Sei-Qwon Oh; Chun-Gil Park Equivalence bimodule between non-commutative tori

Czechoslovak Mathematical Journal, Vol. 53 (2003), No. 2, 289-294

Persistent URL: http://dml.cz/dmlcz/127800

Terms of use:

© Institute of Mathematics AS CR, 2003

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://dml.cz

EQUIVALENCE BIMODULE BETWEEN NON-COMMUTATIVE TORI

SEI-QWON OH and CHUN-GIL PARK, Daejeon

(Received March 8, 2000)

Abstract. The non-commutative torus $C^*(\mathbb{Z}^n, \omega)$ is realized as the C^* -algebra of sections of a locally trivial C^* -algebra bundle over $\widehat{S_{\omega}}$ with fibres isomorphic to $C^*(\mathbb{Z}^n/S_{\omega}, \omega_1)$ for a totally skew multiplier ω_1 on \mathbb{Z}^n/S_{ω} . D. Poguntke [9] proved that A_{ω} is stably isomorphic to $C(\widehat{S_{\omega}}) \otimes C^*(\mathbb{Z}^n/S_{\omega}, \omega_1) \cong C(\widehat{S_{\omega}}) \otimes A_{\varphi} \otimes M_{kl}(\mathbb{C})$ for a simple non-commutative torus A_{φ} and an integer kl. It is well-known that a stable isomorphism of two separable C^* -algebras is equivalent to the existence of equivalence bimodule between them. We construct an $A_{\omega}-C(\widehat{S_{\omega}}) \otimes A_{\varphi}$ -equivalence bimodule.

Keywords: Morita equivalent, twisted group C^* -algebra, crossed product $MSC \ 2000: \ 46L05, \ 46L87, \ 55R15$

1. INTRODUCTION

Given a locally compact abelian group G and a multiplier ω on G, one can associate with them the twisted group C^* -algebra $C^*(G, \omega)$, which is the universal object for unitary ω -representations of G. The twisted group C^* -algebra $C^*(\mathbb{Z}^n, \omega)$ is called a non-commutative torus of rank n and denoted by A_{ω} . The multiplier ω determines a subgroup S_{ω} of G, called its symmetry group. A multiplier ω on an abelian group Gis called totally skew if the symmetry group S_{ω} is trivial. A non-commutative torus A_{ω} is said to be a completely irrational non-commutative torus if ω is totally skew (see [1], [7], [8]). Baggett and Kleppner [1] showed that if G is a locally compact abelian group and ω is a totally skew multiplier on G, then $C^*(G, \omega)$ is a simple C^* -algebra.

It was shown in [1], [7] that even when ω is not totally skew on a locally compact abelian group G, the restriction of ω -representations from G to S_{ω} induces a canonical

This work was supported by grant No. 1999-2-102-001-3 from the interdisciplinary Research program year of the KOSEF.

homeomorphism of $\operatorname{Prim}(C^*(G,\omega))$ with $\widehat{S_\omega}$, where $\operatorname{Prim}(C^*(G,\omega))$ is the primitive ideal space of the twisted group C^* -algebra $C^*(G,\omega)$, and that there is a totally skew multiplier ω_1 on \mathbb{Z}^n/S_ω such that ω is similar to the pull-back of ω_1 . Furthermore, it is known (see [1], [7], [9]) that $C^*(G,\omega)$ may be realized as the C^* -algebra $\Gamma(\zeta)$ of sections of a locally trivial C^* -algebra bundle ζ over $\widehat{S_\omega} = \operatorname{Prim}(C^*(G,\omega))$ with fibres $C^*(G,\omega)/x$ for $x \in \operatorname{Prim}(C^*(G,\omega))$ and all $C^*(G,\omega)/x$ turn out to form the simple twisted group C^* -algebra $C^*(G/S_\omega,\omega_1)$. So $A_\omega \cong C^*(\mathbb{Z}^n,\omega)$ is realized as the C^* -algebra of sections of a locally trivial C^* -algebra bundle over $\widehat{S_\omega}$ with fibres $C^*(\mathbb{Z}^n/S_\omega,\omega_1)$.

D. Poguntke proved in [8] that any primitive quotient of the group C^* -algebra $C^*(G)$ of a locally compact two step nilpotent group G is isomorphic to the tensor product of a completely irrational non-commutative torus A_{φ} with the C^* -algebra $\mathcal{K}(\mathcal{H})$ of compact operators on a separable (possibly finite-dimensional) Hilbert space \mathcal{H} . Since $C^*(\mathbb{Z}^n/S_{\omega}, \omega_1)$ is the primitive quotient of $C^*(\mathbb{Z}^n/S_{\omega}(\omega_1))$, where $\mathbb{Z}^n/S_{\omega}(\omega_1)$ is the extension group of \mathbb{Z}^n/S_{ω} by \mathbb{T} defined by $\omega_1, C^*(\mathbb{Z}^n/S_{\omega}, \omega_1)$ is isomorphic to $A_{\varphi} \otimes M_{kl}(\mathbb{C})$ for an integer kl.

It was shown in [9] that A_{ω} is stably isomorphic to $C(\widehat{S_{\omega}}) \otimes C^*(\mathbb{Z}^n/S_{\omega}, \omega_1)$. In [3], the authors showed that two separable C^* -algebras A and B are stably isomorphic if and only if they are strongly Morita equivalent, i.e., there exists an A-B-equivalence bimodule defined in [10]. Thus the non-commutative torus A_{ω} is strongly Morita equivalent to $C(\widehat{S_{\omega}}) \otimes C^*(\mathbb{Z}^n/S_{\omega}, \omega_1)$, which in turn is strongly Morita equivalent to $C(\widehat{S_{\omega}}) \otimes A_{\varphi}$. This implies that there exists an A_{ω} - $C(\widehat{S_{\omega}}) \otimes A_{\varphi}$ -equivalence bimodule.

M. Brabanter [2] constructed an $A_{m/k}$ - $C(\mathbb{T}^2)$ -equivalence bimodule. Modifying his construction, we are going to construct an A_{ω} - $C(\widehat{S_{\omega}}) \otimes A_{\varphi}$ -equivalence bimodule.

2. Equivalence bimodule between non-commutative tori

The following result of Poguntke clarifies the structure of the fibres of the canonical bundle associated with a non-commutative torus A_{ω} .

1. Theorem [8, Theorem 1]. Let G be a compactly generated locally compact abelian group and ω_1 a totally skew multiplier on G. Let K be the maximal compact subgroup of E and E_{ϱ} the stabilizer of an irreducible unitary representation ϱ of K restricting on \mathbb{T}^1 to the identity. Then

$$C^*(G,\omega_1) \cong C^*(E_{\rho}/K,m) \otimes \mathcal{K}(\mathcal{L}^2(E/E_{\rho})) \otimes M_{\dim(\rho)}(\mathbb{C}),$$

where m is the associated Mackey obstruction.

This theorem is applied to understand the structure of $C^*(\mathbb{Z}^n/S_\omega, \omega_1)$. The noncommutative torus A_ω is isomorphic to the C^* -algebra of sections of a locally trivial C^* -algebra bundle over $\widehat{S_\omega}$ with fibres isomorphic to the simple twisted group C^* algebra $C^*(\mathbb{Z}^n/S_\omega, \omega_1)$ of a finitely generated discrete abelian group \mathbb{Z}^n/S_ω defined by a totally skew multiplier ω_1 on \mathbb{Z}^n/S_ω , where ω is similar to the pull-back of ω_1 . Then $\mathbb{Z}^n/S_\omega \cong F \oplus T$, where F is a maximal torsion-free subgroup of \mathbb{Z}^n/S_ω and T is the maximal torsion subgroup of \mathbb{Z}^n/S_ω . Let $G = \mathbb{Z}^n/S_\omega$, $E = (\mathbb{Z}^n/S_\omega)(\omega_1)$, and let E_ϱ be the stabilizer of an irreducible unitary representation ϱ of the extension $K := T(\omega_1|_T)$, which restricts to the identity on \mathbb{T}^1 . Here we denote by $\omega_1|_T$ the restriction of ω_1 to T. The Mackey method says that $C^*(\mathbb{Z}^n/S_\omega, \omega_1) \cong C^*(F \oplus T, \omega_1)$ is isomorphic to the primitive quotient of $C^*(E)$ lying over ϱ . Then by Theorem 1,

$$C^*(\mathbb{Z}^n/S_{\omega},\omega_1) \cong C^*(E_{\varrho}/K,m) \otimes \mathcal{K}(\mathcal{L}^2(E/E_{\varrho})) \otimes M_{\dim(\varrho)}(\mathbb{C}).$$

Now by definition, E_{ϱ} is of index $|S_{\omega_1|_T}|$ in E. So

$$[E:E_{\varrho}]=\#\,$$
 of irreducible $\,\omega_{1}|_{T}\text{-representations}$ of $\,T=|S_{\omega_{1}|_{T}}\,$

and $\dim(\varrho) = \sqrt{|T|/|S_{\omega_1|_T}|}$, and E_{ϱ}/K is a subgroup of a finite index $[E : E_{\varrho}]$ in E/K. Let F_{ϱ} be the isomorphic image of E_{ϱ}/K under the natural map of E/K to F. Then $\{x \in F \mid h_{\omega_1}(x)(y) = 1, \forall y \in S_{\omega_1|_T}\}$ is exactly F_{ϱ} , and F_{ϱ} is a subgroup of a finite index $[E : E_{\varrho}]$ in F. Let $J_F = F/F_{\varrho}, J = J_F \oplus S_{\omega_1|_T}$ and $T_t = T/S_{\omega_1|_T}$. Then $|J_F| = |S_{\omega_1|_T}|$. Since F_{ϱ} is a subgroup of F, we can consider $J_F \oplus S_{\omega_1|_T}$ as a subgroup of $(F \oplus T)/F_{\varrho}$. So $(\mathbb{Z}^n/S_{\omega})/F_{\varrho}$ is isomorphic to $J_F \oplus T$ and $((\mathbb{Z}^n/S_{\omega})/F_{\varrho})/J$ is isomorphic to T_t .

Next, we show that $C^*(E_{\varrho}/K, m)$ is isomorphic to $C^*(F_{\varrho}, \omega_1|_{F_{\varrho}})$. By Theorem 1, $C^*(F_{\varrho}, \omega_1|_{F_{\varrho}})$ is isomorphic to $C^*(F_{\varrho}(\omega_1|_{F_{\varrho}})/\mathbb{T}^1, m_1)$, where m_1 is the associated Mackey obstruction. Let ω_2 be a totally skew multiplier on T_t whose pull-back to T is similar to $\omega_1|_T$. It is enough to show that the Mackey obstruction m_2 , in the isomorphism

$$C^*(F_{\varrho} \oplus T_t, \omega_1|_{F_{\varrho}} \oplus \omega_2) \cong C^*((F_{\varrho} \oplus T_t)(\omega_1|_{F_{\varrho}} \oplus \omega_2)/T_t(\omega_2), m_2) \otimes C^*(T_t, \omega_2)$$
$$\cong C^*(F_{\rho}, \omega_1|_{F_{\rho}}) \otimes C^*(T_t, \omega_2),$$

is essentially the same as m_1 . However, for $h \in F_{\varrho}$, the unitary operators E'_h given in [5, XII.1.17] are the same for F_{ϱ} and for $F_{\varrho} \oplus T_t$ up to a scalar. They give the same Mackey obstructions. So

$$C^*((F_{\varrho} \oplus T_t)(\omega_1|_{F_{\varrho}} \oplus \omega_2)/T_t(\omega_2), m_2) \cong C^*(F_{\varrho}(\omega_1|_{F_{\varrho}})/\mathbb{T}^1, m_1)$$
$$\cong C^*(F_{\rho}, \omega_1|_{F_{\rho}}),$$

and $C^*(E_{\varrho}/K,m)$ is isomorphic to $C^*(F_{\varrho},\omega_1|_{F_{\varrho}})$. See [5, Section XII] for details.

2. Corollary. $C^*(\mathbb{Z}^n/S_\omega,\omega_1) \cong C^*(F_{\varrho},\omega_1|_{F_{\varrho}}) \otimes M_{[E:E_{\varrho}]}(\mathbb{C}) \otimes M_{\dim(\varrho)}(\mathbb{C}).$

Proof. By Theorem 1,

$$C^*(\mathbb{Z}^n/S_{\omega},\omega_1) \cong C^*(E_{\varrho}/K,m) \otimes \mathcal{K}(\mathcal{L}^2(E/E_{\varrho})) \otimes M_{\dim(\varrho)}(\mathbb{C})$$
$$\cong C^*(F_{\varrho},\omega_1|_{F_{\varrho}}) \otimes M_{[E:E_{\varrho}]}(\mathbb{C}) \otimes M_{\dim(\varrho)}(\mathbb{C}).$$

Here $M_{[E:E_{\varrho}]}(\mathbb{C}) \cong M_{|J_F|}(\mathbb{C})$ and $M_{\dim(\varrho)}(\mathbb{C}) \cong M_{\sqrt{|T_t|}}(\mathbb{C})$. Therefore, $C^*(\mathbb{Z}^n/S_{\omega}, \omega_1) \cong C^*(F_{\varrho}, \omega_1|_{F_{\varrho}}) \otimes M_{[E:E_{\varrho}]}(\mathbb{C}) \otimes M_{\dim(\varrho)}(\mathbb{C})$.

Note that $C^*(F_{\varrho}, \omega_1|_{F_{\varrho}})$ is a completely irrational non-commutative torus. So A_{ω} is realized as the C^* -algebra of sections of a locally trivial C^* -algebra bundle over \widehat{S}_{ω} with fibres $A_{\varphi} \otimes M_{kl}(\mathbb{C})$, where $A_{\varphi} \cong C^*(F_{\varrho}, \omega_1|_{F_{\varrho}})$ and $M_{kl}(\mathbb{C}) \cong M_{[E:E_{\varrho}]}(\mathbb{C}) \otimes M_{\dim(\varrho)}(\mathbb{C})$.

M. Brabanter [2, Proposition 1] showed that the rational rotation algebra $A_{m/k}$ is isomorphic to the C^* -algebra of matrices $(f_{ij})_{i,j=1}^k$ of functions f_{ij} with

$$f_{ij} \in C^*(k\mathbb{Z} \times k\mathbb{Z}) \quad \text{if } i, j \in \{1, 2, \dots, k-1\} \quad \text{or } (i, j) = (k, k),$$

$$f_{ik} \in \Omega \qquad \qquad \text{if } i \in \{1, 2, \dots, k-1\},$$

$$f_{ki} \in \Omega^* \qquad \qquad \text{if } i \in \{1, 2, \dots, k-1\},$$

where Ω and Ω^* are the $C^*(k\mathbb{Z} \times k\mathbb{Z})$ -modules defined as

$$\Omega = \{ f \in C(\widehat{k\mathbb{Z}} \times [0,1]) \mid f(z,1) = z^s f(z,0), \ \forall z \in \widehat{k\mathbb{Z}} \},\\ \Omega^* = \{ f \in C(\widehat{k\mathbb{Z}} \times [0,1]) \mid f^* \in \Omega \}$$

for an integer s such that $sm = 1 \pmod{k}$.

The non-commutative torus A_{ω} of rank n is obtained by an iteration of n-1 crossed products by actions of \mathbb{Z} , the first action on $C(\mathbb{T}^1)$ (see [6]). When A_{ω} has a primitive ideal space $\widehat{S_{\omega}} \cong \mathbb{T}^1$ and fibres $A_{\varphi} \otimes M_k(\mathbb{C})$, then by a change of basis, A_{ω} can be obtained by an iteration of n-2 crossed products by actions of \mathbb{Z} , the first action on a rational rotation algebra $A_{m/k}$, where the actions of \mathbb{Z} on the fibre $M_k(\mathbb{C})$ of $A_{m/k}$ are trivial, since $M_k(\mathbb{C})$ is factored out of the fibre $A_{\varphi} \otimes M_k(\mathbb{C})$ of A_{ω} . When A_{ω} has a primitive ideal space $\widehat{S_{\omega}} \cong \mathbb{T}^3$ with fibres $M_k(\mathbb{C}) \otimes M_l(\mathbb{C})$, then by a change of basis, A_{ω} can be obtained by a crossed product by an action of \mathbb{Z} on a rational rotation algebra $A_{m/k}$, where the action of \mathbb{Z} on the fibre $M_k(\mathbb{C})$ of $A_{m/k}$ is trivial, since the existence of the above crossed product by an action for A_{ω} implies the existence of such an action, and the crossed product by the action of \mathbb{Z} on $A_{m/k}$ is a kl-homogeneous C^* -algebra over \mathbb{T}^3 , and so the crossed product is isomorphic to A_{ω} by the Disney and Raeburn result [4, Proposition 3.10]. Combining

the previous two comments yields that when A_{ω} is not simple, then by a change of basis, A_{ω} can be obtained by an iteration of n-2 crossed products by actions of \mathbb{Z} , the first action on a rational rotation algebra $A_{m/k}$, where the actions of \mathbb{Z} on the fibre $M_k(\mathbb{C})$ of $A_{m/k}$ are trivial.

3. Theorem. A_{ω} is strongly Morita equivalent to $C(\widehat{S_{\omega}}) \otimes A_{\varphi}$.

Proof. Let A_{ω} be realized as the C^* -algebra of sections of a locally trivial C^* -algebra bundle over $\widehat{S_{\omega}}$ with fibres $A_{\varphi} \otimes M_k(\mathbb{C}) \otimes M_l(\mathbb{C})$. Then A_{ω} may be realized as the crossed product $A_{m/k} \times_{\alpha_3} \mathbb{Z} \times_{\alpha_4} \ldots \times_{\alpha_n} \mathbb{Z}$, where the actions α_i of \mathbb{Z} on the fibre $M_k(\mathbb{C})$ of $A_{m/k}$ are trivial. So A_{ω} has a matrix representation induced from the matrix representation of the rational rotation subalgebra $A_{m/k}$, i.e., $A_{m/k}$ has a $C^*(k\mathbb{Z} \times k\mathbb{Z})$ -module structure and A_{ω} must be given by canonically replacing $C^*(k\mathbb{Z} \times k\mathbb{Z})$ with $A_{r(\omega)} := C^*(k\mathbb{Z} \times k\mathbb{Z}) \times_{\alpha_3} \mathbb{Z} \times_{\alpha_4} \ldots \times_{\alpha_n} \mathbb{Z}$. Thus A_{ω} is isomorphic to the C^* -algebra of matrices $(g_{ij})_{i,j=1}^k$ of g_{ij} with

$$g_{ij} \in A_{r(\omega)} \quad \text{if } i, j \in \{1, 2, \dots, k-1\} \text{ or } (i, j) = (k, k),$$

$$g_{ik} \in \widetilde{\Omega} \qquad \text{if } i \in \{1, 2, \dots, k-1\},$$

$$g_{kj} \in \widetilde{\Omega}^* \qquad \text{if } j \in \{1, 2, \dots, k-1\},$$

where $\widetilde{\Omega}$ and $\widetilde{\Omega}^*$ are $A_{r(\omega)}$ -modules defined as

$$\widetilde{\Omega} = A_{r(\omega)} \cdot \Omega \quad \& \quad \widetilde{\Omega}^* = A_{r(\omega)} \cdot \Omega^*,$$

where Ω and Ω^* are given above.

Let X be the complex vector space $(\bigoplus_{1}^{k-1} \widetilde{\Omega}) \oplus A_{r(\omega)}$. We will consider the elements of X as (k, 1) matrices where the first (k - 1) entries are in $\widetilde{\Omega}$ and the last entry is in $A_{r(\omega)}$. If $x \in X$, denote by x^* the (1, k) matrix resulting from x by transposition and involution so that $x^* \in (\bigoplus_{1}^{k-1} \widetilde{\Omega}^*) \oplus A_{r(\omega)}$. The space X is a left A_{ω} -module if module multiplication is defined by matrix multiplication $F \cdot x$, where $F = (g_{ij})_{i,j=1}^k \in$ A_{ω} and $x \in X$. If $g \in A_{r(\omega)}$ and $x \in X$, then $x \cdot [g]$ defines a right $A_{r(\omega)}$ -module structure on X. Now we define an A_{ω} -valued and an $A_{r(\omega)}$ -valued inner products $\langle \cdot, \cdot \rangle_{A_{\omega}}$ and $\langle \cdot, \cdot \rangle_{A_{r(\omega)}}$ on X by

$$\langle x, y \rangle_{A_{\omega}} = x \cdot y^* \quad \& \quad \langle x, y \rangle_{A_{r(\omega)}} = x^* \cdot y$$

if $x, y \in X$ and we have matrix multiplication on the right. Equipped with this structure, by the same reasoning as in the proof given in [2, Theorem 3], X becomes an $A_{\omega}-A_{r(\omega)}$ -equivalence bimodule. So A_{ω} is strongly Morita equivalent to $A_{r(\omega)}$, which is isomorphic to the C^* -algebra of sections of a locally trivial C^* -algebra bundle over $\widehat{S_{\omega}}$ with fibres $A_{\varphi} \otimes M_l(\mathbb{C})$. One can proceed in this way finitely many times to obtain that A_{ω} is strongly Morita equivalent to $C^*(S_{\omega} \times P, \omega|_{S_{\omega \times P}}) \cong C^*(S_{\omega}) \otimes C^*(P, \omega|_P)$, where P is a torsion-free subgroup of \mathbb{Z}^n , which is isomorphic to F_{ϱ} , $\omega|_{S_{\omega} \times P}$ which is similar to the pull-back of $\omega_1|_{F_{\varrho}}$, and $C^*(P, \omega|_P) \cong C^*(F_{\varrho}, \omega_1|_{F_{\varrho}}) \cong A_{\varphi}$.

Therefore, A_{ω} is strongly Morita equivalent to $C(\widehat{S}_{\omega}) \otimes A_{\varphi}$.

We have obtained that A_{ω} is strongly Morita equivalent to $C(\widehat{S}_{\omega}) \otimes A_{\varphi}$, which is strongly Morita equivalent to $C(\widehat{S}_{\omega}) \otimes A_{\varphi} \otimes M_{kl}(\mathbb{C}) \cong C(\widehat{S}_{\omega}) \otimes C^*(\mathbb{Z}^n/S_{\omega}, \omega_1)$. So A_{ω} is stably isomorphic to $C(\widehat{S}_{\omega}) \otimes C^*(\mathbb{Z}^n/S_{\omega}, \omega_1)$.

References

- L. Baggett and A. Kleppner: Multiplier representations of abelian groups. J. Funct. Anal. 14 (1973), 299–324.
- [2] M. Brabanter: The classification of rational rotation C*-algebras. Arch. Math. 43 (1984), 79–83.
- [3] L. Brown, P. Green and M. Rieffel: Stable isomorphism and strong Morita equivalence of C*-algebras. Pacific J. Math. 71 (1977), 349–363.
- [4] S. Disney and I. Raeburn: Homogeneous C^{*}-algebras whose spectra are tori. J. Austral. Math. Soc. (Series A) 38 (1985), 9–39.
- [5] R. S. Doran and J. M. G. Fell: Representations of *-Algebras, Locally Compact Groups, and Banach *-Algebraic Bundles. Academic Press, San Diego, 1988.
- [6] G. A. Elliott: On the K-theory of the C^{*}-algebra generated by a projective representation of a torsion-free discrete abelian group. In: Operator Algebras and Group Representations, Vol. 1. Pitman, London, 1984, pp. 157–184.
- [7] P. Green: The local structure of twisted covariance algebras. Acta Math. 140 (1978), 191-250.
- [8] D. Poguntke: Simple quotients of group C*-algebras for two step nilpotent groups and connected Lie groups. Ann. Scient. Ec. Norm. Sup. 16 (1983), 151–172.
- D. Poguntke: The structure of twisted convolution C*-algebras on abelian groups. J. Operator Theory 38 (1997), 3–18.
- [10] M. Rieffel: Morita equivalence for operator algebras. Operator Algebras and Applications. Proc. Symp. Pure Math. Vol. 38 (R. V. Kadison, ed.). Amer. Math. Soc., Providence, R. I., 1982, pp. 285–298.

Author's address: Department of Mathematics, Chungnam National University, Taejon 305-764, South Korea, e-mail: {sqoh,cgpark}@math.cnu.ac.kr.