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ON THE INSTABILITY OF LINEAR

NONAUTONOMOUS DELAY SYSTEMS
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(Received May 25, 2000)

Abstract. The unstable properties of the linear nonautonomous delay system x′(t) =
A(t)x(t) + B(t)x(t − r(t)), with nonconstant delay r(t), are studied. It is assumed that
the linear system y′(t) = (A(t) + B(t))y(t) is unstable, the instability being characterized
by a nonstable manifold defined from a dichotomy to this linear system. The delay r(t) is
assumed to be continuous and bounded. Two kinds of results are given, those concerning
conditions that do not include the properties of the delay function r(t) and the results
depending on the asymptotic properties of the delay function.

Keywords: Liapounov instability, h-instability, instability of delay equations, noncon-
stant delays

MSC 2000 : 34D20, 34D05

1. Introduction

In this paper sufficient conditions for the solutions of the equation

(1) x′(t) = A(t)x(t) + B(t)x(t − r(t)), x ∈ � n , t > t0,

to be unstable are given. The problem of stability and instability, in the case of
constant matrices A, B and a constant delay, r has been studied by many authors [5],
[10]. For a good acquaintance with the subject, as well as for the application to
mathematical ecology, the reader is referred to the monograph [7]. The constant
case is frequently studied by means of the location of the roots of the so called
characteristic polynomial: P (λ) = det(λI − A − Be−rλ). An outstanding result
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ensures that the solutions of the equation

x′(t) = Ax(t) + Bx(t− r)

are unstable if there exists a root of the characteristic polynomial with a positive
real part. This algebraic method cannot be applied to the nonautonomous Eq. (1).
The unstable properties of Eq. (1) have not been sufficiently studied [5], [7], [10],

[11]. This contrasts with the evolution of this theory for ordinary differential equa-
tions, to which we may mention the classical result of Perron [1] and Coppel’s theorem
on instability [3] for nonautonomous systems.
In this paper we will give results on instability and asymptotic instability of Eq. (1),

relying on the ideas of the paper [12]. We will distinguish the case when B is
integrable, where, under suitable conditions, the instability can be obtained for a
general bounded delay r(t). The case when B is not integrable is treated in our paper
by means of conditions of boundedness and integrability of the function r(t)B(t). In
a section of examples we will apply the results obtained to different classes of delay
differential equations.

2. Basic definitions and notation

The symbol V will denote the linear space � n or � n ; |x| stands for a fixed norm
of the vector x, and the corresponding matrix norm of a matrix A will be denoted
by |A|. We will assume that the function r(t) : [t0,∞) → [0, σ], σ > 0, is contin-
uous. Throughout, we will denote J = [t0,∞), Jσ = [t0 − σ,∞); the functions
A, B : Jσ → V, are assumed to be continuous; Φ will denote the fundamental matrix
of

(2) y′(t) = (A(t) + B(t))y(t)

satisfying Φ(t0) = I , where the matrix I denotes the identity; for an interval Ia,b of
real numbers, we will denote by C(Ia,b) the space of continuous and bounded func-
tions defined on Ia,b with values on V; if x ∈ C(Jσ) and t > t0, then xt ∈ C([−σ, 0])
will denote the function xt(s) = x(t + s), s ∈ [−σ, 0]; in the space C([−σ, 0]), the
following norm will be used:

|ϕ|σ = max
s∈[−σ,0]

|ϕ(s)|;

x(t; t0, ϕ) will denote the unique solution of the problem

(3)

{
x′(t) = A(t)x(t) + B(t)x(t − r(t)), t > t0,

xt0 = ϕ, ϕ ∈ C([−σ, 0]);
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the letters h, k, p, q will denote positive continuous functions, and h−1(t) = 1/h(t);
for f ∈ C(Jσ), let |f |∞ := sup{|f(t)| : t ∈ Jσ}, Ch(Jσ) := {f : Jσ → V : h−1f ∈
C(Jσ)}; for f ∈ Ch(Jσ), let |f |h := |h−1f |∞ and Bh[0, %] = {f ∈ Ch(Jσ) : |f |h 6 %};
Ch(Jσ), called the space of h-bounded functions, endowed with the norm | · |h is a
Banach space; L1(J) will denote the space of integrable functions defined on J , with
norm |f |1 =

∫∞
t0
|f(s)| ds; L1

h(J) is the space of h-integrable functions, that is f ∈ L1
h

iff |f |1h :=
∫∞

t0
h−1(s)|f(s)| ds < ∞.

The instability of Eq. (2) will be characterized by means of the following notion
of dichotomy [13]:

Definition 1. We say that Eq. (2) has a weak ([h, p], [k, q])-dichotomy on Jσ , iff
there exist a constant K and a projection matrix P such that

|Φ(t)PΦ−1(s)| 6 Kh(t)p(s), t0 − σ 6 s 6 t,(4)

|Φ(t)(I − P )Φ−1(s)| 6 Kk(t)q(s), t0 − σ 6 t 6 s,

and

(5)

{
h(t)p(s) 6 Ck(t)q(s), t > s > t0 − σ,

k(t)q(s) 6 Ch(t)p(s), s > t > t0 − σ,

where C > 1 is a constant.

Remark 1. If h = k, p = q, then we say that Eq. (1) possesses an [h, p]-dichotomy.
If Eq. (1) has an ([h, p, ], [k, q])-dichotomy, then condition (5) implies that Eq. (1)
has an [h, p]-dichotomy, and also a [k, q]-dichotomy, each with the same projection
matrix P and constant CK.

Remark 2. If p(t) = h−1(t), q(t) = k−1(t) [19], [15], [16], then we say that
Eq. (1) possesses an (h, k)-dichotomy. In this case the hypotheses (5) reduce to the
requirement:

(6) h(t)h−1(s) 6 Ck(t)k−1(s), t > s > t0 − σ.

The case of an (h, h)-dichotomy will be termed an h-dichotomy. If Eq. (1) possesses
an (h, k)-dichotomy, then (6) implies that Eq. (1) has an h-dichotomy, and also has
a k-dichotomy, each with the same projection matrix P and constant CK.

We call the attention to the use of square brackets to denote an [h, p]-dichotomy.
This is made deliberately to distinguish this dichotomy from the notation of the
(h, k)-dichotomies in the sense of Pinto [19], where we use parentheses instead.
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We will use the following subspaces of initial conditions to Eq. (2):

Vh = {ξ ∈ V : Φ(t)ξ ∈ Ch}, Vh,0 = {ξ ∈ Vh : lim
t→∞

h(t)−1Φ(t)ξ = 0}.

The forthcoming Theorem A follows in a way similar to the proof of Proposition 2.2
in [4] (see also [15], [17], [14]), and Theorem B follows from a result on admissibility
of a pair of functional spaces [4], [14].

Theorem A. Let us assume that Eq. (2) has the weak dichotomy (4)–(5), then
Eq. (2) has an ([h, p], [k, q])-dichotomy with a projection Q, iff

Vk,0 ⊂ Q[V] ⊂ Vh.

Theorem B. If the system

x′(t) = A(t)x(t)

has a weak [h, p]-dichotomy and hpB ∈ L1, then the system

y′(t) = [A(t) + B(t)]y(t)

has a weak [h, p]-dichotomy.

Throughout, the functions h, k will be assumed to have a bounded growth.

Definition 2. We say that the function h : Jσ → (0,∞) is of class Gσ,M , for a
positive number M , iff

h(s)h−1(t) 6 M, s ∈ [t− σ, t + σ], t > t0.

We will use the following definitions of instability:

Definition 3. We say that the null solution of Eq. (2) is h-stable on the inter-
val J , iff for every ε > 0 there exists a δ > 0 (δ = δ(t0, ε)) such that if ϕ ∈ C([−σ, 0])
and |ϕ|σ < δ, then the solution x(t; t0, ϕ) exists on all J and h−1(t)|x(t; t0, ϕ)| < ε

for all t > t0. In addition to the above property, if for every |ϕ|σ < δ we have

(7) lim
t→∞

h−1(t)x(t; t0, ϕ) = 0,

then the null solution of Eq. (2) is called h-asymptotically stable.

Definition 4. We say that the null solution of Eq. (2) is h-unstable on the
interval J , iff there exists an ε > 0 such that for every δ > 0 there exist an initial
value function ϕδ ∈ C([−σ, 0]), |ϕ|σ < δ, and a τδ > t0 such that |x(τδ ; t0, ϕδ)| > ε.
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3. Instability under integrable conditions

It is convenient to write Eq. (1) in the equivalent form

(8) x′(t) = (A(t) + B(t))x(t) + B(t)(x(t − r(t)) − x(t)).

Regarding this equation, for t > t0 let us define the operator

U [x](t) =
∫ t

t0

Φ(t)PΦ−1(s)B(s)(x(s − r(s)) − x(s)) ds

−
∫ ∞

t

Φ(t)(I − P )Φ−1(s)B(s)(x(s − r(s)) − x(s)) ds.

We call U the dichotomic operator associated to Eq. (1). Note that U applies to
functions of the space C(Jσ). Since the function U [y] is not defined on [t0 − σ, t0],
we complete this definition in the following manner:

T [x](t) =

{
U [x](t0), t ∈ [t0 − σ, t0],

U [x](t), t > t0.

Lemma 1. If Eq. (2) has the dichotomy (4)–(5), where h ∈ Gσ,M , then hpB ∈ L1

implies that the operator T : Ch(Jσ) → Ch(Jσ) is continuous:

(9) |T [x]|h 6 2KCM2

∫ ∞

t0

h(s)p(s)|B(s)| ds|x|h.

Moreover, if

(10) 2KCM2

∫ ∞

t0

h(s)p(s)|B(s)| ds < 1,

then T acts as a contraction.
��������

. For t > t0 we have the estimate

|h−1(t)T [x](t)| 6 K

∫ t

t0

p(s)|B(s)||x(s − r(s)) − x(s)| ds

+ K

∫ ∞

t

h−1(t)k(t)q(s)|B(s)| |x(s − r(s)) − x(s)| ds

6 KC(M + 1)
∫ ∞

t0

h(s)p(s)|B(s)| ds|x|h.

For t ∈ [t0 − σ, t0] we may write

|h−1(t)T [x](t)| = |h−1(t)h(t0)h−1(t0)T [x](t0)|

6 KCM(M + 1)
∫ ∞

t0

h(s)p(s)|B(s)| ds|x|h.

From these estimates the assertion of the lemma follows, because M > 1. �
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Theorem 1. If Eq. (2) has the dichotomy (4)–(5), where the function h is of
class Gσ,M , and (10) is satisfied, then the null solution of Eq. (1) is h-unstable if
Vh 6= V.
��������

. Let us assume the contrary, then for ε > 0 there exists a δ > 0 such
that ϕ ∈ C[−σ, 0], |ϕ|σ < δ imply |h−1(t)x(t; t0, ϕ)| < ε, ∀t > t0. Let ϕ be an initial
value function satisfying

(11) ϕ = const. = x0, 0 < |x0| < δ, x0 ∈ (I − P )[V].

We will show that x(t; t0, ϕ) is not h-bounded. This is enough to accomplish the
proof of the theorem. We define

y(t) = x(t; t0, ϕ)−T [x(·; t0, ϕ)](t), t > t0 − σ.

By Lemma 1 the function y(t) belongs to Ch(Jσ). Besides, y(t) is a solution of Eq. (2)
on the interval [t0,∞). Hence y(t0) ∈ Vh. Due to Theorem A we may assume that
y(t0) ∈ P [V]. Moreover, we have

y(t0) = x0 + (I − P )
∫ ∞

t0

Φ−1(s)B(s)(x(s − r(s)) − x(s)) ds ∈ (I − P )[V],

implying y(t0) = 0, and consequently y(t) = 0, ∀t > t0. But in this case x(·; t0, ϕ)
satisfies the integral equation

x(t; t0, ϕ) = T (x(·, t0, ϕ))(t), t > t0,

whence

x(t; t0, ϕ) = T (x(·, t0, ϕ))(t), t > t0 − σ.

Thus, any solution x(·; t0, ϕ), where ϕ satisfies (11), is a fixed point of the dichotomic
operator T : Ch(Jσ) → Ch(Jσ). But condition (10) implies that the operator T is a
contraction. Since T is linear, we have x(·; t0, ϕ) = 0, which yields the contradiction
ϕ(0) = x(t0; t0, ϕ) = x0 = 0. �

If the function h is bounded away from null (h(t) > α > 0, ∀t), then the condi-
tions of Theorem 1 imply that the solutions of Eq. (1) are unstable in the sense of
Liapounov.

Corollary 1. If Eq. (2) has the dichotomy (4)–(5), where the function k is of
class Gσ,M , and

2KCM2

∫ ∞

t0

k(s)q(s)|B(s)| ds < 1

is satisfied, then the null solution of Eq. (1) is k-unstable if Vk 6= V.
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��������
. Condition (5) implies that Eq. (2) has a [k, q]-dichotomy. The rest of

the proof follows in the same way as that of Theorem 1. �

If the function B(t) is integrable then the equation

y′(t) = (diag{−1, t−1, t}+ B(t))y(t), t > t0 = 1,

has an (e−t, t)-dichotomy. According to Theorem 1 the null solution of

(12) x′(t) = diag{−1, t−1, t}x(t) + B(t)x(t − r(t))

is e−t-unstable for every bounded delay r(t). This does not imply the Liapounov
instability. Nevertheless, Eq. (12) has a k-dichotomy with k(t) = t. The condition
Vk 6= V is certainly satisfied, therefore Corollary 1 yields the Liapounov instability
of Eq. (12).
The proof of Theorem 1 shows that no solution x(t; t0, ϕ) of Eq. (1) satisfying (11)

is h-bounded. A natural question arises: For which initial value functions may we
expect that the solution x(t; t0, ϕ) is not h-bounded? To answer this question, let
us consider the set I ⊂ C[−σ, 0] of initial value functions defined by the following
properties:

(13) |h−1
t0 ϕ|σ = |h−1(t0)ϕ(0)| 6= 0, ϕ(0) ∈ (I − P )[V].

Theorem 2. Under the conditions of Theorem 1, every solution x(t; t0, ϕ), with
ϕ ∈ I is h-unbounded.
��������

. Assume that ϕ ∈ I and x(t; t0, ϕ) is h-bounded. By repeating the first
lines of the proof of Theorem 1 we obtain

x(t; t0, ϕ) = T (x(·; t0, ϕ))(t), t > t0.

From this identity and properties (9), (13) we conclude

sup
[t0,∞)

|h−1(t)x(·; t0, ϕ)| 6 2KCM2|hpB|1|x(·; t0, ϕ)|h.

Since ϕ ∈ I , the last estimate implies

|x(·; t0, ϕ)|h 6 2KCM2|hpB|1|x(·; t0, ϕ)|h,

whence x(t; t0, ϕ) = 0, t > t0 − σ, because of condition (10). Hence ϕ = 0, a
contradiction with ϕ ∈ I . �
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If the condition Vh 6= V of Theorem 1 is not satisfied, then the following theorem
provides the answer to the problem of instability:

Theorem 3. If Eq. (2) has the dichotomy (4)–(5), where the function h is of
classGσ,M , and (10) is satisfied, then the null solution of Eq. (1) is not asymptotically
h-stable if Vh,0 6= Vh (respectively, the null solution of Eq. (1) is not asymptotically
k-stable if Vk,0 6= Vk and 2KCM2|kqB|1 < 1).
��������

. According to Remark 1, we may handle the dichotomy (4)–(5) as
an [h, p]-dichotomy. Let us assume that the null solution of Eq. (1) is asymptoti-
cally h-stable. Then for ε = 1 there exists a positive δ such that |ϕ|σ < δ implies
|h−1(t)x(t; t0, ϕ)| < 1, t > t0, and (7) is satisfied. Let % be a positive number such
that %|ht0 |σ < δ and let γ be a positive number such that

γ + 2KCM2|hpB|1% 6 %.

Fixing a vector y0 ∈ Vh \ Vh,0 with the property |Φy0|h < γ, we introduce an
operator F defined by

(14) F [x](t) = Φ(t)y0 + T [x](t), t > t0 − σ.

Due to the choice of γ we have the property

F : Bh[0, %] → Bh[0, %].

By virtue of (10) the operatorF is contractive in this ball. Let x be the unique fixed
point of F in Bh[0, %]. This function is a solution of Eq. (1). Due to Theorem A we
may assume that the projection P defining the [h, p]-dichotomy satisfies

lim
t→∞

h−1(t)Φ(t)P = 0.

This property implies the identity

(15) x(t) = Φ(t)y0 + o(h)(t),

where o(h) denotes a function satisfying lim
t→∞

h−1(t)o(h)(t) = 0. As x = F [x], the

estimate (9), for t ∈ [t0 − σ, t0], yields

|x(t)| 6 h(t)|Φy0|h + h(t)|T [x]|h 6 (γ + 2KCM2|hpB|1%)|ht0 |σ 6 %|ht0 |σ < δ.

Therefore |xt0 | < δ, implying x(t) = o(h)(t). However

lim
t→∞

h−1(t)Φ(t)y0 6= 0.

The last relation and (15) are contradictory. �
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The forthcoming Theorem 4 and Theorem 5 are consequences of Theorem 1 and
Theorem 3, respectively.

Theorem 4. If Eq. (2) has an (h, k)-dichotomy, where the function h is of class
Gσ,M , and

(16) 2KCM2

∫ ∞

t0

|B(s)| ds < 1,

then the null solution of Eq. (1) is h-unstable if Vh 6= V.

Theorem 5. If Eq. (2) has an (h, k)-dichotomy, where the function h is of class
Gσ,M and (16) is satisfied, then the null solution of Eq. (1) is not asymptotically
h-stable if Vh,0 6= Vh.

4. Instability for nonintegrable coefficients

The previous result is of a limited interest, since the condition (10) does not involve
the time lag function r(t). Let h ∈ Gσ,M . In order to incorporate the properties
of r(t) into the statements of our theorems, following the ideas in [8], we introduce
the set Mh consisting of the functions belonging to Ch(Jσ) such that

(Mh) h−1(t)|x(t) − x(t′)| 6 Mβ(t)(t− t′)|x|h, t− σ 6 t′ 6 t, t > t0, t′ > t0,

where, for convenience, the constant M is the same as in Definition 2, and the
function β is defined by

β(t) = max{1, |(A + B)t|σ}.

By standard arguments, we can prove that Mh is a closed set in Ch(Jσ).

Lemma 2. Assume that Eq. (2) has the dichotomy (4)–(5), h ∈ Gσ,M . If

(17) 2KCM2{|βrhpB|1 + |βrhpB|∞} < 1,

then

(18) T : Mh → Mh.
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��������
. The definition of the operator T implies, for t > t0 and x ∈ Ch(Jσ),

that

|h−1(t)T [x](t)| 6 KC

∫ ∞

t0

p(s)|B(s)||x(s − r(s)) − x(s)| ds

6 KCM

∫ ∞

t0

β(s)r(s)h(s)p(s)|B(s)| ds|x|h.

On the other hand, for t ∈ [t0 − σ, t0] we have

|h−1(t)T [x](t)| = |h−1(t)h(t0)h−1(t0)T [x](t0)|

6 KCM2

∫ ∞

t0

β(s)r(s)h(s)p(s)|B(s)| ds|x|h.

Hence, we have proved that condition (17) implies T : Ch(Jσ) → Ch(Jσ).
In order to verify the property [Mh], we write

T [x](t)−T [x](t′) = I1(t) + I2(t) + I3(t)− I4(t), t− σ 6 t′ 6 t,

where

I1(t) =
∫ t

t′
Φ(t)PΦ−1(s)B(s)

(
x(s)− x(s− r(s))

)
ds,

I2(t) =
∫ t′

t0

[Φ(t)− Φ(t′)]PΦ−1(s)B(s)
(
x(s)− x(s− r(s))

)
ds,

I3(t) =
∫ t

t′
Φ(t′)(I − P )Φ−1(s)B(s)

(
x(s) − x(s− r(s))

)
ds,

I4(t) =
∫ ∞

t

[Φ(t)− Φ(t′)](I − P )Φ−1(s)B(s)
(
x(s)− x(s− r(s))

)
ds.

From condition (4) we have

|h−1(t)I1(t)| 6 KM

∫ t

t′
h(s)p(s)|B(s)|β(s)r(s) ds|x|h(19)

6 KMβ(t)|βrhpB|∞(t− t′)|x|h.

On the interval s 6 t′ 6 t, t− t′ 6 σ, we obtain the estimate

|(Φ(t)− Φ(t′))PΦ−1(s)| =
∣∣∣∣
∫ t

t′
(A + B)(u)Φ(u) duPΦ−1(s)

∣∣∣∣(20)

6 Kβ(t)
∫ t

t′
h(u)p(s) du

6 KMβ(t)h(t)p(s)(t − t′).
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Inserting the estimate (20) into the definition of function I2, we may write

(21) |h−1(t)I2(t)| 6 KM2β(t)
∫ ∞

t0

β(s)h(s)p(s)|B(s)|r(s) ds(t− t′)|x|h.

Further, we have

|h−1(t)I3(t)| 6 KCM

(∫ t

t′
h(t′)h−1(t)h(s)p(s)β(s)r(s)|B(s)| ds

)
|x|h(22)

6 KCMβ(t)|hpβrB|∞(t− t′)|x|h.

Finally, relying on (20) we conclude

(23) |h−1(t)I4(t)| 6 KCM2β(t)|hpβrB|1(t− t′)|x|h.

From (19), (21), (22) and (23) we obtain

|T [x](t)−T [x](t′)| 6 2KCM2β(t)h(t)(|hpβrB|∞ + |hpβrB|1)(t− t′)|x|h.

Therefore condition (17) implies (18). �

Lemma 3. If h ∈ Gσ,M and y0 ∈ Vh, then Φy0 ∈ Mh.
��������

. We have to verify the property [Mh]. If t− σ 6 t′ 6 t, t > t0, then

h−1(t)|Φ(t)y0 − Φ(t′)y0| =
∣∣∣∣h−1(t)

∫ t

t′
(A(s) + B(s))Φ(s)y0 ds

∣∣∣∣

6 h−1(t)
∫ t

t′
|A(s) + B(s)|h(s)h−1(s)Φ(s)y0| ds

6 Mβ(t)(t− t′)|Φy0|h,

whence the proof of the lemma follows. �

Theorem 6. Let us assume that Eq. (1) has the dichotomy (4)–(5) and the
functions h, k are of class Gσ,M . If

(24) 2KCM2{|kqβrB|1 + |kqβrB|∞} < 1

and Vh 6= Vk, then the null solution of Eq. (1) is h-unstable.
��������

. Let us assume that the null solution of Eq. (1) is h-stable. Then for
ε = 1 there exists a δ > 0 such that |x(·, t0, ϕ)|h < 1 if |ϕ|σ < δ. Let % be a small
number such that

(25) %|kt0 |σ < δ.
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For a small γ > 0 satisfying

γ + 2KCM2{|kqβrB|1 + |qkβrB|∞}% 6 %

we fix an initial condition y0 ∈ Vk \Vh such that

|y(·, t0, y0)|k 6 γ.

Let us consider the integral equation x = F [x], where the operator F is defined
by (14). From Lemma 2 and Lemma 3 (where instead of h we put k) we have
F : Mk → Mk. Let B∗

k [0, %] be the closed ball with center x = 0 and radius %

contained in Mk. In view of the choice of the number γ we have

F : B∗
k [0, %] → B∗

k [0, %].

In virtue of (17), the operator F contracts the points of the ball B∗
k [0, %]. Let x

be a fixed point of the operator F . A straightforward calculation shows that x is a
solution of Eq. (1). Moreover, t ∈ [t0 − σ, t0] and (25) yield

|x(t)| 6 k(t)(|Φy0|k + |T [x]|k) 6 (γ + 2KCM2|kqB|1%)|kt0 |σ 6 %|kt0 |σ < δ,

implying that x is an h-bounded function. Therefore T [x] is h-bounded. The last
assertion is proved in the following way: the second estimate in the proof of Lemma 2
shows that this is certainly satisfied if βrhpB ∈ L1[t0,∞), but this follows from (24),
because hp 6 Ckq. Since

x(t) = y(t, t0, y0) + T [x](t),

we obtain that the function y(·, t0, y0) must be h-bounded. However, this contradicts
the choice of y0. �

The forthcoming Lemma 4 and Theorem 7 follow from Lemma 2 and Theorem 6
in the particular case of a (h, k)-dichotomy.

Lemma 4. Assume that Eq. 2 has an (h, k)-dichotomy and h ∈ Gσ,M . If

(26) 2KCM2{|βrB|1 + |βrB|∞} < 1,

then

T : Mh → Mh.
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Theorem 7. Let us assume that Eq. (2) has an (h, k)-dichotomy and the func-
tions h, k belong to Gσ,M . If condition (26) is satisfied and Vh 6= Vk, then the null
solution of Eq. (1) is h-unstable.

Finally, before we start the section of examples, we emphasize that the stability
analysis of Eq. (1) via an appropriate ordinary differential equation is not new. It was
used, for example, by Cooke [2], and recently by Győri and Pituk in an interesting
paper [8].

5. Applications

We present three examples of independent interest.

5.1. Instability of x(n)(t) = b(t)x(t− r(t)).
To start, let us begin with the second order equation

(27) x′′(t) = b(t)x(t− r(t)), 0 6 r(t) 6 1, t > t0 = 1,

whose vectorial form is

(
y(t)
x(t)

)′
=

(
0 1
0 0

) (
y(t)
x(t)

)
+ b(t)

(
0 0
1 0

) (
y(t− r(t))
x(t− r(r))

)
.

If |(u, v)| = |u|+ |v| is the norm in � 2 , then the linear system

(
y(t)
x(t)

)′
=

(
0 1
0 0

) (
y(t)
x(t)

)

with the fundamental matrix Φ(t) =
(

1 t

0 1

)
has the weak dichotomy

|Φ(t)PΦ−1(s)| 6 2s,

|Φ(t)(I − P )Φ−1(s)| 6 2t,

1− σ 6 s 6 t,

1− σ 6 t 6 s,
P =

(
1 0
0 0

)

satisfying (5) with functions h(t) = 1, p(t) = t, k(t) = t, q(t) = 1, and constant
C = 1. If the function tb(t) is integrable, then, according to Theorem B, the per-
turbed equation

x′′(t) = b(t)x(t)

has a weak dichotomy of type ([1, t], [t, 1]). According to Theorem 1, the null solution
of Eq. (27) is unstable if tb(t) ∈ L1, because Vh 6= V. Since Vk 6= Vk,0, even
Theorem 3 is applicable to this example if tb(t) ∈ L1; the null solution of Eq. (27)
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is t-asymptotic unstable. In this example, the property Vh 6= Vk suggests the
possibility of applying Theorem 6, for which we require the sufficient condition

(28) lim
t→∞

(∫ ∞

t

|s max{1, |b(s)|}r(s)b(s)| ds + |t max{1, |b(t)|}r(t)b(t)|
)

= 0

equivalent to

g ∈ L1, lim
t→∞

g(t) = 0, g(t) := max{1, b(t)}r(t)b(t),

in order to establish property (24). Under this condition the null solution of Eq. (27)
is unstable in the sense of Liapounov.
The general equation

x(n)(x) = b(x)x(t − r(t))

can be treated similarly, the linear system

x′(t) = (I + I1)x(t), I1 =




0 1 0 . . . 0
0 0 1 . . . 0
...
...
...
. . . 1

0 0 0 . . . 0




having the family of weak dichotomies

|Φ(t)PΦ−1(s)| 6 Ktm−1sm, t > s > 1,

|Φ(t)(I − P )Φ−1(s)| 6 Ktmsm−1, s > t > 1,

where

P = diag{
m︷ ︸︸ ︷

1, . . . , 1, 0, . . . , 0}, 0 < m < n.

5.2 Euler equations.
As a second example we study the instability of the Euler equation

(29) y′′ +
µ

t2
y = b(t)y(t− r(t)),

where µ is a real parameter satisfying |µ| < 1/4 (the case |µ| > 1/4 can be dealt with
similarly as we do in the text). In this case the fundamental matrix corresponding
to the linear equation

y′′ +
µ

t2
y = 0
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has the form

(30) Φ(t) =
(

tλ− tλ+

λ−tλ−−1 λ+tλ+−1

)
, λ∓ =

1
2
∓

√
1
4
− µ.

For the projection matrix P = diag{1, 0} we have the following estimates satisfy-
ing (4)–(5):

|Φ(t)PΦ−1(s)| 6 Ktλ−sλ+ , t > s,(31)

|Φ(t)(I − P )Φ−1(s)| 6 Ktλ+sλ− , s > t.

We aim at applying Theorem 3. For h(t) = tλ− , k(t) = tλ+ , we observe that
Vk 6= Vk,0. By Theorem B, the equation

y′′ +
µ

t2
y = b(t)y

has a [tλ+ , tλ− ]-dichotomy if tb(t) ∈ L1. According to Theorem 3 we have that
the null solution of Eq. (29), under condition tb(t), is not asymptotically tλ+-stable
(this implies the Liapounov instability). Such a consequence cannot be obtained if
b(t) = O(t−2). Let us study this case more carefully. Assume the existence of a
constant ν such that the function (ν− t2b(t))t−1 is integrable. Then Eq. (29) can be
written in the form

(32) x′′(t) +
µ− ν

t2
x(t) +

ν − t2b(t)
t2

x(t) = b(t)(x(t − r(t)) − x(t)).

If 4(µ− ν) < 1, then the equation

(
y(t)
x(t)

)′
=

µ− ν

t2

(
0 1

−1 0

) (
y(t)
x(t)

)

has the dichotomy (31), with a fundamental matrix (30) defined with values λ∓,
where instead of µ it is necessary to write µ− ν. By Theorem B, the dichotomy (31)
is preserved if (ν − t2b(t))t−1 is integrable. Now Theorem 6 will apply to Eq. (32)
if the condition (24) is fulfilled. In the present example a sufficient condition to
obtain (24) is (28).
An example of a function satisfying these conditions is b(t) = 1/(1 + t2), with

ν = 1. Note that tb(t) is not integrable.
In examples regarding Euler equations it is worth mentioning that the classical

change of the time scale t = eτ in Eq. (29) would not work, since it is not clear how
to define the function y(τ) = x(eτ ) from x(t − r(t)).
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5.3. Instability of x′(t) = Ax(t) + B(t)x(t − r(t)).
Let us consider the system

(33) x′(t) = Ax(t) + B(t)x(t − r(t)),

where the function A is constant. Throughout, σ(A) will denote the set of eigenvalues
of the matrix A; σ+ = {λ ∈ σ(A) : Re λ > 0}. If σ+(A) 6= ∅, we define numbers α, ν

such that
0 < α < µ− ν < ν < µ = min{Re λ : Re λ > 0}.

The change of the variable

(34) x(t) = eνtz(t) = e(ν−α)teαtz(t),

reduces Eq. (33) to the form

(35) z′(t) = (A− νI + e−r(t)B(t))z(t) + e−r(t)B(t)(z(t− r(t)) − z(t)),

the system

(36) u′(t) = (A− νI)u(t)

having an (e−αt, eβt)-dichotomy. If B ∈ L1, then the system

(37) u′(t) = (A− νI + e−r(t)B(t))u(t)

has the same (e−αt, eβt)-dichotomy [4], [15]. It is clear that the function e−αt is of
class Gσ,M for some positive constantM . All conditions of Theorem 1 are fulfilled for
large values of the initial moment t0. Thus, the null solution z = 0 is e−αt-unstable,
which implies, in view of (34), the Liapounov instability of the solutions of (33). We
may write the above outcomes in

Theorem 8. If σ+(A) is not empty and B(t) is integrable, then for any bounded
delay function r(t), the null solution of Eq. (1) is unstable.

A more interesting result is obtained for a nonintegrable and bounded func-
tion B(t). First we recall a known result on the stability of exponential di-
chotomies [4], [16]:

Theorem C. Let us assume that Eq. (36) allows the exponential dichotomy

|Φ(t)PΦ−1(s)| 6 K1e−α(t−s), t0 − σ 6 s 6 t, α > 0,(38)

|Φ(t)(I − P )Φ−1(s)| 6 K2eβ(t−s), t0 − σ 6 t 6 s, β > 0.
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Then the condition

(39) |e−r(·)B|∞
{

K1

α
+

K2

β

}
<

1
2

implies that Eq. (37) has the exponential dichotomy

|Φ(t)PΦ−1(s)| 6 Ke−α1(t−s), t0 − σ 6 s 6 t,(40)

|Φ(t)(I − P )Φ−1(s)| 6 Keβ1(t−s), t0 − σ 6 t 6 s,

where K is a constant and 0 < α1 < α, 0 < β1 < β.

We desire to apply Theorem 6 to Eq. (35), where Eq. (36) has the dichotomy (38).
If (39) is fulfilled, then Eq. (37) has the dichotomy (40). The condition (17) requires
the estimate

|βr(·)e−r(·)B|∞ 6 |r(·)e−r(·)B|∞(1 + |A|+ |e−r(·)B|∞).

For the functions h(t) = e−α1t, k(t) = eβ1t, the constant M in Definition 2 can be
chosen to be M = emax{α,β}σ . The property (5) is established with C = 1. Thus,
condition (17) is satisfied if

2Ke2α1σ(1 + |A|+ |e−r(·)B|∞)(|re−r(·)B|1 + |r(·)e−r(·)B|∞) < 1.

The condition Vh 6= Vk of Theorem 6 is certainly satisfied. Note that α1 can be
taken as close to null as desired. Thus, this last condition follows from

(41) 2K(1 + |A|+ |e−r(·)B|∞)(|r(·)e−r(·)B|1 + |r(·)e−r(·)B|∞) < 1.

From Theorem 6 we obtain that conditions (39), (41) imply the e−α1t-instability of
Eq. (35). Since α1 < α, then the null solution of Eq. (35) is e−αt-unstable, implying,
according to (34), the instability of Eq. (33). From these conclusions we obtain

Theorem 9. If the matrix A allows an eigenvalue with a positive real part
and B(t) ∼ C1t

−γ1 , r(t) ∼ C2t
−γ2 , where γ1, γ2 are nonnegative constants such

that γ1 + γ2 > 1, then the null solution of the equation with bounded delay (33) is
unstable.
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