). This can be done by representing the system of homogeneous
equations (1) as

(2) AB = ~0,

where A is a row matrix (a1a2 . . . a16), ~0 is a 1× 25 zero matrix, and B is a 16× 25
matrix which is the cycle matrix [4] ofK5,5 corresponding to the set of cycles B(K5,5).
It is clear that B = [bij ], bij = 1 if the edge ej is in the cycle Ci and zero otherwise.
By an algebraic method, or by computer, we show that B has rank 16 (= γ). Thus

A = ~0 is the only solution for (2). This implies that B(K5,5) is an independent set
of 16 (= γ(K5,5)) cycles.
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Remark. This procedure is used also in Sections 2.2–2.7, 3.1–3.4 and 4, to show
that B() are independent sets of cycles.

2.2. A 3-fold basis for C(K5,6).
Schmeichel [7] proved that

B(K4,n) =





x1yix2yi+1 for i = 1, 2, . . . , n− 1,

x3yix4yi+1 for i = 1, 2, . . . , n− 1,

x1y2i−1x3y2i for i = 1, 2, . . . , bn
2 c,

x2y2ix4y2i+1 for i = 1, 2, . . . ,
⌊

n−1
2

⌋

is a 3-fold basis for C(K4,n).
We want to choose a subset S of B(K4,6) such that it is possible to find a set T

of γ(K5,6) − |S| cycles each of length 4 constructed from the edges incident at x5

together with the edges of K4,6 which are of fold less than 3 in S, and such that the

fold in S ∪ T of each edge of K5,6 does not exceed 3. Then, we test the set S ∪ T for
independence. If S∪T is independent, then it is a 3-fold basis for C(K5,6), otherwise
we consider another S and T , and so on.
The procedure that may be followed to obtain a suitable S is: start taking S =

B(K4,6), if it does not lead to the required T , take S to be a subset obtained from
B(K4,6) by omitting one cycle, then by omitting two cycles, and so on, until a
suitable S which leads to the required T is obtained.
Following this procedure, we obtain

S = B(K4,6) − {x1y2x2y3, x3y4x4y5, x2y4x4y5}
= {x1y1x2y2, x1y3x2y4, x1y4x2y5, x1y5x2y6, x3y1x4y2, x3y2x4y3,

x3y3x4y4, x3y5x4y6, x1y1x3y2, x1y3x3y4, x1y5x3y6, x2y2x4y3},

T = {x1y6x2y1, x3y6x4y1, x5y1x2y2, x5y2x1y3,

x5y3x2y6, x5y4x3y5, x5y5x4y6, x5y1x4y4}.

Now, we take B(K5,6) = S ∪ T .

To show that the cycles of B(K5,6) are independent, we write them in terms of
the edges,

B(K5,6) = {e1e2e7e6, e11e12e17e16, e16e17e22e21, e21e22e27e26, e3e4e9e8, e8e9e14e13,

e13e14e19e18, e23e24e29e28, e1e3e8e6, e11e13e18e16, e21e23e28e26,

e7e9e14e12, e26e27e2e1, e28e29e4e3, e5e2e7e10, e10e6e11e15,

e15e12e27e30, e20e18e23e25, e25e24e29e30, e5e4e19e20},
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and prove that the vectors of these 20 cycles are linearly independent by an algebraic

method. Since γ(K5,6) = 20, it follows that B(K5,6) is indeed a basis for C(K5,6). It
is a simple matter to verify that it is a 3-fold basis.

2.3. A 3-fold basis for C(K5,7).

To find a 3-fold basis B(K5,7) we follow the procedure mentioned in 2.2, i.e., we
find a subset S of B(K4,7) and a set T of cycles constructed from the edges incident

at vertex x5 together with the edges of K4,7 whose fold in S is less than 3 and such
that

|S|+ |T | = γ(K5,7),

and the fold in S ∪ T of each edge of K5,7 does not exceed 3.

It is found that

S = B(K4,7) − {x1y2x2y3, x3y3x4y4, x2y4x4y5, x1y5x3y6}
= {x1y1x2y2, x1y3x2y4, x1y4x2y5, x1y5x2y6, x1y6x2y7, x3y1x4y2, x3y2x4y3,

x3y4x4y5, x3y5x4y6, x3y6x4y7, x1y1x3y2, x1y3x3y4, x2y2x4y3, x2y6x4y7},

T = {x1y1x3y7, x2y1x4y7, x5y1x2y2, x5y2x1y3, x5y3x3y6,

x5y6x1y7, x5y7x3y4, x5y4x2y5, x5y5x4y1, x5y3x4y4}.

Writing the cycles of S ∪ T in terms of their edges, we arrive at

S ∪ T = {e1e2e7e6, e11e12e17e16, e16e17e22e21, e21e22e27e26,

e26e27e32e31, e3e4e9e8, e8e9e14e13, e18e19e24e23,

e23e24e29e28, e28e29e34e33, e1e3e8e6, e11e13e18e16,

e7e9e14e12, e27e29e34e32, e1e3e33e31, e2e4e34e32,

e5e2e7e10, e10e6e11e15, e15e13e28e30, e30e26e31e35,

e35e33e18e20, e20e17e22e25, e25e24e4e5, e15e14e19e20}.

We can easily show that the cycles of S ∪ T are independent. Since

|S ∪ T | = 24 = γ(K5,7),

it follows that B(K5,7) = S ∪ T is indeed a 3-fold basis for C(K5,7).
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2.4. A 3-fold basis for C(K5,8).
To find a 3-fold basis for C(K5,8), we choose S from the basis B(K5,7) which was

obtained in 2.3. Following the procedure given in 2.2, we obtain

S = B(K5,7) − {x1y1x2y2, x3y6x4y7, x1y3x3y4}
= {x1y3x2y4, x1y4x2y5, x1y5x2y6, x1y6x2y7, x3y1x4y2, x3y2x4y3, x3y4x4y5,

x3y5x4y6, x1y1x3y2, x2y2x4y3, x2y6x4y7, x1y1x3y7, x2y1x4y7, x5y1x2y2,

x5y2x1y3, x5y3x3y6, x5y6x1y7, x5y7x3y4, x5y4x2y5x5y5x4y1, x5y3x4y4},

T = {x1y1x2y8, x2y2x5y8, x5y5x1y8, x3y7x4y8, x4y4x3y8, x1y3x3y8, x5y6x4y8}.

Notice that the cycles of T are constructed from the edges incident at the vertex y8

together with the edges of K5,7 which are of fold less than 3 in S.

We can show that

B(K5,8) = S ∪ T

= {e11e12e17e16, e16e17e22e21, e21e22e27e26, e26e27e32e31,

e3e4e9e8, e8e9e14e13, e18e19e24e23, e23e24e29e28, e1e3e8e6,

e7e9e14e12, e27e29e34e32, e1e3e33e31, e2e4e34e32, e5e2e7e10,

e10e6e11e15, e15e13e28e30, e30e26e31e35, e35e33e18e20, e20e17e22e25,

e25e24e4e5, e15e14e19e20, e1e2e37e36, e7e10e40e37, e25e21e36e40,

e33e34e39e38, e19e18e38e39, e11e13e38e36, e30e29e39e40}

is a 3-fold basis for C(K5,8) by proving that these 28 (= γ(K5,8)) cycles are indepen-
dent.

2.5. A 3-fold basis for C(K6,6).
To find a 3-fold basis for C(K6,6), we choose a suitable subset S from the basis

B(K5,6) which is obtained in 2.3. Following the procedure mentioned in 2.2, we
obtain

S = B(K5,6) − {x1y3x2y4, x3y1x4y2, x1y5x3y6, x2y2x4y3}
= {x1y1x2y2, x1y4x2y5, x1y5x2y6, x3y2x4y3, x3y3x4y4, x3y5x4y6,

x1y1x3y2, x1y3x3y4, x1y6x2y1, x3y6x4y1, x5y1x2y2, x5y2x1y3,

x5y3x2y6, x5y4x3y5, x5y5x4y6, x5y1x4y4},

T = {x6y1x5y2, x6y2x2y4, x6y4x4y3, x6y3x2y5, x6y5x5y6,

x6y2x4y5, x1y3x6y6, x2y3x5y4, x3y1x6y6}.
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Notice that the cycles of T are constructed from the edges incident at x6 together

with the edges of K5,6 which are of fold less than 3 in S.
We can show that

B(K6,6) = S ∪ T

= {e1e2e8e7, e19e20e26e25, e25e26e32e31, e9e10e16e15, e15e16e22e21,

e27e28e34e33, e1e3e9e7, e13e15e21e19, e31e32e2e1, e33e34e4e3,

e5e2e8e11, e11e7e13e17, e17e14e32e35, e23e21e27e29, e29e28e34e35,

e5e4e22e23, e6e5e11e12, e12e8e20e24, e24e22e16e18, e18e14e26e30,

e30e29e35e36, e12e10e28e30, e13e18e36e31, e14e17e23e20, e3e6e36e33}

is a 3-fold basis for C(K6,6) by proving that these 25 (= γ(K6,6)) cycles are indepen-
dent.

2.6. A 3-fold basis for C(K6,7).
As for K6,6, we obtain B(K6,7) by choosing

S = B(K6,6) − {x1y3x6y6, x2y3x5y4, x3y1x6y6}
= {x1y1x2y2, x1y4x2y5, x1y5x2y6, x3y2x4y3, x3y3x4y4, x3y5x4y6, x1y1x3y2,

x1y3x3y4, x1y6x2y1, x3y6x4y1, x5y1x2y2, x5y2x1y3, x5y3x2y6, x5y4x3y5,

x5y5x4y6, x5y1x4y4, x6y1x5y2, x6y2x2y4, x6y4x4y3, x6y3x2y5,

x6y5x5y6, x6y2x4y5},
T = {x1y4x6y6, x6y1x3y7, x5y3x1y7, x4y1x6y7, x3y2x4y7,

x2y3x6y7, x1y5x3y7, x2y4x5y7},

where the cycles of T are constructed from the edges incident at y7 together with

the edges of K6,6 whose fold in S is less than 3. Then it is shown that

B(K6,7) = S ∪ T

= {e1e2e8e7, e19e20e26e25, e25e26e32e31, e9e10e16e15, e15e16e22e21,

e27e28e34e33, e1e3e9e7, e13e15e21e19, e31e32e2e1, e33e34e4e3,

e5e2e8e11, e11e7e13e17, e17e14e32e35, e23e21e27e29, e29e28e34e35,

e5e4e22e23, e6e5e11e12, e12e8e20e24, e24e22e16e18,

e18e14e26e30, e30e29e35e36, e12e10e28e30, e19e24e36e31,

e6e3e39e32, e17e13e37e41, e4e6e42e40, e9e10e40e39,

e14e18e42e38, e25e27e39e37, e20e23e41e38}
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is a 3-fold basis for C(K6,7) by proving that the 30 (= γ(K6,7)) cycles of B(K6,7) are
independent.

2.7. A 3-fold basis for C(K6,8).
To find a 3-fold basis for C(K6,8), we start from B(K6,7) and follow the procedure

given in 2.2 to obtain

S = B(K6,7) − {x1y1x2y2, x3y3x4y4, x6y5x5y6}
= {x1y4x2y5, x1y5x2y6, x3y2x4y3, x3y5x4y6, x1y1x3y2,

x1y3x3y4, x1y6x2y1, x3y6x4y1, x5y1x2y2, x5y2x1y3,

x5y3x2y6, x5y4x3y5, x5y5x4y6, x5y1x4y4, x6y1x5y2,

x6y2x2y4, x6y4x4y3, x6y3x2y5, x6y2x4y5, x1y4x6y6,

x6y1x3y7, x5y3x1y7, x4y1x6y7, x3y2x4y7, x2y3x6y7,

x1y5x3y7, x2y4x5y7},

T = {x5y6x6y8, x5y5x6y8, x4y4x3y8, x4y3x3y8, x2y2x1y8,

x2y1x1y8, x5y7x1y8, x6y6x3y8},

B(K6,8) = S ∪ T

= {e19e20e26e25, e25e26e32e31, e9e10e16e15,

e27e28e34e33, e1e3e9e7, e13e15e21e19, e31e32e2e1,

e33e34e4e3, e5e2e8e11, e11e7e13e17, e17e14e32e35,

e23e21e27e29, e29e28e34e35, e5e4e22e23, e6e5e11e12,

e12e8e20e24, e24e22e16e18, e18e14e26e30, e12e10e28e30,

e19e24e36e31, e6e3e39e42, e17e13e37e41, e4e6e42e40,

e9e10e40e39, e14e18e42e38, e25e27e39e37, e20e23e41e38,

e35e36e48e47, e29e30e48e47, e22e21e45e46, e16e15e45e46,

e8e7e43e44, e2e1e43e44, e41e37e43e47, e36e33e45e48}

where the cycles of T are constructed from the edges incident at y8 together with

the edges of K6,7 which are of fold less than 3 in S. Then it is shown that B(K6,8) is
a 3-fold basis for C(K6,8) by proving that the 35 (= γ(K6,8)) cycles are independent.
Now the proof of the following statement has been completed.

Theorem 2.1. The basis number of K5,n and K6,n for n = 5, 6, 7, 8 is 3.
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3. The basis number of some r-cages

We start this section with a simple result concerning the basis number of cubic
graphs.

Let Gc be a cubic graph with n vertices and m edges. Then m = 3n/2 and

γ(Gc) =
3n

2
− n + 1 =

n

2
+ 1.

From Theorem 1.2 we have

n ·
⌊3b(Gc)

2

⌋
> g(Gc) ·

(n

2
+ 1

)
,

where g(Gc) is the girth of Gc. We consider two cases:
Case (I). If b(Gc) is even, then

(3) b(Gc) > 1
3
g(Gc) ·

(
1 +

2
n

)
.

Case (II). If b(Gc) is odd, then

(4) b(Gc) > 1
3
g(Gc) ·

(
1 +

2
n

)
+

1
3
.

If b(Gc) = 2, then from (1) we get

g(Gc) 6 6n

n + 2
< 6.

Thus we have the following statement.

Corollary 3.1. Each cubic graph of girth more than 5 is non-planar.

If b(Gc) = 3, then (2) implies

g(Gc) 6 8n

n + 2
.

Since the girth is an integer, then g(Gc) 6 7 when b(Gc) = 3. Therefore, if g(Gc) > 8,
then b(Gc) > 4.
Hence, the proof of the following theorem is completed:

Theorem 3.1. If Gc is a cubic graph of girth not less than 8, then b(Gc) > 4.

It is mentioned in Section 1 that, for r = 3, 4, . . . , 8, there is a unique r-cage. Since
the 3-cage is K4 and the 4-cage is K3,3, we have b(3-cage) = 2 and b(4-cage) = 3.
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To determine the basis number of the r-cage for r = 5, 6, 7, 8, we divide the
remaining part of this section into four subsections.

3.1. The basis number of Petersen graph.
The 5-cage is the graph shown in Fig. 1. It is called Petersen graph, and will be

denoted by GP .
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e8e14e11
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e15

e12

Figure 1. Petersen graph

It is clear that GP is a non-planar graph, therefore, by Theorem 1.1, b(GP ) > 3.
To find a 3-fold basis for C(GP ), consider the set of cycles of GP :

B(GP ) = {e1e6e15e14e10, e2e7e12e11e6, e3e8e14e13e7,

e4e9e11e15e8, e5e10e13e12e9, e1e2e7e13e10}.

We can easily show that the vectors representing the cycles of B(GP ) are linearly
independent in C(GP ). Since

|B(GP )| = 6 = γ(GP ) = dim(C(GP )),

B(GP ) is a basis for C(GP ). Moreover, one can easily check that the fold of each
edge of GP in the basis B(GP ) is not more than 3. Thus b(GP ) 6 3, and so the
basis number of the Petersen graph is 3.

3.2. The basis number of Heawood graph.
The 6-cage is the graph shown in Fig. 2. It is called the Heawood graph, and will

be denoted by GH .

Since GH is a cubic graph of girth 6, GH is non-planar by Corollary 3.1 and so
b(GH) > 3.
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Figure 2. Heawood graph

To find a 3-fold basis for C(GH), consider the set of cycles of GH :

B(GH ) = {e1e16e7e8e9e15, e3e18e9e10e11e17, e5e20e11e12e13e19,

e7e21e13e14e1e16, e9e15e1e2e3e18, e11e17e3e4e5e20,

e13e19e5e6e7e21, e14e19e4e18e8e21e12e17e2e16e6e20e10e15}.

We can easily show that the vectors representing the cycles of B(GH ) are linearly
independent in C(GH). Since

|B(GH )| = 8 = γ(GH) = dim(C(GH)),

then B(GH) is a basis for C(GH). Moreover, one can easily check that the fold of
each edge of GH in the basis B(GH ) is not more than 3. Thus b(GH) 6 3, and so
the basis number of the Heawood graph is 3.

3.3. The basis number of McGee graph.

The 7-cage is the graph shown in Fig. 3. It is called the McGee graph, and will
be denoted by GM .

By Corollary 3.1, GM is a non-planar graph, and so b(GM ) > 3.
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Figure 3. McGee graph

To find a 3-fold basis for C(GM ), consider the set of cycles of GM :

B(GM ) = {e33e9e2e3e4e5e13, e34e10e3e4e5e6e14, e35e11e3e2e1e8e15,

e36e12e5e6e7e8e16, e9e1e16e24e29e21e33, e16e8e15e23e26e20e36,

e15e7e14e22e31e19e35, e14e6e13e21e28e18e34, e9e2e10e18e27e26e25e17,

e33e17e32e31e30e29e21, e34e18e27e26e25e32e22, e4e11e19e31e32e25e20e12,

e35e19e30e29e28e27e23}.

One can easily show that the vectors which represent the cycles of B(GM ) are
linearly independent in the vector space C(GM ). Since

|B(GM )| = 13 = γ(GM ) = dim(C(GM )),

B(GM ) is a basis for C(GM ). Moreover, one can easily check that this basis is a
3-fold basis. Thus b(GM ) 6 3.
Hence the basis number of the McGee graph is 3.

3.4. The basis number of Levi graph.
The Levi graph is the 8-cage which is shown in Fig. 4. It will be denoted by GL.

From Theorem 3.1, b(GL) > 4.
Thus, to prove that b(GL) = 4, we shall give a 4-fold basis for C(GL).
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Figure 4. Levi graph

Consider the set of cycles of GL:

B(GL) = {e1e11e21e37e36e35e22e12, e2e12e22e34e33e32e23e13,

e3e13e23e31e40e39e24e14, e4e14e24e38e37e36e25e15,

e5e15e25e35e34e33e26e16, e6e16e26e32e31e40e27e17,

e7e17e27e39e38e37e28e18, e8e18e28e36e35e34e29e19,

e9e19e29e33e32e31e30e20, e10e20e30e40e39e38e21e11,

e44e16e6e7e8e9e10e11, e45e22e35e36e28e18e7e17,

e41e28e37e38e24e14e3e13, e42e29e33e32e23e13e3e14,

e43e15e5e6e7e8e9e20, e44e11e1e2e3e4e5e16}.

Using a simple algebraic method, we prove that the vectors of the cycles of B(GL)
are linearly independent in the vector space C(GL). Since

|B(GL)| = 16 = γ(GL) = dim(C(GL)),

B(GL) is a basis for C(GL). Moreover, one can easily check that the fold of each
edge of GL in this basis B(GL) is not more than 4. Therefore, b(GL) 6 4.
Hence the basis number of the Levi graph is 4.
Now, we summarize the results of the three subsections in the following theorem.
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Theorem 3.2. The basis number of an r-cage for r = 4, 5, 6, 7 is 3. The basis
number of the 8-cage is 4.

4. The basis number of Robertson graph

It is mentioned in Section 1 that the Robertson graph, which is shown in Fig. 5

and denoted by GR, is the only smallest graph of girth 5 and valency 4.
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Figure 5. Robertson graph

It is clear that GR has 19 vertices and 38 edges. Thus γ(GR) = 20.
By Theorem 1.2,

19
⌊b(GR) · 4

2

⌋
> (5)(20),

that is,

b(GR) > 50
19

.

This means that b(GR) > 3.
To prove that the basis number of GR is 3, we form a 3-fold basis for C(GR).
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Consider the set of cycles of GR:

B(GR) = {e33e27e6e8e34, e34e19e9e14e33, e20e21e22e37e36,

e37e23e7e16e13e3, e37e11e6e26e3, e35e12e5e21e2,

e1e4e10e22e23e32, e31e6e17e5e30, e29e18e8e17e15,

e24e23e11e17e12, e20e21e10e16e9, e26e27e14e16e13,

e25e13e10e2e35, e28e14e9e36e38, e24e25e26e31e32,

e1e18e19e20e30, e29e18e19e36e38, e12e15e28e33e35,

e8e11e22e2e34, e1e29e28e27e31}.

We can easily show that the vectors of the cycles of B(GR) are linearly independent
in the vector space C(GR). Since

|B(GR)| = 20 = γ(GR) = dim(C(GR)),

B(GR) is a basis for C(GR). Moreover, one can easily check that the fold of each
edge of GR in the basis B(GR) is not more than 3. Thus b(GR) 6 3. This completes
the proof of the following theorem.

Theorem 4.1. The basis number of the Robertson graph is 3.
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