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Abstract. A ring R has right SIP (SSP) if the intersection (sum) of two direct summands
of R is also a direct summand. We show that the right SIP (SSP) is the Morita invariant
property. We also prove that the trivial extension of R by M has SIP if and only if R has
SIP and (1 − e)Me = 0 for every idempotent e in R. Moreover, we give necessary and
sufficient conditions for the generalized upper triangular matrix rings to have SIP.
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1. Introduction

Throughout this paper R denotes an associative ring with identity and all

R-modules are unital right R-modules.
A right R-module M has SIP if the intersection of every pair of direct summands

of M is a direct summand of M . The ring R has right SIP provided that the right
R-module R has SIP, i.e., the intersection of every pair of right ideals of R which

are generated by idempotents is also generated by an idempotent. A module M has
SSP if the sum of every pair of direct summands of M is a direct summand of M .

In [6], I. Kaplansky showed that a free module over a principal ideal domain has the
Summand Intersection Property. Since then these modules have been investigated

by several authors (see for example [3], [5] and [7]).
In this note we deal with matrix rings which have SIP. To this end we prove

necessary and sufficient conditions for full matrix rings and trivial extensions to
have SIP.

For any unexplained terminology please see [1] and [4].
The following lemma is well known but its proof is given for completeness.
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Lemma 1. If MR has SIP (SSP) then so does every direct summand of M .
���������

. Let M have SIP and let X be a direct summand of M . Let K and L

be direct summands of X . Thus both K and L are direct summands of M . There

exists a submodule F of M such that M = (K ∩ L)⊕ F . Hence

X = X ∩M = X ∩
(
(K ∩ L)⊕ F

)
= (K ∩ L)⊕ (X ∩ F ).

It follows that K ∩ L is a direct summand of‘ X . Hence X has SIP. SSP case is

similar. �

Lemma 2 [3, Lemma 3.1]. Let R be a product of rings, R =
∏
I

Ri. Then R has

SSP (SIP on the left) if and only if each Ri has SSP (SIP on the left).
���������

. Straightforward (see for example [3]). �

Next we provide an example which illustrates that a direct sum of modules which

have SIP need not have SIP in general (see [7]).

Example. Let p be a prime integer. Let M be the Z-module Z ⊕ (Z/Zp). Then
M does not have SIP.
���������

. Note that Z-modules Z and Z/Zp both have SIP. Let us consider
submodules A = (1, p)Z and B = (1, 1)Z; it is clear that A and B are direct

summands of M . However, A ∩ B is not a direct summand of M . �

2. Matrix rings

We shall give an example which does not have SIP. The following example is taken
from [2, Example 1.5].

Example 4. Let F be a field and

T =








a x 0 0
0 b 0 0
0 0 b y

0 0 0 a


 : a, b, x, y ∈ F





.

Let

e = e2 =




0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 0


 and c = c2 =




0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


 .

Then eT ∩ cT is nilpotent. Hence eT ∩ cT is not a direct summand of T . It follows
that T does not have SIP.
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Naturally a question arises, namely, when the full matrix ring over a ring has SIP.

For, let R be any ring with identity, e an idempotent in R such that R = ReR and
S the subring eRe. Let M be a right-module. Then Me is a right S-module.

Lemma 5. Let K be a submodule of MR. Then K is a direct summand of MR

if and only if Ke is a direct summand of (Me)S .

���������
. Suppose K is a direct summand of MR. Then M = K ⊕N for some

submodule N of MR. Thus Me = Ke + Ne . However, Ke ∩ Ne 6 K ∩ N = 0.
Therefore Me = Ke ⊕ Ne. Conversely, suppose that Me = Ke ⊕ L for some

submodule of (Me)S . It is easy to see that K ∩ LR = 0 and

M = MeR = (Ke + L)R = KeR + LR = K + LR.

Thus MR = K ⊕ LR. �

By using Lemma 5 we obtain the following result.

Theorem 6. With the above notation, let M be a right R-module. The right

R-module M has SIP (SSP) if and only if the right S-module Me has SIP (SSP).

Corollary 7. The ring R has right SIP (right SSP) if and only if the right

eRe-module Re has SIP (SSP). In this case, S has right SIP (right SSP).

���������
. Immediate by Theorem 6. �

Now we let S be a ring with identity 1, n a positive integer and R the ringMn(S) of
all n×n matrices with entries in S. Let e11 denote the matrix in R with (1, 1) entry 1
and all other entries 0. It is well known that e11 is idempotent and S ∼= e11Re11 and
R = Re11R.

Thus Theorem 6 gives without further proof the following result which was pointed
out above.

Theorem 8. With the above notation, R = Mn(S) has right SIP (right SSP) if
and only if the free right S-module Sn has SIP (SSP).

Corollary 9. If S has SIP (SSP) then R = Mn(S) has right SIP (SSP).

���������
. Since S has SIP then so does Sn by Lemma 2. Then the result follows

by Theorem 8. The SSP case is similar. �
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Let ℘ be a ring theoretic property. Then ℘ is said to be Morita invariant if and

only if the following holds: whenever a ring R has ℘ then so do Mn (R) for all n > 2
and eRe for all e2 = e ∈ R such that R = ReR.

Combining Corollary 7 with Corollary 9 we arrive at the following fact.

Corollary 10. The right SIP (SSP) is Morita invariant.

Now we prove a result on trivial extensions.

Theorem 11. Let R be a ring, M a R-R bimodule and A the corresponding

trivial extension. Then A has SIP if and only if the following two conditions hold:

(i) R has SIP,

(ii) for every idempotent e of R we have (1− e)Me = 0.
���������

. Suppose that A has SIP and let us prove that (i) and (ii) hold.

(i) Let e, c be idempotent elements of R. Then (eR, eM) (= (e, 0)A) and (cR, cM)
are direct summands of A and therefore (eR∩cR, eM ∩cM) is also a summand of A,
whence eR ∩ cR is a direct summand of R and so R has SIP.

(ii) Suppose that (1 − e)xe 6= 0 for some idempotent of R and x ∈ M . Then
y = (1−e)xe verifies ey = 0, ye = y; hence (e, y)2 = (e, y) and I = (e, y)A is a direct
summand of A. Since J = (1−e, 0)A also is a direct summand of A, then I ∩J is, by
hypothesis, a direct summand of A and it is easy to see that I∩J =

(
0, yR∩(1−e)M

)
.

Therefore, there exists an idempotent element (f, z) of A such that (f, z)A = I ∩ J .
Thus, fR = 0 and so f = 0. Since fz + zf = z hence z = 0. It follows that
yR ∩ (1− e)M = 0. So y = 0 as required.
Assume that (i) and (ii) hold and let (e, x) be an idempotent of A. Then ex+xe =

x, so that (1− e)xe = xe = 0 by hypothesis, and x = ex ∈ eM . Now we have that

every direct summand of A is of the form (eR, eM) for some idempotent element e

of R. Since

eM ∩ cM = eRM ∩ cRM = (eR ∩ cR)M

and R satisfies SIP, we have that

(eR, eM) ∩ (cR, cM) =
(
eR ∩ cR, (eR ∩ cR)M

)
= (fR, fM).

It follows that A has SIP. �

In the rest of this paper let A be the ring

[
R M

0 S

]
where R and S are rings with

identities and M is left R, right S-bimodule.

Lemma 12. If SocA is a direct summand of A then M = 0.
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���������
. By hypothesis, there exists e2 = e ∈ A such that SocA = eA. Hence

(1− e)A = 0. Thus

A =
[

R M

0 S

]
∼=

[
eRe eR(1− e)
0 (1− e)R(1− e)

]

(see [4]). Since Soc AA =
[

R M

0 0

]
and

[
0 M

0 0

]
6 SocA, there exists f2 = f ∈

Soc A such that f(SocA) =
[

0 M

0 0

]
. Now f =

[
r m

0 0

]
and f2 =

[
r2 rm

0 0

]
.

Hence [
r m

0 0

] [
R M

0 0

]
=

[
rR rM

0 0

]
=

[
0 M

0 0

]
.

But r = 0. It follows that M = 0. �

Theorem 13. Let SocA be a direct summand of A. Then A has right SIP if

and only if both R and S have right SIP.
���������

. Immediate by Lemma 12 and Lemma 2. �

As comparison to Theorem 13 we state the following example.

Example 14. Let F be a field and R the upper triangular matrix ring, i.e.

R =
{[

a b

0 c

]
: a, b, c ∈ F

}
.

Then Soc R =
[

0 F

0 F

]
is not a direct summand of RR. It is easy to check that R

has right SIP.

Theorem 15. A has right SIP if and only if the following two conditions hold:
(i) both R and S have right SIP,

(ii) eMf = 0 for every e2 = e ∈ R, f2 = f ∈ S with at least one of e and f not

being identity.
���������

. Assume that A has right SIP. Then

A =
[

R M

0 0

]
⊕

[
0 0
0 S

]
.

By Lemma 1, both

[
R M

0 0

]
and

[
0 0
0 S

]
have SIP and hence S has right SIP. Now,

let I and J be direct summands of R. Thus I = aR and J = bR for some a, b ∈ R

such that a2 = a and b2 = b. Since
[

a 0
0 0

]
A ∩

[
b 0
0 0

]
A =

[
aR ∩ bR aM ∩ bM

0 0

]
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is a direct summand of

[
R M

0 0

]
hence aR ∩ bR is clearly a direct summand of R.

Suppose eMf 6= 0 for some idempotents in R with at least one of e and f not

being identity. Hence there exists 0 6= y = exf ∈ eMf for some x ∈ M . Note that

ey = y. Let α =
[

e 0
0 1− f

]
, β =

[
1− e y

0 f

]
. It is straightforward to check that

α2 = α and β2 = β. Hence αA and βA are direct summands of A. So,

αA ∩ βA =
[

eR eM

0 (1− f)S

]
∩

[
(1− e)R (1− e)M + yS

0 fS

]

=
[

0 eM ∩
(
(1− e)M + yS

)

0 0

]

is a direct summand of A. It follows that eM ∩
(
(1 − e)M + yS

)
= 0. Thus

y ∈ (1 − e)M , i.e. y = (1 − e)m for some m ∈ M . But ey = y = 0 which is
contradiction.

For the converse, let

[
e x

0 f

]
be any idempotent of A. Note that ex + xf = x

and exf = 0, (1 − e)xf = 0. Therefore xf = 0 and hence x ∈ eM . It follows that

every direct summand of A is of the form

[
eR eM

0 fS

]
for some e2 = e ∈ R and

f2 = f ∈ S. Since eM ∩ cM = eRM ∩ cRM = (eR ∩ cR)M , we have
[

eR eM

0 fS

]
∩

[
cR cM

0 gS

]
=

[
eR ∩ cR eM ∩ cM

0 fS ∩ gS

]
=

[
αR αM

0 βS

]

where α2 = α and β2 = β. It follows that A has right SIP. �
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