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Abstract. Let Q be the lexicographic sum of finite ordered sets Qx over a finite ordered
set P . For some P we can give a formula for the jump number of Q in terms of the
jump numbers of Qx and P , that is, s(Q) = s(P ) + �

x∈P
s(Qx), where s(X) denotes the

jump number of an ordered set X. We first show that w(P ) − 1 + �
x∈P

s(Qx) 6 s(Q) 6

s(P ) + �
x∈P

s(Qx), where w(X) denotes the width of an ordered set X. Consequently, if

P is a Dilworth ordered set, that is, s(P ) = w(P ) − 1, then the formula holds. We also
show that it holds again if P is bipartite. Finally, we prove that the lexicographic sum of
certain jump-critical ordered sets is also jump-critical.
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1. Introduction

Let P be a finite ordered set (poset) and let |P | be the number of elements in P . An
ordered set Q is called an induced subset (subposet) of P provided Q is a nonempty

subset of P and x < y in Q if and only if x < y in P for any elements x and y in Q.
A chain C in P is an induced subset of P whose order is linear and the length of C

is |C| − 1. An ordered set P is called bipartite if the length of every chain in P is
at most one. If a and b are in P , then b covers a, written a ≺ b, provided a < b

and a < c 6 b implies that c = b. A linear extension of an ordered set P is a linear
order L on the elements of P such that x < y in P implies x < y in L. Let L(P ) be
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the set of all linear extensions of P . Szpilrajn [8] showed that L(P ) is not empty. In
this paper, every ordered set is assumed to be finite.

Let P and Q be two disjoint ordered sets. The disjoint sum P + Q of P and Q is

the ordered set on P ∪Q such that x < y if and only if x, y ∈ P and x < y in P or
x, y ∈ Q and x < y in Q. The linear sum P ⊕Q of P and Q is obtained from P + Q

by adding new relations x < y for all x ∈ P and y ∈ Q.

Throughout this section, L denotes an arbitrary linear extension of P which is

usually denoted by C1 ⊕ . . .⊕ Cm with chains C1, . . . , Cm in P . A (P, L)-chain is a
maximal sequence of elements z1, z2, . . . , zk such that z1 ≺ z2 ≺ . . . ≺ zk in both L

and P . Let c(L) be the number of (P, L)-chains in L. A consecutive pair (x, y) of
elements in L is a jump (setup) of P in L if x is not comparable to y in P . The jumps

induce a decomposition L = C1⊕ . . .⊕Cm of L into (P, L)-chains C1, . . . , Cm, where
m = c(L) and (sup Ci, inf Ci+1) is a jump of P in L for i = 1, . . . , m− 1. Let s(L, P )
be the number of jumps of P in L and let s(P ) be the minimum of s(L, P ) over all
linear extensions L of P . The number s(P ) is called the jump (setup) number of P .
If s(L, P ) = s(P ) then L is called an optimal linear extension of P . We denote the
set of all optimal linear extensions of P by O(P ). The jump number is a kind of
measure between a given ordered set and its nearest linear extensions [1]. A practical
motivation for studying the jump number of an ordered set comes from scheduling

problems subject to precedence constraints. Namely, no task can be scheduled until
all of its predecessors are scheduled. If a certain task is scheduled not immediately

after one of its predecessors, then a jump occurs.

The width w(P ) of P is the maximum number of elements of an antichain (mutu-
ally incomparable elements) of P . Dilworth [2] showed that w(P ) equals the mini-
mum number of chains in a partition of P into chains. Since for any linear extension L

of P the number of (P, L)-chains is at least as large as the minimum number of chains
in a chain partition of P , it follows from Dilworth’s theorem that

(1) s(P ) > w(P ) − 1.

If equality holds in (1), then P is called a Dilworth ordered set. It follows that if P is

a Dilworth ordered set, then the (P, L)-chains in an optimal linear extension L form
a minimum chain partition of P .

Now it is quite interesting to determine the jump number of variously constructed
ordered sets from given ordered sets such as products, lexicographic sums, lexico-

graphic products, etc. For a natural number n, we denote the n-element chain by n.
An ordered set is called an upward rooted tree if it contains a least element and no

induced subset isomorphic to (1+1) ⊕ 1. Jung [7] showed that for a natural num-
ber n there is an algorithm for finding an optimal linear extension C1 ⊕ . . .⊕ Ck of
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any upward rooted tree T such that

s(T × n) =
k∑

i=1

min{|Ci|, n} − 1.

Let P be an ordered set and let x be a point of P . Then we can easily show that

s(P ) > s(P \{x}) > s(P )−1. An ordered set P is called nontrivial if |P | > 1 and triv-
ial if |P | = 1. A nontrivial ordered set P is called jump-critical if s(P \ {x}) < s(P )
for each x ∈ P . Jump-critical ordered sets, however, are quite complicated and
not yet well understood. El-Zahar and Schmerl [4] showed that a jump-critical or-

dered set P with jump number m has at most (m + 1)! elements. El-Zahar and
Rival [3] showed that there are precisely seventeen jump-critical ordered sets with

jump number at most three.

The lexicographic sum
∑

x∈P

Qx of ordered sets Qx over an ordered set P is defined

to be the ordered set on
⋃

x∈P

Qx such that a < b if and only if a < b in Qz for some

z ∈ P or x < y in P when a ∈ Qx and b ∈ Qy.

An ordered set P is called series-parallel if it can be constructed from singletons

using the operations of + and ⊕ only. Observing that s(P ⊕Q) = s(P ) + s(Q) and
s(P + Q) = s(P ) + s(Q) + 1, it can be easily shown that if P is series-parallel then
we get s

( ∑
x∈P

Qx

)
= s(P ) +

∑
x∈P

s(Qx). But, in general, this equality need not hold.

In Section 2, we study the jump number of the lexicographic sum of ordered sets. In
Section 3, we examine when the lexicographic sum of ordered sets is jump-critical.

2. Jump number

As mentioned in the last paragraph of the preceding section, the jump number of

the lexicographic sum of arbitrary ordered sets over an arbitrary ordered set may be
not so easy to estimate. Habib and Möhring [6] gave a formula for this by replacing

its components by two-element antichains. In this section we give a more explicit
formula in some cases. First we find some tight lower and upper bounds for this

value and then show that the formula holds in one important case. To begin with
we need some notation and an observation.

Let Q be the lexicographic sum of ordered sets Qx over an ordered set P and let

L = C0 ⊕ C1 ⊕ . . .⊕ Cn be a linear extension of Q. We define Qx ∼ Qy if x ≺ y or
x � y or x = y in P and there is some Cj such that Cj ∩ Qx 6= ∅ and Cj ∩ Qy 6= ∅,
and define Qx ≈ Qz if there is a sequence x = y0, y1, . . . , yk = z in P such that
Qyi ∼ Qyi+1 for i = 0, 1, . . . , k − 1.
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Lemma 2.1. Let Q be the lexicographic sum of ordered sets Qx over an ordered

set P and let L = C0 ⊕ C1 ⊕ . . . ⊕ Cn be a linear extension of Q. If y � x ≺ z (or

dually y ≺ x � z) in P then both Qx ∼ Qy and Qx ∼ Qz imply that y = z.
���������

. Suppose y 6= z. Then some Ci has an element a in Qx and an element

b in Qy, while another Cj has an element c in Qx and an element d in Qz. But this
implies that Ci precedes Cj and Cj precedes Ci, which is a contradiction. �

Theorem 2.2. Let Q be the lexicographic sum of ordered sets Qx over an

ordered set P . Then

w(P ) − 1 +
∑

x∈P

s(Qx) 6 s(Q) 6 s(P ) +
∑

x∈P

s(Qx).

In particular, if P is a Dilworth ordered set, then

s(Q) = s(P ) +
∑

x∈P

s(Qx).

���������
. To prove the first inequality, let L = C0 ⊕ C1 ⊕ . . . ⊕ Cn be any

optimal linear extension of Q, where n = s(Q). Let A = {ai ∈ Q : ai = inf Ci, i =
0, 1, . . . , n}. Observe that s(Q) = |A| − 1. For x ∈ P , let Px = {z ∈ P : Qx ≈ Qz}.
Then Px is a chain in P by Lemma 2.1. Let x∗ = inf Px for x ∈ P . Let A1 = {ai ∈
A : i is the least integer such that ai ∈ Qx∗ for some x∗} and A2 = A \A1. Let W

be a maximum size antichain in P . For each x ∈ W , Qx∗ contains a unique element

ax in A1. Clearly, Px’s are disjoint, whence x 6= y in W implies ax 6= ay, which
means that |A1| > w(P ). Since s(Qx) 6 |{i : Ci∩Qx 6= ∅}|−1 = |{i : ai ∈ A2∩Qx}|
for x ∈ P , we have

∑
x∈P

s(Qx) 6 |A2|. Hence s(Q) = |A| − 1 = |A1| − 1 + |A2| >

w(P ) − 1 +
∑

x∈P

s(Qx).

However, it is quite easy to prove the second inequality. In fact, if L ∈ O(P ) and
Lx ∈ O(Qx) for each x ∈ P , then

∑
x∈L

Lx ∈ L(P ) and hence s(Q) 6 s(P )+
∑

x∈P

s(Qx).

�

Next we find another familiar class of ordered sets P for which s
( ∑

x∈P

Qx

)
=

s(P ) +
∑

x∈P

s(Qx).

Theorem 2.3. Let Q be the lexicographic sum of ordered sets Qx over an

ordered set P . If P is bipartite, then

s(Q) = s(P ) +
∑

x∈P

s(Qx).
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���������
. Let L = C0 ⊕C1 ⊕ . . .⊕Cn ∈ O(Q). We define sets A, Px, A1, and A2

as in the proof of Theorem 2.2. If {i : ai ∈ A1} = {i1, . . . , im} with i1 < . . . < im,
then for each k = 1, . . . , m, Dk = {x ∈ P : Qx ∩ Cik

6= ∅} is a chain in P . Note
that x ∈ Dk1 , y ∈ Dk2 and k1 < k2 imply x � y in P , and that for each x ∈ P

there exists ak ∈ A1 ∩ Qx∗ such that x ∈ Dk. Now D1 ⊕ . . . ⊕Dm ∈ L(P ). Hence
s(P ) 6 m− 1 = |A1| − 1. Consequently, we get s(Q) = |A| − 1 = |A1| − 1 + |A2| >
s(P ) +

∑
x∈P

s(Qx). �

Examples. We exhibit here a series of examples to show that the lower bound
of s(Q) in Theorem 2.2 is tight, even though s(P ) gets arbitrarily large. Consider
Q =

∑
x∈P

Qx, where each Qx is a two-element antichain and P is the (4n+2)-element

ordered set Kn (see Figure 1 for n = 2). Then s(Qx) = 1, |Kn| = 4n+2, w(Kn) = 2,
s(Kn) = n + 1 and s(Q) = 4n + 3 = w(Kn) − 1 +

∑
x∈Kn

s(Qx). Here we shall

compute s(Q) and s(Kn) for n = 2. Let Qxi = {ai, bi} for i = 1, 2, . . . , 10. Then
L = {a1} ⊕ {a2} ⊕ {b2, b4} ⊕ {b1, b3} ⊕ {a3, a5} ⊕ {a4, a6} ⊕ {b6, b8} ⊕ {b5, b7} ⊕
{a7, a9} ⊕ {a8, a10} ⊕ {b10} ⊕ {b9} ∈ L(Q) and so s(Q) 6 11. By Theorem 2.2,
s(Q) = 11. Next, {x2, x4} ⊕ {x1, x3, x6, x8} ⊕ {x5, x7, x10} ⊕ {x9} ∈ L(K2) but K2

contains {x1, x2} ⊕ {x5, x6} ⊕ {x9, x10} whose jump number is 3. Hence s(K2) = 3.
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Figure 1: K2

3. Jump criticality

It is implicit in Habib [5] that the lexicographic sum of jump-critical ordered
sets Qx over an ordered set P is itself jump-critical if |Qx| > 3 for each x ∈ P . We

first prove this result directly in this section.

Theorem 3.1. Let P be an ordered set and {Qx : x ∈ P} be a family of jump-
critical ordered sets with |Qx| > 3. Then the lexicographic sum of Qx over P is also

jump-critical.
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���������
. Let Q =

∑
x∈P

Qx with s(Q) = n and L = C0 ⊕ C1 ⊕ . . . ⊕ Cn be an

optimal linear extension of Q. Observe that s(Qx) > 2 for each x ∈ P . It suffices to
show that s(Q \ {a}) < s(Q) for each a ∈ Q.

Fix a ∈ Q. There exists an element x of P such that a ∈ Qx. Let La = L ∩Qx =
D0⊕D1⊕ . . .⊕Dm, where Dj = Cij for j = 1, . . . , m−1 and Dj ⊆ Cij for j = 0, m.

Let

L1 = C0 ⊕ . . .⊕ Ci0−1 ⊕ (Ci0 \D0),

L2 = L ∩
⋃
{Cj : i0 < j < im and j 6= i1, . . . , im−1},

L3 = (Cim \Dm)⊕ Cim+1 ⊕ . . .⊕ Cn.

Since Qx is jump-critical, there exists a linear extension E0 ⊕E1 ⊕ . . .⊕Ek, k < m,
of Qx \ {a}. Let L′ = L1 ⊕ E0 ⊕ L2 ⊕ E1 ⊕ . . . ⊕ Ek ⊕ L3. For all c ∈ Ei we get

c ∈ Qx. For any d ∈ L2 there exits y ∈ P such that d ∈ Qy. If x > y or x < y in P ,
then c > d for all c ∈ Ei or c < d for all c ∈ Ei, which contradicts the fact that

c < d in L for c ∈ D0 and c > d in L for c ∈ Dm. Thus x and y are incomparable
in P , and so c and d are also incomparable in Q \ {a}. Hence L′ ∈ L(Q \ {a}) and
c(L′) 6 n, which implies s(Q \ {a}) < s(Q). �

We have seen that if an ordered set P is series-parallel or bipartite then the

following equation holds for any lexicographic sum Q of Qx over P :

(2) s(Q) = s(P ) +
∑

x∈P

s(Qx).

A class K of ordered sets is said to be lexicographic hereditary if the following
conditions hold:

(i) P ∈ K implies P \ {x} ∈ K for any x ∈ P .
(ii) The equation (2) holds for any lexicographic sum of Qx over P ∈ K.
Now we get a variation of Theorem 3.1.

Theorem 3.2. Let P be an ordered set in a lexicographic hereditary class K
and {Qx : x ∈ P} a family of ordered sets. If P is jump-critical and if each Qx is

jump-critical or trivial, then the lexicographic sum of Qx over P is also jump-critical.
���������

. Let Q =
∑

x∈P

Qx.

Case 1. {a} = Qy for some y ∈ P .

Let P ′ = P \ {y}. Now, s(Qy) = 0 and s(P ′) = s(P )− 1. Then

s(Q \ {a}) = s(P ′) +
∑

x∈P ′
s(Qx) = s(P )− 1 +

∑

y∈P

s(Qy) = s(Q)− 1.
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Case 2. {a} ⊂ Qy for some y ∈ P .

Now s(Qy \ {a}) = s(Qy)− 1. Then

s(Q \ {a}) = s(P ) +
∑

x∈P\{y}
s(Qx) + s(Qy \ {a})

= s(P ) +
∑

x∈P

s(Qx)− 1 = s(Q)− 1.

�

Observing that the classes of series-parallel ordered sets and bipartite ordered sets
are lexicographic hereditary, we immediately get the following corollary.

Corollary 3.3. Let P be a series-parallel or bipartite ordered set and {Qx : x ∈
P} a family of ordered sets. If P is jump-critical and if each Qx is jump-critical or

trivial, then the lexicographic sum of Qx over P is also jump-critical.
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