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MODULES COMMUTING (VIA Hom) WITH SOME COLIMITS
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Abstract. For every module M we have a natural monomorphism

Ψ : !
i∈I

HomR(M, Ai)→ HomR " M, !
i∈I

Ai #
and we focus our attention on the case when Ψ is also an epimorphism. Some other colimits
are also considered.
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0. Introduction

Let ∆ be a diagram (i.e., a small category) of modules. Given a module M , we
have a natural isomorphism

lim(HomR(∆, M)) ∼= HomR(colim(∆), M)

and a natural (connecting) homomorphism

Ψ: colim(HomR(M, ∆)) → HomR(M, colim(∆)).

It may happen that Ψ is an isomorphism whenever ∆ is a diagram of a certain type
and, in such a case, we shall say that M commutes (via Hom) with colimits of the
diagrams considered.

This research has been supported by the Grant Agency of the Czech Republic, grant
# GAČR-201/97/1162, and by the institutional grant MSM 11320007.
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The present short note is concerned with the most important colimits: direct sums,

push-outs and colimits of upwards-directed spectra. The corresponding (commuting)
modules are fully characterized in each of these cases. The more difficult (and less
fashionable) limit case is not treated here (the reader is referred to [6]).

1. Preliminaries

Throughout the paper, R stands for a non-zero associative ring with unit and

modules are unitary left R-modules. The category of modules and homomorphisms
will be denoted by R-MOD (for various basic properties of this category, we refer
e.g. to [7] or [15]). The category of abelian groups will be denoted by ABG.

Let S be a (non-empty) ordered set. By an S-spectrum (in a given category) we

shall mean any diagram of the type fr,s : Ar → As, r, s ∈ S, r 6 s. An S-spectrum
will be called upwards-directed if so is the ordered set S. As a special case, given a

cardinal number a, we get a-spectra (a with the usual order).

2. Pseudo-finitely related modules

A module M will be called finitely related if M has a projective presentation

0 → K → P → M → 0 such that K is a finitely generated module. The following
well known and easy facts will be useful in the sequel:

2.1. Proposition.
(i) The class of finitely related modules is closed under extensions and finite direct

sums.

(ii) The class of finitely related modules is closed under submodules if and only if

every subprojective module is finitely related (e. g., R left hereditary).

(iii) The class of finitely related modules is closed under factormodules if and only

if R is completely reducible.

(iv) Every projective module is finitely related and every finitely related flat module

is projective.

Let N be a submodule of a module M . We will say that N satisfies the condi-

tion (PFG) in M if the following is true:

If Ni, i ∈ I , is an upwards-directed family of submodules of N such that⋃
i∈I

Ni = N , then there exist j ∈ I and a submodule K of M such that N ∩K = Nj

and N + K = M .

The following two lemmas are obvious:
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2.2. Lemma. N satisfies (PFG) in M in each of the following three cases:

(1) N is finitely generated;

(2) N = M ;

(3) M is completely reducible.

2.3. Lemma. Let N satisfy (PFG) in M .

(i) If N is superfluous in M , then N is finitely generated.

(ii) If L is a finitely generated submodule of K, then N ⊕ L satisfies (PFG) in
M ⊕K.

(iii) If M is finitely generated, then N is finitely generated.

2.4. Example. Let N be a proper finitely generated submodule of a module M

such that M is not completely reducible and let L be a submodule of a completely
reducible module K such that L is not finitely generated. Then N ⊕ L satisfies

(PFG) in M ⊕K, N ⊕ L 6= M ⊕K, N ⊕ L is not finitely generated and M ⊕K is
not completely reducible (cf. 2.2, 2.3).

A module M will be called pseudo-finitely related if there exists a projective pre-

sentation 0→ K ↪→ P → M → 0 of M such that K satisfies (PFG) in M .

2.5. Lemma. Let 0 → L ↪→ Q → M → 0 be a projective presentation of a
pseudo-finitely related module M . Then L satisfies (PFG) in Q.$&%(')'�*

. We have the following (commutative) diagram with exact rows:

0 −−−−→ K
ι1−−−−→ P

π−−−−→ M −−−−→ 0
y ν

y
∥∥∥

0 −−−−→ L
ι2−−−−→ Q

σ−−−−→ M −−−−→ 0

where ι1 and ι2 are natural injections, P is projective and K satisfies (PFG) in P .
Let Li, i ∈ I , be an upwards-directed family of submodules of L such that

⋃
i∈I

Li = L.

Then K =
⋃
i∈I

Ki, Ki = ν−1(Li), and K ∩ T = Kj , K + T = P , for some j ∈ I and

a submodule T of P . Now, Q = L + ν(P ) = L + ν(T ) = L + S, S = Lj + ν(T ),
Lj = L ∩ S. �

2.6. Proposition. The following conditions are equivalent for a module M :

(i) M is pseudo-finitely related.

(ii) M is a direct summand of a finitely related module.

(iii) M is a direct summand of a module that is a direct sum of a finitely presented

module and a free module.
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$&%(')'�*
. (i) ⇒ (ii). Let 0 → K ↪→ P → M → 0 be a projective presentation

of M such that K satisfies (PFG) in P and let Ki be the family of finitely generated
submodules of K. Then P/Kj

∼= M ⊕K/Kj .
(ii)⇒ (i). Consider the following (commutative) diagram with exact rows:

0 −−−−→ K
ι1−−−−→ P

π−−−−→ N −−−−→ 0
y ν

y µ

y

0 −−−−→ L
ι2−−−−→ Q

σ−−−−→ M −−−−→ 0

where ι1 and ι2 are natural injections, both P and Q are projective, K is finitely

generated,M is a direct summand ofN and µ is the corresponding natural projection.
Let Li be an upwards-directed family of submodules of L such that

⋃
Li = L.

Then ν(K) ⊆ Lj for some j and there are submodules P1 and P2 of P such that
P1+P2 = P , P1∩P2 = K and π(P1) = Ker(µ). Consequently,N = µπ(P2) = σν(P2),
Q = L + ν(P2) and Q = L + S, Lj = L ∩ S, where S = Lj + ν(P2). �

Using 2.6 and some well known results, we come to the following observations:

2.7. Proposition.
(i) The class of pseudo-finitely related modules is closed under direct summands
and finite direct sums.

(ii) The class of pseudo-finitely related modules is closed under factormodules if and

only if R is completely reducible.

(iii) Every finitely generated pseudo-finitely related module is finitely presented.

(iv) Every pseudo-finitely related module is a direct sum of countably generated
pseudo-finitely related modules.

(v) Every pseudo-finitely related flat module is projective.
(vi) Every pseudo-finitely related module is projective if and only if R is (von Neu-

mann) regular.

2.8. Proposition. Suppose that at least one of the following three cases takes
place:

(1) R is left hereditary;

(2) R is left perfect;

(3) R is regular.

Then every pseudo-finitely related module is finitely related.$&%(')'�*
. Use 2.6 and 2.5, 2.3 (i), 2.7 (vi). �
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3. Weakly pseudo-finitely related modules

A module M will be called ∪-compact if M 6= ⋃
Mi whenever M0 ⊆ M1 ⊆

M2 ⊆ . . . is a sequence of proper submodules of M . These remarkable modules first

appeared in [1, p. 54], [7], [11], [15, p. 74], [17] and [18] and they were and still are
known under various names (e.g., small modules,

∐
-slender modules, dually slender

modules,
∑
-compact modules,

∑
-modules or modules of type

∑
).

The following observations are easy and well known:

3.1. Proposition.
(i) The class of ∪-compact modules is closed under factormodules, extensions and
finite direct sums.

(ii) Every (essential) submodule of a module M is ∪-compact if and only if M is

noetherian.

(iii) If Ai is an infinite family of non-zero modules then
∐

Ai is not ∪-compact.
(iv) Every finitely generated module is ∪-compact.
(v) Every projective ∪-compact module is finitely generated.
(vi) If N is a superfluous submodule of M such that M/N is ∪-compact, then M is

∪-compact.

3.2. Remark. It seems to be an open problem whether there exists a ring R

such that the ∪-compact modules are closed under direct products. If R is such a
ring and if I is a maximal left ideal of R, then I = I2 is not a two-sided ideal; in

particular, R is not commutative. If R is a simple ring containing an infinite set
of non-zero pairwise orthogonal idempotents, then injective modules are ∪-compact
and, of course, injective modules are closed under direct products.

3.3. Remark. The ring R is said to be left steady (or left poised) if every
∪-compact module is finitely generated. Among such rings we shall certainly find
all left noetherian rings, left perfect rings and left semiartinian rings with countable

Ŝoc-length. These and other results on and examples of steady and non-steady rings
can be found e.g. in [2]–[5], [8]–[10], [14], [16]–[22], [24] and [25].

A moduleM will be called weakly finitely related ifM has a projective presentation

0 → K → P → M → 0 such that K is ∪-compact.

3.4. Proposition.
(i) The class of weakly finitely related modules is closed under extensions and finite
direct sums.

(ii) Every ∪-compact weakly finitely related module is finitely generated.
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Let N be a submodule of a module M . We will say that N satisfies the condition

(WPFG) in M if the following is true:

If N0 ⊆ N1 ⊆ N2 ⊆ . . . is a sequence of submodules of N such that
⋃

Ni = N ,

then there exist j and a submodule K ofM such that N ∩K = Nj and N +K = M .

3.5. Lemma. N satisfies (WPFG) in M in each of the following two cases:

(1) N satisfies (PFG) in M ;

(2) N is ∪-compact.

3.6. Lemma. Let N satisfy (WPFG) in M .

(i) If N is superfluous in M , then N is ∪-compact.
(ii) If M is ∪-compact, then N is ∪-compact.
(iii) If L satisfies (WPFG) in K, then N ⊕ L satisfies (WPFG) in M ⊕K.

A moduleM will be called weakly pseudo-finitely related if there exists a projective
presentation 0 → K ↪→ P → M → 0 of M such that K satisfies (WPFG) in M .

3.7. Lemma. Let 0 → L ↪→ Q → M → 0 be a projective presentation of a
weakly pseudo-finitely related module M . Then L satisfies (WPFG) in Q.$&%(')'�*

. Similar to that of 2.5. �

3.8. Proposition. The class of weakly-pseudo-finitely related modules is closed
under direct summands and finite direct sums.$&%(')'�*

. The case of finite direct sums is clear from 3.6 (iii). Now, let = M ⊕A

be a weakly pseudo-finitely related module and let

0 → K ↪→ P
σ−−−→ N → 0 and 0 → L ↪→ Q

%−−→ A → 0

be projective presentations. Then

0 −−→ K ⊕ L ↪→ P ⊕Q
π−−−→ M → 0

is a projective presentation of M , π = σ ⊕ %, and K ⊕L satisfies (WPFG) in P ⊕Q

by 3.7. Further, let µ : P ⊕Q → P and ι : P → P ⊕Q denote the natural projection
and injection, respectively, and let K =

⋃
Ki, K0 ⊆ K1 ⊆ K2 ⊆ . . .. Then there are

j and a submodule V of P⊕Q such that V +(K⊕L) = P⊕Q and V ∩(K⊕L) = Kj⊕L

and we have P = K + Z, Kj = K ∩ Z for Z = µ(V ∩ (P ⊕ L)). �
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3.9. Proposition. Suppose that R is left hereditary. Then:

(i) The classes of weakly finitely related and weakly pseudo-finitely related modules

are closed under submodules.

(ii) Every weakly finitely related module is finitely related.

(iii) If M is a weakly pseudo-finitely related module with a projective presentation

0 → K → P → M → 0 such that K is countably generated, then M is finitely

related.

3.10. Proposition. If R is left perfect, then every weakly pseudo-finitely related
module is finitely related.

A module M will be called weakly (pseudo-)finitely presented if M is ∪-compact
and weakly (pseudo-)finitely related.

3.11. Proposition.
(i) The class of weakly finitely presented modules is closed under extensions and
finite direct sums.

(ii) The class of weakly pseudo-finitely presented modules is closed under direct
summands and finite direct sums.

3.12. Proposition. A moduleM is weakly finitely presented if and only ifM is

finitely generated and weakly pseudo-finitely presented.$&%(')'�*
. IfM is weakly finitely presented, thenM is finitely generated by 3.1 (v).

The converse implication follows from 3.6 (ii) and 3.7. �

3.13. Corollary. If R is left steady, then every weakly pseudo-finitely presented
module is finitely presented.

3.14. Example. Suppose that K is a ∪-compact submodule of a finitely gen-
erated projective module P such that K is not finitely generated (e.g., we can take

P = R to be a suitable valuation domain and K the maximal ideal of R). Then
M = P/K is a weakly finitely presented module that is not finitely presented.

3.15. Remark. It seems to be an open problem whether there exist non-finitely
generated weakly pseudo-finitely presented modules at all.
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4. Modules commuting with direct sums

Let I be a non-empty index set and Ai, i ∈ I , an indexed family of modules. We
put A =

∐
i∈I Ai and suppI(a) = {i ∈ I : a(i) 6= 0} for every a ∈ A. If J is a subset

of I , then A(J) = {a ∈ A : suppI(a) ⊆ J}.
The following result is of folklore character:

4.1. Proposition. The following conditions are equivalent for a module M :

(i) M commutes with direct sums.

(ii) M commutes with direct sums of countably many modules.

(iii) If ϕ : M → ∐
i∈I Ai = A is a homomorphism, then there exists a finite subset

J of I such that ϕ(M) ⊆ A(J) (i.e., πϕ(M) = 0, π : A → A/A(J) being the
natural projection).

(iv) If Q is a cogenerator for R-MOD and if ϕ : M → Q(ℵ0) = P is a homomorphism,

then there exists n < ℵ0 with ϕ(M) ⊆ P (n).
(v) M is ∪-compact.

5. Modules commuting with push-outs

The following result is just a routine observation:

5.1. Proposition. A module M commutes with push-outs if and only if M is

projective.

6. Modules commuting with colimits of upwards-directed spectra

The following three observations generalize (and partially repeat) some results and

methods of H. Lenzing (see [13] and also [23; 24.9, 24.10, 25.2, 25.4]).

6.1. Observation. Let ∆ be an upwards-directed spectrum of modules and let
ϕi : Ai → A be a colimit of ∆. Further, let M be a module, HomR(M, ∆) the cor-
responding Hom-spectrum in ABG and let αi : HomR(M, Ai) → G be a colimit of

HomR(M, ∆). Finally, denote by Ψ: G → HomR(M, A) the connecting homomor-
phism.

(i) If all homomorphisms of ∆ are mono, then Ψ is a monomorphism.
(ii) If M is finitely generated, then Ψ is a monomorphism.

Let u ∈ Ker(Ψ). Then u = αj(µ) for some j and µ : M → Aj . Now, 0 = Ψ(u) =
Ψ(αj(µ)) = HomR(idM , ϕj)(µ) = ϕjµ, and so ϕjµ(M) = 0. Since M is finitely
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generated and ∆ is upwards-directed, it follows easily that there exists k such that

∆(f)(µ(M)) = 0, where f : j → k. Then 0 = ∆(f)(µ) = HomR(idM , ∆(f))(µ), and
therefore u = αj(µ) = αk HomR(idM , ∆(f))(µ) = 0.
(iii) If all the modules Ai (of the spectrum) are noetherian, then Ψ is a monomor-

phism.

We can proceed in the same way as in (ii).

(iv) If all homomorphisms of ∆ are mono and if M is finitely generated, then Ψ is
an isomorphism.

By (i) (or (ii)), Ψ is mono. Now, let µ : M → A be a homomorphism. Then

µ(M) ⊆ ϕj(Aj) for some j. On the other hand, ϕj is mono, and so µ = ϕjν and
µ = HomR(idM , ϕj)(ν) = Ψ(αj(ν)) for a homomorphism ν : M → Aj .

(v) If M is finitely presented, then Ψ is an isomorphism.
By (ii), Ψ is mono. Now, let µ : M → A be a homomorphism. Then µ(M) ⊆

ϕj(Aj) and we get the following (commutative) diagram with exact rows:

0 −−−−→ K
ι1−−−−→ P

π−−−−→ M −−−−→ 0
y ν

y µ1

y

0 −−−−→ Ker(ϕj)
ι2−−−−→ Aj

ϕj,1−−−−→ ϕj(Aj) −−−−→ 0

ϕj

y ι

y

A A

where ι1, ι2, ι are natural imbeddings, ιµ1 = µ, P is projective and both P and

K are finitely generated. Then ν(K) is a finitely generated submodule of Aj and
ϕj(ν(K)) = 0. Consequently,∆(f)(ν(K)) = 0 for some f : j → k. Now,∆(f)ν = σπ

for a suitable σ : M → Ak and we have ϕkσπ = ϕk∆(f)ν = ιϕj,1ν = ιµ1π = µπ.
Since π is epi, it follows that µ = ϕkσ.

(vi) If all homomorphisms of ∆ are epi and if M is pseudo-finitely related, then

Ψ is an epimorphism.
All ϕi : Ai → A are epi and we shall consider the following (commutative) diagram

with exact rows:

M

ι

y

0 −−−−→ K
ι1−−−−→ P

π−−−−→ M −−−−→ 0
y

y µ

y

0 −−−−→ Ker(ϕj)
ι2−−−−→ Aj

ϕj−−−−→ A −−−−→ 0
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where ι1, ι2, ι are natural imbeddings, µι = µ, P is projective,K is finitely generated,

M is a direct summand of M and µ = µ⊕ 0. Proceeding similarly as in (iv) we find
σ : M → Ak such that µ = ϕkσ. Then µ = µι = ϕkσι, σι : M → Ak.

6.2. Observation. Let M be a module and F a (non-empty) upwards-directed
set of submodules of M such that

⋃
F = M . Then we get an upwards-directed

spectrum∆: (F ,⊆) → R−MOD, where∆(Ni) = Ni, Ni ∈ F , and homomorphisms
are natural injections. Clearly, M (together with the natural injections) is a colimit

of ∆.

Let αi : HomR(M, Ni) → G, Ni ∈ F , be a colimit of HomR(M, ∆) and let Ψ:
G → HomR(M, M) be the connecting homomorphism. Obviously, Ψ is a monomor-
phism.

Now, assume that Ψ is an epimorphism. We are going to show thatM = Nj ∈ F .
Indeed, there is u ∈ G such that Ψ(u) = idM . Since G =

⋃
Im(αi), there ex-

ist Nj ∈ F and µ : M → Nj such that u = αj(µ). Now, idM = Ψ(αj(µ)) =
HomR(idM , ϕj)(µ) = ϕjµ, ϕj : Nj → M being the natural injection. Then ϕj =
µ = idM and M = Nj .

6.3. Observation. Let A be a submodule of a module B and let F be an
upwards-directed set of submodules of A such that

⋃
F = A. We get an upwards-

directed spectrum ∆: (F ,⊆) → R −MOD, where ∆(Ai) = B/Ai, Ai ∈ F , and if
Ai ⊆ Aj , then the corresponding homomorphism is the natural projection B/Ai →
B/Aj . Now, B/A (together with the natural projections B/Ai → B/A) is a colimit
of ∆.

Let αi : HomR(B/A, B/Ai) → G be a colimit of HomR(B/A, ∆) and let Ψ: G →
HomR(B/A, B/A) be the connecting homomorphism.
(i) Ψ is a monomorphism if and only if for every Aj ∈ F and every homomorphism

µ : B/A → B/Aj there is Ak ∈ F such that Aj ⊆ Ak and Im(µ) ⊆ Ak/Aj .

(ii) If Ψ is a monomorphism and if there exist Aj ∈ F and an epimorphism
B/A → B/Aj , then A = Ak ∈ F .

(iii) Suppose that u ∈ G is such that Ψ(u) = idB/A. We have u = αj(µ) for some
Aj ∈ F and a homomorphism µ : B/A → B/Aj . Now idB/A = Ψ(u) = Ψ(αj(µ)) =
HomR(idB/A, ϕj)(µ) = ϕjµ, ϕj : B/Aj → B/A being the natural projection, and
hence B/Aj = Im(µ)⊕A/Aj , Im(µ) ∼= B/A.

In particular, if B and all Ai belong to a class of modules that is closed under
homomorphic images and extensions, then A is contained in the class.

(iv) If Ψ is an epimorphism and all B, Ai are finitely generated, then A is finitely
generated.
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6.4. Theorem.

(i) For every module M and every upwards-directed monomorphic spectrum ∆,
the connecting homomorphism Ψ is a monomorphism.

(ii) A module M is pseudo-finitely related if and only if the connecting homomor-

phism Ψ is an epimorphism for every upwards-directed epimorphic spectrum.
(iii) The following conditions are equivalent for a module M :

(iii1) M is finitely generated;

(iii2) The connecting homomorphism Ψ is a monomorphism for every upwards-
directed spectrum;

(iii3) Ψ is a monomorphism for every upwards-directed epimorphic spectrum;
(iii4) Ψ is an epimorphism for every upwards-directed monomorphic spectrum.

(iv) A moduleM is finitely presented if and only if the connecting homomorphism Ψ
is an epimorphism for every upwards-directed spectrum.$&%(')'�*

. Combine 6.1, 6.2 and 6.3. �

6.5. Corollary.

(i) A moduleM commutes with colimits of upwards-directed monomorphic spectra

if and only if M is finitely generated.

(ii) A module M commutes with colimits of upwards-directed (epimorphic) spectra

if and only if M is finitely presented.

6.6. Observation. Let A0
f0−−−→ A1

f1−−−→ A2
f2−−−→ . . . be an ℵ0-spectrum of

modules and ϕi : Ai → A a colimit of the spectrum. Further, let M be a module

and αi : HomR(M, Ai) → G a colimit of the corresponding Hom-spectrum. Finally,
let Ψ: G → HomR(M, A) denote the connecting homomorphism.
(i) If M is ∪-compact, then Ψ is a monomorphism.

We can proceed similarly as in 6.1 (ii).

(ii) If all fi are mono and if M is ∪-compact, then Ψ is an isomorphism.
By (i), Ψ is mono. Now, let µ : M → A be a homomorphism and Mi =

µ−1(ϕi(Ai)). Then
⋃

Mi = M , and so M = Mj and µ(M) ⊆ ϕj(Aj) for some j.
The rest is clear (cf. 6.1 (iv)).

(iii) If M is weakly pseudo-finitely presented, then Ψ is an isomorphism.
By (i), Ψ is mono. Let µ : M → A be a homomorphism. Then µ(M) ⊆ ϕj(Aj) for

some j (see (ii)) and we get a diagram similar to that in 6.1 (v), where P is projective
andK satisfies (WPFG) in P . Now, for k < ℵ0, letKk = K ∩Ker(fj+k . . . fjν) ⊆ K.

Then K0 ⊆ K1 ⊆ K2 ⊆ . . . and K =
⋃

Kk. Consequently, there are l and a
submodule Q of P such that K + Q = P and K ∩ Q = Kl. We get the following
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diagram:

0 −−−−→ K
ι1−−−−→ P

π−−−−→ M −−−−→ 0
y + y µ2

y

0 −−−−→ Ker(ϕq)
ι2−−−−→ Aq

ϕq,1−−−−→ ϕq(Aq) −−−−→ 0

ϕq

y ι

y

A A

where ι1, ι2, ι are natural imbeddings, ιµ2 = µ, , = fj+l . . . fjν and q = j + l + 1.
Further, , (Kl) = 0 and we can define a homomorphism σ : M → A by σπ(x) = , (x)
for every x ∈ Q. Now, µ = ϕqσ.

(iv) If all the homomorphisms fi are epi and if M is weakly pseudo-finitely related,
then Ψ is an epimorphism.

Consider the following diagram:

0 −−−−→ K
ι1−−−−→ P −−−−→ M −−−−→ 0

y ν

y µ

y

0 −−−−→ Ker(ϕ) ι2−−−−→ A0
ϕ−−−−→ A −−−−→ 0

where ι1 and ι2 are natural imbeddings, ϕ = ϕ0, P is projective and K satisfies
(WPFG) in P . We have K =

⋃
k

(K ∩ Ker(fk . . . f0ν)) and we can proceed similarly

as in (iii).

6.7. Theorem. (i) A module M is weakly pseudo-finitely related if and only

if the connecting homomorphism Ψ is an epimorphism for every epimorphic ℵ0-

spectrum.

(ii) The following conditions are equivalent for a module M :

(ii1) M is ∪-compact;
(ii2) the connecting homomorphism Ψ is a monomorphism for every ℵ0-

spectrum;

(ii3) Ψ is a monomorphism for every epimorphic ℵ0-spectrum;

(ii4) Ψ is an epimorphism for every monomorphic ℵ0-spectrum.

(iii) A module M is weakly pseudo-finitely presented if and only if the connecting

homomorphism Ψ is an epimorphism for every ℵ0-spectrum.$&%(')'�*
. Combine 6.2, 6.3 and 6.6. �

902



6.8. Corollary.
(i) A module M commutes with colimits of monomorphic ℵ0-spectra if and only if

M is ∪-compact.
(ii) A module M commutes with colimits of (epimorphic) ℵ0-spectra if and only if

M is weakly pseudo-finitely presented.

7. Summary

7.1. Theorem.
(i) The following conditions are equivalent for a module M :

(i1) M is finitely generated and projective;

(i2) M commutes with colimits of all diagrams;

(i3) M commutes with direct sums and push-outs.

(ii) A module M commutes with push-outs if and only if M is projective.

(iii) A module M commutes with direct sums if and only if M is ∪-compact.
(iv) A moduleM commutes with colimits of upwards-directed monomorphic spectra

if and only if M is finitely generated.

(v) The following conditions are equivalent for a module M :

(v1) M is finitely presented;

(v2) M commutes with colimits of upwards-directed spectra;

(v3) M commutes with colimits of upwards-directed epimorphic spectra.

(vi) A module M commutes with colimits of monomorphic ℵ0-spectra if and only if

M is ∪-compact.
(vii) The following conditions are equivalent for a module M :

(vii1) M is weakly pseudo-finitely presented;

(vii2) M commutes with colimits of ℵ0-spectra;

(vii3) M commutes with colimits of epimorphic ℵ0-spectra.$&%(')'�*
. (i) The first implication is only a technical question, the second impli-

cation is trivial and the third implication follows by combination of 4.1 and 5.1.

(ii) See 5.1.

(iii) See 4.1.

(iv) and (v) See 6.5.

(vi) and (vii) See 6.8. �

7.2. Remark.
(i) The following conditions are equivalent for a module M :

(i1) M is ∪-compact;
(i2) M commutes with colimits of monomorphic ℵ0-spectra;
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(i3) M commutes with direct sums of countably many modules;

(i4) M commutes with arbitrary direct sums.

(ii) Dualizing the (equivalent) conditions of (i), we arrive at the following classes of
modules (see [12] and [6]):

∩-compact modules;
slender modules;

slender modules;

slim modules.

Now, every finitely cogenerated module is ∩-compact and it easily follows that
there always exist (over any non-zero ringR) ∩-compact modules that are not slender.
On the other hand, slender modules are known to be closed under direct sums and
consequently, if M is a non-zero slender module, then M (ℵ0) is slender but not ∩-
compact. In particular, the class of slender modules is contained in the class of

∩-compact modules if and only if all slender modules are zero (such rings exist but
are not too frequent).

Every slim module is slender, but the converse is true if and only if there exist no
measurable cardinal numbers. Furthermore, there exists at least one non-zero slim

module (over at least one ring) if and only if there are not too many measurable
cardinals ([6, Theorem 8.2]).

It seems that the properties dual to those of ∪-compact modules are better reflected
by ∩-compact modules than by the slender ones. In particular, it is more suitable
to define dually steady rings as those where every ∩-compact module is finitely
cogenerated (see [12]).
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