
Czechoslovak Mathematical Journal

Sei-Qwon Oh; Chun-Gil Park
Equivalence bimodule between non-commutative tori

Czechoslovak Mathematical Journal, Vol. 53 (2003), No. 2, 289–294

Persistent URL: http://dml.cz/dmlcz/127800

Terms of use:
© Institute of Mathematics AS CR, 2003

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/127800
http://dml.cz


Czechoslovak Mathematical Journal, 53 (128) (2003), 289–294

EQUIVALENCE BIMODULE BETWEEN NON-COMMUTATIVE TORI

� ��� ��� � � 	 
 �
and � �  	 ��� ��� � � � � , Daejeon

(Received March 8, 2000)

Abstract. The non-commutative torus C∗( � n, ω) is realized as the C∗-algebra of sections
of a locally trivial C∗-algebra bundle over �Sω with fibres isomorphic to C∗( � n/Sω, ω1) for a
totally skew multiplier ω1 on � n/Sω. D. Poguntke [9] proved that Aω is stably isomorphic
to C( �Sω)⊗C∗( � n/Sω , ω1) ∼= C( �Sω)⊗Aϕ⊗Mkl( � ) for a simple non-commutative torus Aϕ

and an integer kl. It is well-known that a stable isomorphism of two separable C∗-algebras
is equivalent to the existence of equivalence bimodule between them. We construct an
Aω-C( �Sω)⊗Aϕ-equivalence bimodule.
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1. Introduction

Given a locally compact abelian groupG and a multiplier ω onG, one can associate
with them the twisted group C∗-algebra C∗(G, ω), which is the universal object for
unitary ω-representations of G. The twisted group C∗-algebra C∗( � n, ω) is called a
non-commutative torus of rank n and denoted by Aω . The multiplier ω determines a

subgroup Sω of G, called its symmetry group. A multiplier ω on an abelian group G

is called totally skew if the symmetry group Sω is trivial. A non-commutative torus

Aω is said to be a completely irrational non-commutative torus if ω is totally skew
(see [1], [7], [8]). Baggett and Kleppner [1] showed that if G is a locally compact

abelian group and ω is a totally skew multiplier on G, then C∗(G, ω) is a simple
C∗-algebra.

It was shown in [1], [7] that even when ω is not totally skew on a locally compact
abelian groupG, the restriction of ω-representations fromG to Sω induces a canonical
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homeomorphism of Prim(C∗(G, ω)) with Ŝω, where Prim(C∗(G, ω)) is the primitive
ideal space of the twisted group C∗-algebra C∗(G, ω), and that there is a totally skew
multiplier ω1 on � n/Sω such that ω is similar to the pull-back of ω1. Furthermore,

it is known (see [1], [7], [9]) that C∗(G, ω) may be realized as the C∗-algebra Γ(ζ)
of sections of a locally trivial C∗-algebra bundle ζ over Ŝω = Prim(C∗(G, ω)) with
fibres C∗(G, ω)/x for x ∈ Prim(C∗(G, ω)) and all C∗(G, ω)/x turn out to form the
simple twisted group C∗-algebra C∗(G/Sω, ω1). So Aω

∼= C∗( � n, ω) is realized as
the C∗-algebra of sections of a locally trivial C∗-algebra bundle over Ŝω with fibres
C∗( � n/Sω, ω1).
D. Poguntke proved in [8] that any primitive quotient of the group C∗-algebra

C∗(G) of a locally compact two step nilpotent group G is isomorphic to the ten-
sor product of a completely irrational non-commutative torus Aϕ with the C∗-

algebra K(H) of compact operators on a separable (possibly finite-dimensional)
Hilbert space H. Since C∗( � n/Sω, ω1) is the primitive quotient of C∗( � n/Sω(ω1)),
where � n/Sω(ω1) is the extension group of � n/Sω by � defined by ω1, C∗( � n/Sω, ω1)
is isomorphic to Aϕ ⊗Mkl( � ) for an integer kl.

It was shown in [9] that Aω is stably isomorphic to C(Ŝω)⊗C∗( � n/Sω, ω1). In [3],
the authors showed that two separable C∗-algebras A and B are stably isomorphic if

and only if they are strongly Morita equivalent, i.e., there exists an A-B-equivalence
bimodule defined in [10]. Thus the non-commutative torus Aω is strongly Morita

equivalent to C(Ŝω)⊗C∗( � n/Sω, ω1), which in turn is strongly Morita equivalent to
C(Ŝω)⊗Aϕ. This implies that there exists an Aω-C(Ŝω)⊗Aϕ-equivalence bimodule.

M. Brabanter [2] constructed an Am/k-C( � 2)-equivalence bimodule. Modifying
his construction, we are going to construct an Aω-C(Ŝω)⊗Aϕ-equivalence bimodule.

2. Equivalence bimodule between non-commutative tori

The following result of Poguntke clarifies the structure of the fibres of the canonical

bundle associated with a non-commutative torus Aω.

1. Theorem [8, Theorem 1]. Let G be a compactly generated locally compact

abelian group and ω1 a totally skew multiplier on G. Let K be the maximal compact

subgroup of E and E% the stabilizer of an irreducible unitary representation % of K

restricting on � 1 to the identity. Then

C∗(G, ω1) ∼= C∗(E%/K, m)⊗K(L2(E/E%))⊗Mdim(%)( � ),

where m is the associated Mackey obstruction.
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This theorem is applied to understand the structure of C∗( � n/Sω, ω1). The non-
commutative torus Aω is isomorphic to the C∗-algebra of sections of a locally trivial
C∗-algebra bundle over Ŝω with fibres isomorphic to the simple twisted group C∗-
algebra C∗( � n/Sω, ω1) of a finitely generated discrete abelian group � n/Sω defined

by a totally skew multiplier ω1 on � n/Sω, where ω is similar to the pull-back of ω1.
Then � n/Sω

∼= F⊕T , where F is a maximal torsion-free subgroup of � n/Sω and T is

the maximal torsion subgroup of � n/Sω. Let G = � n/Sω, E = ( � n/Sω)(ω1), and
let E% be the stabilizer of an irreducible unitary representation % of the extension

K := T (ω1|T ), which restricts to the identity on � 1. Here we denote by ω1|T the
restriction of ω1 to T . The Mackey method says that C∗( � n/Sω, ω1) ∼= C∗(F⊕T, ω1)
is isomorphic to the primitive quotient of C∗(E) lying over %. Then by Theorem 1,

C∗( � n/Sω, ω1) ∼= C∗(E%/K, m)⊗K(L2(E/E%))⊗Mdim(%)( � ).

Now by definition, E% is of index |Sω1|T | in E. So

[E : E%] = # of irreducible ω1|T -representations of T = |Sω1|T |

and dim(%) =
√
|T |/|Sω1|T |, and E%/K is a subgroup of a finite index [E : E%] in

E/K. Let F% be the isomorphic image of E%/K under the natural map of E/K to F .
Then {x ∈ F | hω1(x)(y) = 1, ∀y ∈ Sω1|T } is exactly F%, and F% is a subgroup of

a finite index [E : E%] in F . Let JF = F/F%, J = JF ⊕ Sω1|T and Tt = T/Sω1|T .
Then |JF | = |Sω1|T |. Since F% is a subgroup of F , we can consider JF ⊕ Sω1|T as a

subgroup of (F⊕T )/F%. So ( � n/Sω)/F% is isomorphic to JF⊕T and (( � n/Sω)/F%)/J

is isomorphic to Tt.

Next, we show that C∗(E%/K, m) is isomorphic to C∗(F%, ω1|F%). By Theorem 1,
C∗(F%, ω1|F%) is isomorphic to C∗(F%(ω1|F%)/ � 1, m1), where m1 is the associated

Mackey obstruction. Let ω2 be a totally skew multiplier on Tt whose pull-back to T

is similar to ω1|T . It is enough to show that the Mackey obstruction m2, in the

isomorphism

C∗(F% ⊕ Tt, ω1|F% ⊕ ω2) ∼= C∗((F% ⊕ Tt)(ω1|F% ⊕ ω2)/Tt(ω2), m2)⊗ C∗(Tt, ω2)
∼= C∗(F%, ω1|F%)⊗ C∗(Tt, ω2),

is essentially the same as m1. However, for h ∈ F%, the unitary operators E ′
h given

in [5, XII.1.17] are the same for F% and for F% ⊕ Tt up to a scalar. They give the

same Mackey obstructions. So

C∗((F% ⊕ Tt)(ω1|F% ⊕ ω2)/Tt(ω2), m2) ∼= C∗(F%(ω1|F%)/ � 1, m1)
∼= C∗(F%, ω1|F%),

and C∗(E%/K, m) is isomorphic to C∗(F%, ω1|F%). See [5, Section XII] for details.
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2. Corollary. C∗( � n/Sω, ω1) ∼= C∗(F%, ω1|F%)⊗M[E:E%]( � ) ⊗Mdim(%)( � ).
����� �"!

. By Theorem 1,

C∗( � n/Sω, ω1) ∼= C∗(E%/K, m)⊗K(L2(E/E%))⊗Mdim(%)( � )
∼= C∗(F%, ω1|F%)⊗M[E:E%]( � ) ⊗Mdim(%)( � ).

Here M[E:E%]( � ) ∼= M|JF |( � ) and Mdim(%)( � ) ∼= M√
|Tt|( � ).

Therefore, C∗( � n/Sω, ω1) ∼= C∗(F%, ω1|F%)⊗M[E:E%]( � ) ⊗Mdim(%)( � ). �

Note that C∗(F%, ω1|F%) is a completely irrational non-commutative torus. So Aω

is realized as the C∗-algebra of sections of a locally trivial C∗-algebra bundle over

Ŝω with fibres Aϕ ⊗Mkl( � ), where Aϕ
∼= C∗(F%, ω1|F%) and Mkl( � ) ∼= M[E:E%]( � )⊗

Mdim(%)( � ).
M. Brabanter [2, Proposition 1] showed that the rational rotation algebra Am/k is

isomorphic to the C∗-algebra of matrices (fij)k
i,j=1 of functions fij with

fij ∈ C∗(k � × k � ) if i, j ∈ {1, 2, . . . , k − 1} or (i, j) = (k, k),

fik ∈ Ω if i ∈ {1, 2, . . . , k − 1},
fki ∈ Ω∗ if i ∈ {1, 2, . . . , k − 1},

where Ω and Ω∗ are the C∗(k � × k � )-modules defined as

Ω = {f ∈ C(k̂ � × [0, 1]) | f(z, 1) = zsf(z, 0), ∀z ∈ k̂ � },
Ω∗ = {f ∈ C(k̂ � × [0, 1]) | f∗ ∈ Ω}

for an integer s such that sm = 1 (mod k).
The non-commutative torus Aω of rank n is obtained by an iteration of n − 1

crossed products by actions of � , the first action on C( � 1) (see [6]). When Aω has
a primitive ideal space Ŝω

∼= � 1 and fibres Aϕ ⊗Mk( � ), then by a change of basis,
Aω can be obtained by an iteration of n − 2 crossed products by actions of � , the
first action on a rational rotation algebra Am/k, where the actions of � on the fibre
Mk( � ) of Am/k are trivial, since Mk( � ) is factored out of the fibre Aϕ ⊗ Mk( � )
of Aω. When Aω has a primitive ideal space Ŝω

∼= � 3 with fibres Mk( � ) ⊗ Ml( � ),
then by a change of basis, Aω can be obtained by a crossed product by an action
of � on a rational rotation algebra Am/k, where the action of � on the fibre Mk( � )
of Am/k is trivial, since the existence of the above crossed product representation
for Aω implies the existence of such an action, and the crossed product by the action

of � on Am/k is a kl-homogeneous C∗-algebra over � 3, and so the crossed product is
isomorphic to Aω by the Disney and Raeburn result [4, Proposition 3.10]. Combining
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the previous two comments yields that when Aω is not simple, then by a change of

basis, Aω can be obtained by an iteration of n− 2 crossed products by actions of � ,
the first action on a rational rotation algebra Am/k, where the actions of � on the
fibre Mk( � ) of Am/k are trivial.

3. Theorem. Aω is strongly Morita equivalent to C(Ŝω)⊗Aϕ.
����� �"!

. Let Aω be realized as the C∗-algebra of sections of a locally trivial
C∗-algebra bundle over Ŝω with fibres Aϕ ⊗ Mk( � ) ⊗ Ml( � ). Then Aω may be

realized as the crossed product Am/k ×α3 � ×α4 . . .×αn � , where the actions αi of �
on the fibre Mk( � ) of Am/k are trivial. So Aω has a matrix representation induced

from the matrix representation of the rational rotation subalgebra Am/k, i.e., Am/k

has a C∗(k � × k � )-module structure and Aω must be given by canonically replacing

C∗(k � ×k � ) with Ar(ω) := C∗(k � ×k � )×α3 � ×α4 . . .×αn � . Thus Aω is isomorphic
to the C∗-algebra of matrices (gij)k

i,j=1 of gij with

gij ∈ Ar(ω) if i, j ∈ {1, 2, . . . , k − 1} or (i, j) = (k, k),

gik ∈ Ω̃ if i ∈ {1, 2, . . . , k − 1},
gkj ∈ Ω̃∗ if j ∈ {1, 2, . . . , k − 1},

where Ω̃ and Ω̃∗ are Ar(ω)-modules defined as

Ω̃ = Ar(ω) · Ω & Ω̃∗ = Ar(ω) · Ω∗,

where Ω and Ω∗ are given above.
LetX be the complex vector space

(
⊕k−1

1 Ω̃
)
⊕Ar(ω). We will consider the elements

of X as (k, 1) matrices where the first (k − 1) entries are in Ω̃ and the last entry is
in Ar(ω). If x ∈ X , denote by x∗ the (1, k) matrix resulting from x by transposition

and involution so that x∗ ∈
(
⊕k−1

1 Ω̃∗) ⊕ Ar(ω). The space X is a left Aω-module if
module multiplication is defined by matrix multiplication F ·x, where F = (gij)k

i,j=1 ∈
Aω and x ∈ X . If g ∈ Ar(ω) and x ∈ X , then x · [g] defines a right Ar(ω)-module
structure on X . Now we define an Aω-valued and an Ar(ω)-valued inner products

〈·, ·〉Aω and 〈·, ·〉Ar(ω) on X by

〈x, y〉Aω = x · y∗ & 〈x, y〉Ar(ω) = x∗ · y

if x, y ∈ X and we have matrix multiplication on the right. Equipped with this
structure, by the same reasoning as in the proof given in [2, Theorem 3], X becomes

an Aω-Ar(ω)-equivalence bimodule. So Aω is strongly Morita equivalent to Ar(ω),
which is isomorphic to the C∗-algebra of sections of a locally trivial C∗-algebra bundle
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over Ŝω with fibres Aϕ ⊗ Ml( � ). One can proceed in this way finitely many times
to obtain that Aω is strongly Morita equivalent to C∗(Sω × P, ω|Sω×P ) ∼= C∗(Sω) ⊗
C∗(P, ω|P ), where P is a torsion-free subgroup of � n, which is isomorphic to F%,

ω|Sω×P which is similar to the pull-back of ω1|F% , and C∗(P, ω|P ) ∼= C∗(F%, ω1|F%) ∼=
Aϕ.

Therefore, Aω is strongly Morita equivalent to C(Ŝω)⊗Aϕ. �

We have obtained that Aω is strongly Morita equivalent to C(Ŝω)⊗Aϕ, which is

strongly Morita equivalent to C(Ŝω)⊗ Aϕ ⊗Mkl( � ) ∼= C(Ŝω) ⊗ C∗( � n/Sω, ω1). So
Aω is stably isomorphic to C(Ŝω)⊗ C∗( � n/Sω, ω1).
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