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Abstract. The paper is an immediate continuation of [3], where one can find various
notation and other useful details. In the present part, a full classification of infinite simple
zeropotent paramedial groupoids is given.
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1. Introduction

Let T be a transitive transformation semigroup on an infinite set G∗ such that
T = 〈f, g〉, where f , g are projective transformations of G∗. Let o /∈ G∗ and
G = G∗ ∪ {o}. Now, define a multiplication on G as follows:
(a) oo = o;

(b) ox = o = xo for every x ∈ G∗;
(c) xy = o for all x, y ∈ G∗, f(x) 6= g(y);
(d) xy = f(x) = g(y) for all x, y ∈ G∗, f(x) = g(y).
In this way, we get a groupoid G = [T , G∗, f, g, o].

1.1 Proposition.
(i) G is balanced if and only if both f and g are permutations of G∗.

(ii) G is simple if and only if ker(f) ∩ ker(g) = idG∗ .

(iii) G is zeropotent if and only if f(a) 6= g(a) for every a ∈ G∗.

While working on this paper, the first author was supported by the Korea Research
Foundation, Project No. 1998-015-D00008 and the second author by the Grant of the
Czech Republic No. #201/96/0312 and by the institutional grant MSM113200007.
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(iv) If f 6= g, f2 = g2 and f , g are permutations of G∗, then G is zeropotent.
(v) G is paramedial if and only if f , g are permutations of G∗ and f2 = g2.
���������

. (i), (ii) and (iii)—see [5, Prop. 5.1].
(iv) We can proceed similarly as in the proof of [3, Prop. 1.1 (iii)].
(v) Assume that G is paramedial and let a ∈ G∗. Then there are b, c, d ∈ G∗

such that f2(a) = g2(b), f(a) = g(c) and f(d) = g(b). Now, f 2(a) = g2(b) =
ac · db = bc · da, and so f(b) = g(c), f(d) = g(a) and f 2(a) = g2(b) = gf(d) =
g2(a). Thus f2 = g2. Further, let x, y ∈ G∗ be such that f(x) = f(y). Then
x = f(u), y = f(v) for suitable u, v ∈ G∗, f2(u) = f(x) = f(y) = f2(v) = g2(v) and
x = f(u) = f(v) = y by the preceding part of the proof. The rest is clear. �

1.2 Lemma. Suppose that both f and g are permutations of G∗ and denote by
G the permutation group generated by f , g. Then, for all h ∈ G and a ∈ G∗, there
are k1, k2,∈ T such that hk1(a) = a = k2h(a).���������

. An immediate consequence of the transitivity of T . �
Let Bzppm denote the class of ordered quadruples (A, B, a, b), where A = 〈a, b〉

is a group, a 6= b, a2 = b2, B is a corefree subgroup of A, the index [A : B] is
infinite and, for every x ∈ A, there exist elements r, s in the subsemigroup generated
by a, b in A such that xr, sx ∈ B. Now, define an equivalence relation ≈ on Bzppm

by (A1, B1, a1, b1) ≈ (A2, B2, a2, b2) if and only if there is a (group) isomorphism
λ : A1 → A2 such that λ(a1) = a2, λ(b1) = b2 and the subgroups λ(B1), B2 are
conjugate in A2.
Let (A, B, a, b) ∈ Bzppm, A/B = {xB; x ∈ A}. For every x ∈ A, the equality

π(x)(yB) = xyB defines a permutation π(x) of A/B and we put Φ((A, B, a, b)) =
[π(S), A/B, π(a), π(b), o], o /∈ A/B, where S is the subsemigroup generated by a, b
in A.
Let G be an infinite simple zeropotent paramedial groupoid (i.e., an infinite simple

paramedial groupoid of type (II)—see [2]). Now, G is strongly balanced by [4,
Theorem 2.1] and for every a ∈ G∗ = G \ {o} there exist uniquely determined
elements b, c ∈ G such that f(a) = ab 6= o 6= ca = g(a). Furthermore, f , g are
permutations of G∗, f2 = g2, f 6= g and Ψ(G) = (G , H , f, g) ∈ Bzppm, where
G = 〈f, g〉 and H = StabG (u), u ∈ G∗.

1.3 Theorem. There exists a one-to-one correspondence between isomorphism
classes of infinite simple zeropotent paramedial groupoids and equivalence classes of
quadruples from Bzppm. This correspondence is given by Φ and Ψ.
���������

. Combine 1.1, 1.2 and [5, Theorem 6.1]. �
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2. Auxililary results on groups

Troughout this section, let A be an infinite non-commutative group such that
A = 〈a, b〉, where a2 = b2. We put A1 = 〈a〉, c = a−1b, C = 〈c〉, D = 〈a2〉 and
F = C ∩ Z(A). Now, A = 〈a, c〉, A′ = 〈c2〉 ⊆ C, D ⊆ Z(A) = DF and A = A1C.
Since A is infinite, so is either A1 or C.

2.1 Lemma.
(i) A1 ∩ C = 1 and Z(A) = D × F .
(ii) If F 6= 1, then C is finite of even order.
(iii) card(A1) > 2 and card(C) > 3.
(iv) ord(a) = ord(b).
(v) If ord(a) = m is finite, then m is even.
���������

. A1 ∩ C ⊆ F . If F 6= 1, then C is finite of even order, A1 is infinite and
A1 ∩ C = 1. Further, if a2k = 1 for some k > 1, then b2k = a2k = 1. On the other
hand, if a2k+1 = 1 for some k > 0, then 1 = a2k+1 = b2k · a, a = b−2k and A = 〈a, b〉
is abelian, a contradiction. �

2.2 Lemma. Let B be a corefree subgroup of A. Then B ∩C = 1 = B ∩D, B is
isomorphic to a subgroup of A/C ∼= A1 and B is cyclic.
���������

. Obvious. �

2.3 Lemma. Suppose that A1 is finite of order m and let B be a non-trivial
corefree subgroup of A. Then:
(i) m = 2m2, m2 odd.
(ii) B ∼=  2 and B = 〈am2ck〉, k ∈  .���������

. We have B = 〈aαcβ〉, 1 6 α < m and β ∈  . If α is even, then
(aαcβ)m = amαcmβ = cmβ ∈ B ∩ C = 1, β = 0 and B ⊆ D. However, then B = 1, a
contradiction. Thus α is odd and (aαcβ)2 = a2α ∈ B∩D = 1. It follows that m | 2α,
and so m = 2α, α = m2. �

2.4 Lemma. Suppose that A1 is finite of order m = 2m2, m2 odd. For k ∈  ,
let Bk = 〈am2ck〉. Then:
(i) Bk

∼=  2 is a corefree subgroup of A.
(ii) If l ∈  , then Bk, Bl are conjugate in A iff k − l is even.
���������

. (i) Obvious.
(ii) If α > 0 and β ∈  , then c−βa−αam2ckaαcβ is equal to am2ck+2β for α even

and to am2c2β−k for α odd. On the other hand, if k − l = 2γ, then cγam2akc−γ =
am2ck−2γ = am2cl. �
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2.5 Lemma. Suppose that A1 is infinite and let B be a non-trivial corefree
subgroup of A. Then:

(i) C is infinite.

(ii) B = 〈akcl〉, k, l ∈  , 0 6= k even and l 6= 0.
���������

. If k is odd, then (akcl) = a2k ∈ B ∩ D = 1, and hence k = 0,
cl ∈ B ∩ C = 1, a contradction. Thus k is even and, clearly, k 6= 0 6= l. Finally,
(akcl)t = atkclt for every t ∈  , atk ∈ D ⊆ Z(A), and hence the order of cl is
infinite. �

2.6 Lemma. Suppose that both A1 and C are infinite. Then:

(i) Every non-identical element from A has infinte order.

(ii) If k, l ∈  \ {0}, then Bk,l = 〈akcl〉 is a corefree subgroup of A.
(iii) The subgroups Bk1,l1 and Bk2,l2 are conjugate in A iff k1 = k2 and l1 = ±l2.

���������
. Easy. �

Let S denote the subsemigroup generated in A by the elements a, b.

2.7 Lemma. S = {ai; i > 1} ∪ {aicj ; i > 2j − 1, j > 1} ∪ {aic−j ; i > 2j,

j > 1}.
���������

. Easy. �

2.8 Corollary. S = A iff A1 is of finite order.

2.9 Lemma. Suppose that both A1 and C are infinite, k, l ∈  \ {0}, k even and
B = Bk,l (see 2.6). The following conditions are equivalent:

(i) S ∩ xB 6= ∅ for every x ∈ A.

(ii) S ∩ Bx 6= ∅ for every x ∈ A.

(iii) Either l > 0 and k > 2l or l > 0 and k < −2l or l < 0 and k < 2l or l < 0 and
k > −2l.

(iv) |2l| < |k|.
���������

. Let α, β ∈  and x = aαcβ . According to 2.7, s ∩ xB 6= ∅ iff there is
γ ∈  such that at least one of the following three conditions is satisfied:
(1) γk > 1− α and γl = −β;

(2) γ(k − 2l) > 2β − α− 1 and γl > 1− β;

(3) γ(k + 2l) > −2β − α and γl 6 −β − 1.
Assume l > 0 (the other case, l < 0, being similar). If k > 2l, then there exists

γ > 0 such that (2) is true. If k < −2l, then (3) is true for some γ < 0.
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Let −2l 6 k 6 2l, so that k − 2l 6 0 6 k + 2l. Choose β ∈  such that l ! β and
α ∈  such that α < 2β− 1+ ((β− 1)(k− 2l)/l) and α < −2/β +((β +1)(k +2l)/l).
Then, for any γ ∈  , neither (1) nor (2) nor (3) is satisfied.
We have proved that the conditions (i) and (iv) are equivalent.
If α is even, then xB = Bx, x = aαcβ . Hence, assume that α is odd. Similarly

as above, S ∩ Bx 6= ∅ iff there is γ ∈  such that at least one of the following three
conditions is satisfied:
(4) γk > 1− α and γl = β;
(5) γ(k + 2l) > 2β − α− 1 and γl 6 β − 1;
(6) γ(k − 2l) > −2β − α and γl > β + 1.
Let l > 0 (the other case being similar). If k > 2l, then (6) is satisfied (γ > 0).

If k > −2l, then (5) is satisfied (γ < 0). If −2l 6 k 6 2l, choose β ∈  such
that l ! β and α ∈  such that α is odd, α < 2β − 1 + ((1 − β)(k + 2l)/l) and
α < −2β + ((−β − 1)(k − 2l)/l). Then, for any γ ∈  , neither (4) nor (5) nor (6) is
satisfied.
We have proved that (ii) is equivalent to (iv); this equivalence follows also from the

fact that (i), (ii) are equivalent and the condition (iv) is not left-right asymmetric.
�

2.10 Proposition. Let B be a subgroup of A. Then (A, B, a, b) ∈ Bzppm if and
only if at least one of the following three cases takes place:
(1) A1 is of finite order and B = 1;
(2) A1 is of finite order 2m2, m2 odd, and B = Bk (see 2.4);
(3) both A1 and C are infinite and B = Bk,l, where |2l| < |k| (see 2.6 and 2.9).
���������

. Use the preceding lemmas. �

2.11 Lemma. Let ã, b̃ ∈ A such that A = 〈ã, b̃〉 and ã2 = b̃2. Then:
(i) ord(a) = ord(b) = ord(ã) = ord(b̃).
(ii) ord(c) = ord(c̃), where c̃ = ãb̃.
���������

. First, let ord(a) = ord(b) = m be finite, m even (see 2.1). Then
ord(c) is infinite, Z(A) = D = 〈a2〉, card(Z(A)) = m/2, D̃ ⊆ Z(A), and hence
ord(ã) = ord(b̃) = m̃ is finite, m/2 = card(Z(A)) = m̃/2, m = m̃ and ord(c̃) is
infinite.
Next, let ord(c) = n be finite. Then n > 3, A′ is finite, and so ord(c̃) = ñ > 3

is also finite and ord(c2) = card(A′) = ord(c̃2). Consequently, n = ñ, provided that
both n and ñ are odd. Assume, finally, n to be even. Then 1 6= cn/2 ∈ Z(A) = D×F ,
so that F̃ 6= 1, ñ is even and n/2 = ord(c2) = ord(c̃2) = ñ/2. Thus n = ñ. �
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3. Main results

3.1 Let m > 2 be even and A = A(m,∞, 1) =  m ×  . Define a multiplication
on A by (α, β)(γ, δ) = (α + γ, (−1)γβ + δ). Then A becomes a group, A = 〈a, b〉,
a = (1, 0), b = (1, 1), a2 = b2, ord(a) = m and ord(a−1b) is infinite.

3.2 Proposition. Let m > 2 be even.
(i) The group A(m,∞, 1) is given by two generators u, v and by the relations

u2 = v2, um = 1.
(ii) If A is a group such that A = 〈a, b〉, a2 = b2, ord(a) = m and ord(a−1b) infinite,
then there exists an isomorphism f : A(m,∞, 1) → A such that f((1, 0)) = a

and f((1, 1)) = b.

3.3 Let n > 3 and A = A(∞, n, 2) =  ×  n. Define a multiplication on A by
(α, β)(γ, δ) = (α + γ, (−1)γβ + δ. Then A becomes a group, A = 〈a, b〉, a = (1, 0),
b = (1, 1), a2 = b2, ord(a) is infinite and ord(a−1b) = n.

3.4 Proposition. Let n > 3.
(i) The group A(∞, n, 2) is given by two generators u, v and by the relations

u2 = v2, (u−1v)n = 1.
(ii) If A is a group such that a2 = b2 and ord(a−1b) = n, ord(a) infinite, then
there exist an isomorphism f : A(∞, n, 2) → A such that f((1, 0)) = a and
f((1, 1)) = b.

3.5 Put A = A(∞,∞, 3) =  ×  and define a multiplication on A by (α, β)(γ, δ) =
(α+γ, (−1γβ+δ). Then A becomes a group, A = 〈a, b〉, a2 = b2, a = (1, 0), b = (1, 1)
and the elements a, b, a−1b possess infinite order.

3.6 Proposition.
(i) The group A(∞,∞, 3) is given by two generators u, v and by the relation

u2 = v2.
(ii) If A is a group such that A = 〈a, b〉, a2 = b2 and the orders ord(a), ord(a−1b)
are infinite, then there exists an isomorphism f : A(∞,∞, 3) → A such that
f((1, 0)) = a and f((1, 1)) = b.

3.7 Proposition.
(i) A(m,∞, 1) ∼= A(m̃,∞, 1) iff m = m̃.
(ii) A(∞, n, 2) ∼= A(∞, ñ, 2) iff n = ñ.
(iii) A(m,∞, 1) " A(∞, n, 2) " A(∞,∞, 3) " A(m,∞, 1).
���������

. We have card(Z(A(m,∞, 1))) = m/2 and A(m,∞, 1)′ is infinite. Fur-
ther, card(A(∞, n, 2)′) = n for n odd and n/2 for n even and Z(A(∞, n, 2)) is
infinite. �
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3.8 Proposition. Let A be an infinite non-abelian group such that A = 〈a, b〉 =
〈ã, b̃〉, where a2 = b2 and ã2 = b̃2. Then there exists an automorphism f of A such
that f(a) = ã and f(b) = b̃.���������

. Use the preceding results. �

3.9 Proposition. Let A be an infinite abelian group such that A = 〈a, b〉, where
a 6= b and a2 = b2. Then 1 /∈ S, where S denotes the subsemigroup generated
by a, b in A.���������

. Easy. �
3.10 Put

αm = (A(m,∞, 1), {(0, 0)}, (1, 0), (1, 1)), m > 2, 2 | m;

βn,0 = (A(n,∞, 1), {(n/2, 0), (0, 0)}, (1, 0), (1, 1));

βn,l = (A(n,∞, 1), {(n/2, 1), (0, 0)}, (1, 0), (1, 1)), n > 2, 2 | n, 4 ! n;

γk,l = (A(∞,∞, 3), {(rk, rl) ; r ∈  }, (1, 0), (1, 1)), k 6= 0, 2 | k, l > 0, 2l < |k|.

According to the preceding results, these ordered quadruples are all in Bzppm, they
are pair-wise non-equivalent and they form a set of representatives of the equivalence
classes. Now, by 1.3, we have the following

3.11 Theorem. The (pair-wise non-isomorphic) groupoids Φ(αm), Φ(βn,0),
Φ(βn,1), Φ(γk,l) (see 3.10) are (up to isomorphism) the only infinite simple zeropo-
tent paramedial groupoids.

3.12 Corollary. Every simple zeropotent paramedial groupoid is countable and,
up to isomorphism, there exist only countably many such groupoids.
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