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Abstract. By a torsion of a general connection Γ on a fibered manifold Y → M we
understand the Frölicher-Nijenhuis bracket of Γ and some canonical tangent valued one-
form (affinor) on Y . Using all natural affinors on higher order cotangent bundles, we
determine all torsions of general connections on such bundles. We present the geometrical
interpretation and study some properties of the torsions.
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1. Introduction

Given a linear connection Γ on a manifold M , there are two classical approaches

to the concept of the torsion of Γ. First, if we interpret Γ as a linear connection
on the tangent bundle TM , we can define the torsion of Γ as the covariant exterior
differential in the sense of Koszul of the identity tensor on M . This approach leads
to the well known formula

(1) τ(X, Y ) =
1
2
(∇XY −∇Y X − [X, Y ])

for every two vector fieldsX , Y onM . On the other hand, Γ can be also interpreted as
a principal connection on the frame bundle PM of M . In this case we can introduce
the torsion of Γ as the standard covariant differential of the canonical � m -valued
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form Θ: TPM → � m of PM , m = dim M . Clearly, both above definitions of the

torsion of Γ give the same result. Further, if Γ∗ is the dual linear connection on the
cotangent bundle T ∗M , the torsion of Γ∗ can be introduced as the composition

(2) σ ◦ Γ∗

of the formal exterior differential σ : J1T ∗M → ∧2T ∗M with the connection Γ∗

itself, [8]. But the composition (2) can be defined for arbitrary (not only linear)
connections on the cotangent bundle.

If Y → M is a fibered manifold, the (general) connection on Y is a smooth section

Γ: Y → J1Y of the first jet prolongation of Y . Obviously, Γ can be identified with
its horizontal projection TY → TY , which is a tangent valued one-form on Y . If

Q : TY → TY is an arbitrary canonical tangent valued one-form on Y (in other words
an affinor), the Frölicher-Nijenhuis bracket [Γ, Q] of Γ and Q is called a (general)

torsion of Γ. Let F be a natural bundle on the categoryM fm of all m-dimensional
manifolds and their local diffeomorphisms and Γ: FM → J1FM be a connection

on FM . If we determine all natural affinors on FM , then we can completely describe
all general torsions of Γ. Such an approach has been used e.g. in [2], [6] and [9] for
many particular cases of F .

In this paper we determine all general torsions of connections on r-th order cotan-
gent bundles T r∗M . We also study the geometrical interpretation and properties

of the torsions. In the geometrical construction of the torsions we essentially use
the vertical prolongation of connections on vector bundles. We characterize linear

connections and projectable connections on T r∗M by means of certain properties of
their torsions. We also show the interpretation of (2) for arbitrary (not only linear)

connections. We remark that higher order cotangent bundles and their dual bun-
dles (which are called higher order tangent bundles) are used e.g. in higher order
mechanics. For example, in the study, within a continuum mechanical context, of

higher order gross bodies, it is useful to study fields with values in tensor products
of tangent and cotangent spaces of “higher order contact”, cf. [10]. All manifolds

and maps are assumed to be infinitely differentiable.

2. Affinors and general torsions

Denoting by C∞(TM ⊗ ∧pT ∗M) the space of all tangent valued p-forms on M ,

the Frölicher-Nijenhuis bracket is a map

[ , ] : C∞(TM ⊗ ∧pT ∗M)× C∞(TM ⊗ ∧qT ∗M) → C∞(TM ⊗ ∧p+qT ∗M),
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(cf. [3]). In particular, for p = 0 = q the Frölicher-Nijenhuis bracket coincides with

the Lie bracket of vector fields on M . By the Frölicher-Nijenhuis theory, tangent
valued 1-forms on M are exactly affinors on M , which are defined as linear mor-
phisms TM → TM over the identity of M . Then the Frölicher-Nijenhuis bracket of

two such affinors K, L is a tangent valued 2-form [K, L] given by

[K, L](X, Y ) = [KX, LY ] + [LX, KY ] + KL[X, Y ] + LK[X, Y ](3)

−K[X, LY ]−K[LX, Y ]− L[X, KY ]− L[KX, Y ],

X , Y being arbitrary vector fields on M .

Let p : Y → M be a fibered manifold and denote by V Y the vertical tangent

bundle. An affinor ϕ ∈ C∞(TY ⊗T ∗Y ) on Y is called vertical if ϕ ∈ C∞(V Y ⊗T ∗Y ).
Consider now the inclusion T ∗M ⊂ T ∗Y of cotangent bundles.

Definition. A vertical affinor ϕ ∈ C∞(V Y ⊗ T ∗M) is called a soldering form.

Clearly, J1Y → Y is an affine bundle, the associated vector bundle of which is
V Y ⊗ T ∗M . In this way soldering forms on Y can be considered as “deformations”

of connections on Y in the following sense: If Γ: Y → J1Y is a connection and
ϕ : Y → V Y ⊗ T ∗M a soldering form on Y , then their sum (Γ + ϕ) is a connection
on Y . On the other hand, the difference of two connections on Y is a soldering form.

If we identify a connection Γ: Y → J1Y with its horizontal projection TY → TY

(denoted by the same symbol Γ), we obtain an affinor on Y . In this situation the

Frölicher-Nijenhuis bracket turns out to be a very powerful tool in the theory of
connections. For example, by [3], the curvature of Γ is given by

(4) CΓ =
1
2
[Γ, Γ]

and the Bianchi identity can be simply expressed in the form [Γ, CΓ] = 0. Consider
now a soldering form ϕ : Y → V Y ⊗ T ∗M (i.e. a deformation of Γ) and modify the
curvature formula (4) by

(5) τϕ := [Γ, ϕ].

By Mangiarotti and Modugno, [8], τϕ : Y → V Y ⊗ ∧2T ∗M is called a torsion of Γ
with respect to the soldering form ϕ. By [8], τϕ generalizes the classical concept of
the torsion of a connection. Finally, the most general definition of a torsion was

given by Kolář and Modugno, [2]. The main idea is to replace the soldering form ϕ

in (5) by an arbitrary affinor on Y , which is canonical in the following sense:
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Definition. A natural affinor on a natural bundle F over manifolds is a system

of affinors QM : TFM → TFM for every m-manifold M satisfying TFf ◦ QM =
QN ◦ TFf for every local diffeomorphism f : M → N .

Let F be a natural bundle on the category M fm and Γ: FM → J1(FM → M)
be a connection on FM .

Definition. Let Q be a non identical natural affinor on F . The Frölicher-

Nijenhuis bracket [Γ, Q] is called the (general) torsion of a connection Γ.

Clearly, [Γ, ϕ] ∈ C∞(TY ⊗ ∧2T ∗Y ) and if Id: FM → FM is a trivial identical
affinor, then we have [Γ, Id] = 0. For many particular cases of a natural bundle F we

are able to determine all natural affinors on F and in this way all general torsions
of a given connection Γ on FM . For example, any product preserving functor F on

the category M f of all smooth manifolds and all smooth maps is a Weil functor of
the form F = T A, where A = F � is the corresponding Weil algebra, [3]. By Kolář
and Modugno, [2], all natural affinors on F are parametrized by F � . An important
example of a product preserving functor is the functor T r

k of k-dimensional velocities

of order r, which is defined by

T r
k M = Jr

0 ( � k , M), T r
k f(jr

0g) = jr
0(f ◦ g)

for an arbitrary smooth manifold M and a smooth map f : M → N . On the basis

of the complete list of all natural affinors on product preserving bundles, Kolář
and Modugno have described all general torsions of connections on the bundles TM ,

T 1
k M , T 2

1 M and on the frame bundle PM , [2]. The same authors have also computed
general torsions on the cotangent bundle.

From (3) it follows that the Frölicher-Nijenhuis bracket of a connection Γ: Y →
J1Y and a soldering form ϕ : Y → V Y ⊗ T ∗M is of the form

(6) [Γ, ϕ](U, V ) =
1
2
(
[ΓU, V ]− [ΓV, ϕU ]− ϕ[U, V ]

)

for every two vector fields U , V on M . Denoting by (xi, yp) the local fibered coor-
dinates on Y , the equations of a connection Γ: Y → J1Y are

dyp = F p
i (x, y) dxi

so that the corresponding horizontal projection Γ: TY → TY is of the form

(dxi, dyp) 7→ (dxi, F p
i dxi), i.e.

δi
j

∂

∂xi
⊗ dxj + F p

i

∂

∂yp
⊗ dxi.
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Further, if

ϕp
i (x, y)

∂

∂yp
⊗ dxi

is the coordinate expression of a soldering form ϕ ∈ C∞(V Y ⊗ T ∗M), then (6) is of
the form

(7)

(
∂ϕp

j

∂xi
+ F q

i

∂ϕp
j

∂yq
− ϕq

j

∂F p
i

∂yq

)
∂

∂yp
⊗ (dxi ∧ dxj).

3. Natural affinors on higher order cotangent bundles

Let M be a smooth manifold. The space

T r∗M = Jr(M, � )0

is called the r-th order cotangent bundle. Every local diffeomorphism f : M → N

extends to a vector bundle morphism T r∗f : T r∗M → T r∗N , jr
xϕ 7→ jr

f(x)(ϕ ◦ f−1),
where f−1 is constructed locally. Then T r∗ is a vector bundle functor defined on

the category M fm. Clearly, the functor T r∗ does not preserve products and for
r = 1 we obtain the classical cotangent functor T ∗. Denoting by (xi) some local
coordinates onM , the induced coordinates (ui, uij , . . . , ui1...ir ) on T r∗M (symmetric
in all indices) are given by

ui(jr
xf) =

∂f

∂xi

∣∣∣∣
x

, uij(jr
xf) =

∂2f

∂xi∂xj

∣∣∣∣
x

, ui1...ir (j
r
xf) =

∂rf

∂xi1 . . . ∂xir

∣∣∣∣
x

.

Denote by πM : T r∗M → M and pM : TM → M the bundle projections and qM :
T r∗M → T ∗M the projection given by qM (jr

xf) = j1
xf . Let λM : TT r∗M → � be

the generalized Liouville form on T r∗M defined by

λM (X) = 〈qM (pT r∗M (X)), TπM (X)〉

and Ar
s : T r∗M → T r∗M be the s-th power natural transformation of T r∗M into

itself defined by Ar
s(jr

xf) = jr
x(f)s, where (f)s denote the s-th power of f . Since πM :

T r∗M → M is a vector bundle, the vertical tangent bundle V T r∗M can be identified

with the Whitney sum T r∗M ⊕ T r∗M . Taking into account this identification, we
can define natural affinors Qs

M : TT r∗M → V T r∗M by

(8) Qs
M (X) = (pT r∗M (X), λM (X)Ar

s(pT r∗M (X))).
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In coordinates,

Qs
M = ui1...isuj

∂

∂ui1...is

⊗ dxj(9)

+
(s + 1)!

(s− 1)! 2!
u(i1 . . . uis−1uisis+1)uj

∂

∂ui1...is+1

⊗ dxj

+ . . . +
r!

(s− 1)! (r − s + 1)!
u(i1 . . . uis−1uis...ir)uj

∂

∂ui1...ir

⊗ dxj

where (i1 . . . ir) denote the symmetrization. The second author has proved, [4]:

Lemma 1. All natural affinors on the r-th order cotangent bundle T r∗M are of

the form

(10) k0 Id+k1Q
1
M + . . . + krQ

r
M

with any real parameters k0, k1, . . . kr.

Obviously, all nontrivial natural affinors on T r∗M are vertical and we have Qi
M ∈

C∞(V T r∗M ⊗ T ∗M), i.e. all Qi
M are even soldering forms, i = 1, . . . , r. The second

author has also described all natural transformations of T r∗ into itself, [5].

Lemma 2. All natural transformations T r∗ → T r∗ are of the form

(11) k1A
r
1 + . . . + krA

r
r

with any real parameters k1, . . . , kr.

4. Vertical prolongation of connections on vector bundles

We first recall the concept of the vertical prolongation of a connection, see [3].
Let Γ: Y → J1Y be a connection on a fibered manifold p : Y → M . Applying the
vertical tangent functor V , we obtain a map V Γ: V Y → V J1Y . Let

iY : V J1Y → J1V Y

be the canonical exchange isomorphism, [3]. Then the composition V Γ := iY ◦ V Γ:
V Y → J1V Y is a connection on V Y → M . Denote by (xi, yp, ηp = dyp) the
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canonical coordinates on V Y . If dyp = F p
i (x, y)dxi is the coordinate form of Γ, then

the vertical prolongation V Γ has equations

dyp = F p
i (x, y)dxi,

dηp =
∂F p

i (x, y)
∂yq

ηqdxi.

Now let p : E → M be a vector bundle. Then J1E → M is a vector bundle too and

we have the canonical identifications V E ∼= E ⊕M E and V J1E ∼= J1E ⊕M J1E.
Using the exchange isomorphism iE : V J1E → J1V E we obtain an identification

αE : J1V E ∼= J1E ⊕M J1E.

Consider the classical Liouville vector field

LE : E → V E ⊂ TE

which is generated by the one-parameter group of homotheties of the vector bundle E,

in coordinates LE = yp ∂
∂yp . If Γ: E → J1E is a connection on E (not necessarily

linear), then the composition

(12) Γ := pr2 ◦ αE ◦ V Γ ◦ LE : E → J1E

is a section of J1E. Clearly, Γ is a connection on E → M with the coordinate
expression

dyp =
∂F p

i (x, y)
∂yq

yqdxi.

We have

Proposition 1. Γ = Γ if and only if the connection Γ is linear.

������� �
. Linearity of Γ means F p

i (x, y) = F p
ir(x)yr. On the other hand, Γ = Γ

iff F p
i (x, y) = ∂F p

i (x,y)

∂yq yq. �

One verifies directly
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Proposition 2. Let Γ be a connection on the vector bundle E → M . Then the

vertical prolongation V Γ: V E → J1V E is of the form

V Γ = (Γ× Γ): E ⊕M E ∼= V E → J1V E ∼= J1E ⊕M J1E.

Suppose now that E = FM , where F is a natural vector bundle functor. To
construct the connection Γ, we have used the Liouville vector field LFM : FM →
V FM . This vector field is canonical (more precisely natural) in the following sense:

Definition. A natural vector field ξ on F is a system of vector fields ξM : FM →
TFM for every m-manifold M satisfying TFf ◦ ξM = ξN ◦ Ff for all local diffeo-
morphisms f : M → N .

Roughly speaking, natural vector fields on F can be interpreted as absolute (or con-

stant) natural operators transforming vector fields onM into vector fields on FM , [3].
By [3], every natural vector field on FM is vertical.

Example. Let Φ(t) be a smooth one-parameter family of natural transformations
F → F , where smoothness means that the map (Φ(t))M : � ×FM → FM is smooth

for every manifold M . Then the formula ξM = ∂
∂t

∣∣
0
(Φ(t))M defines a natural vector

field ξM : FM → V FM .

If we replace the Liouville vector field LFM in (12) by an arbitrary natural vector
field L : FM → V FM , we obtain

Proposition 3. Let Γ: FM → J1FM be a connection on a natural vector

bundle F . Then every natural vector field L : FM → V FM induces a connection

ΓL : FM → J1FM by

(13) ΓL = pr2 ◦ αFM ◦ V Γ ◦ L.

If L is the Liouville vector field LFM , then ΓL = Γ.
Let Γ: E → J1E be a connection on the vector bundle E → M and f : E → E

be a vector bundle morphism over the identity of M . In the rest of this section
we describe the construction of a connection on E by means of the vector bundle

morphism f . Denoting by IdE : E → E the identity morphism, the difference (IdE−
f) : E → E is also a vector bundle morphism over idM . Using the inclusion E ⊂ J1E

we obtain a vector bundle morphism

f̃ := (IdE − f) : E → J1E
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over the identity of M . On the other hand, the composition

g := J1f ◦ Γ: E → J1E

is another vector bundle morphism over the identity of M . Then the sum of f̃ and

g on the vector bundle structure J1E is a section of J1E,

(14) Γf := (f̃ + g) : E → J1E.

Clearly, Γf is a connection on E and for f = IdE we have ΓIdE
= Γ.

5. The torsion on the cotangent bundle

By Lemma 1, we have one nontrivial affinor Q1
M : TT ∗M → V T ∗M on the cotan-

gent bundle, Q1
M (dxi, dui) = (0, uiukdxk). If

dui = Γi,l(x, u)dxl

are equations of a connection Γ on T ∗M , then by (7) the torsion τ := [Γ, Q1
M ] :

T ∗M → V T ∗M ⊗ ∧2T ∗M is of the form

τ =
(

Γk,iuj + Γj,iuk −
∂Γk,i

∂um
umuj

)
∂

∂uk
⊗ (dxi ∧ dxj).

Write

τL = Γj,i(dxi ∧ dxj)⊗
(

uk
∂

∂uk

)
,

τ∗ =
(

Γk,i −
∂Γk,i

∂um
um

)
uj

∂

∂uk
⊗ (dxi ∧ dxj).

Then we have

Proposition 4. The torsion on the cotangent bundle T ∗M is of the form

τ = τL + τ∗.

Further, τ∗ = 0 if and only if the connection Γ is linear.
������� �

. If Γ is a linear connection, then Γk,i(x, u) = Γr
k,i(x)ur which yields

τ∗ = 0. On the other hand, if τ∗ = 0, then we obtain the differential equation
Γk,i = ∂Γk,i

∂um
um. Clearly, the differential equation y = y′ · x has the general solution

y = cx, i.e. Γk,i(x, u) = Γr
k,i(x)ur. �
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In other words, a connection Γ on T ∗M is linear if and only if τ = τL. In the rest

of this section we describe the geometrical construction of τL and τ∗. We remark
that the construction of the “linear” term τL was given also by Kolář and Modugno
in [2].

I. The construction of τL. By the theory of sesquiholonomic 2-jets, there is a
natural map

σ : J1T ∗M → ∧2T ∗M

which is called the formal exterior differential, [7]. Denoting by (xi, ui, ui,j) the
local coordinates on J1T ∗M , the coordinate form of σ is ui,j(dxi ∧ dxj). Then the
composition σ ◦ Γ: T ∗M → ∧2T ∗M has the coordinate form

Γi,j(dxi ∧ dxj)

and τL : T ∗M → V T ∗M ⊗ ∧2T ∗M is of the form

τL(u) = (σ ◦ Γ)(u)⊗ L(u)

where L : T ∗M → V T ∗M is the classical Liouville vector field on T ∗M .

Remark. By Proposition 4, the torsion of every connection on the cotangent
bundle can be written in the form τ = τL + τ∗. Using such a point of view, the

“linear” part τL can be considered as the interpretation of the classical formula (2)
for arbitrary connections.

II. The construction of τ∗. Let L be the classical Liouville vector field on T ∗M

and denote by ΓL the induced connection (13) from Proposition 3, where we put
F = T ∗. Then the equations of ΓL : T ∗M → J1T ∗M are

dui =
∂Γi,k

∂um
umdxk .

Since J1T ∗M → T ∗M is an affine bundle with the associated vector bundle V T ∗M⊗
T ∗M , the difference of two connections Γ and ΓL on T ∗M is a section of V T ∗M ⊗
T ∗M , in coordinates (

Γk,i −
∂Γk,i

∂um
um

)
∂

∂uk
⊗ dxi.

Multiplying by the Liouville one-form (ujdxj) and then using the antisymmetrization
T ∗M ⊗ T ∗M → ∧2T ∗M , we obtain τ∗.
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6. The first torsion on the r-th order cotangent bundle

A connection Γ on T r∗M has equations

(15) dui = Γi,l(x, u)dxl, duij = Γij,l(x, u)dxl, . . . , dui1...ir = Γi1...ir ,l(x, u)dxl

and the first natural affinor Q1
M : TT r∗M → V T r∗M is of the form

Q1
M (dxi, dui, duij , . . . , dui1...ir ) = (0, uiupdxp, uijupdxp, . . . ui1...irupdxp),

see (8) and (9). In this section we show that the first torsion

τ1 := [Γ, Q1
M ] : T r∗M → V T r∗M ⊗ ∧2T ∗M

has quite similar properties and interpretation as the torsion τ on the cotangent

bundle. Write

τL
1 = Γj,i(dxi ∧ dxj)⊗

(
uk

∂

∂uk
+ ukl

∂

∂ukl
+ . . . + uk1...kr

∂

∂uk1...kr

)
,(16)

τ∗1 =
(

Γk,i −
∂Γk,i

∂um
um − . . .− ∂Γk,i

∂um1...mr

um1...mr

)
uj

× ∂

∂uk
⊗ (dxi ∧ dxj)

+
(

Γkl,i −
∂Γkl,i

∂um
um − . . .− ∂Γkl,i

∂um1...mr

um1...mr

)
uj

∂

∂ukl
⊗ (dxi ∧ dxj)

...

+
(

Γk1...kr ,i −
∂Γk1...kr,i

∂um
um − . . .− ∂Γk1...kr,i

∂um1...mr

um1...mr

)
uj

× ∂

∂uk1...kr

⊗ (dxi ∧ dxj).

We prove

Proposition 5. The first torsion τ1 on T r∗M is of the form

(17) τ1 = τL
1 + τ∗1 .

Further, τ∗1 = 0 if and only if the connection Γ is linear.
������� �

. Formula (17) follows from (7) by a direct computation. If Γ is linear,
then

Γk,i = Γm
k,ium + Γmn

k,i umn + . . . + Γm1...mr

k,i um1...mr
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so that the first term of τ∗1 vanishes. Quite analogously we show that all the remaining

terms of τ∗1 are zero. On the other hand, if τ
∗
1 = 0, then all the terms of τ∗1 vanish.

In this case we obtain a partial differential equation f(x, u1, . . . , ur) = ∂f
∂u1

u1 + . . . +
∂f
∂ur

ur, whose solution is of the form f = f̃1(x)u1 + . . . + f̃r(x)ur. �

I. The geometrical construction of τL
1 . Denote by L : T r∗M → V T r∗M the

Liouville vector field. Using the formal exterior differential σ : J1T ∗M → ∧2T ∗M

and the projection qM : T r∗M → T ∗M we obtain a map σ̃ := σ ◦J1qM : J1T r∗M →
∧2T ∗M with the coordinate form ui,j(dxi ∧ dxj). Then τL

1 is of the form

(18) τL
1 (u) = (σ̃ ◦ Γ)(u)⊗ L(u).

II. The construction of τ∗1 . Let L be the Liouville vector field on T r∗M ,
F = T r∗ and ΓL be the connection (13) from Proposition 3. Taking into account

that J1T r∗M → T r∗M is an affine bundle with the corresponding associated vector
bundle V T r∗M⊗T ∗M , the difference of connections Γ and ΓL on T r∗M is the section

of the associated vector bundle. Using multiplication by the Liouville form (ujdxj)
and then the antisymmetrization ⊗2T ∗M → ∧2T ∗M , we obtain τ∗1 .

7. Torsions on the r-th order cotangent bundle

Let Γ be a connection (15) on T r∗M . By Lemma 1, all natural affinors on T r∗M

are linearly generated by the identity affinor and by nontrivial affinors Q1
M , . . . , Qr

M .

In this way we have the list of r torsions on T r∗M ,

τs := [Γ, Qs
M ] ∈ C∞(V T r∗M ⊗ ∧2T ∗M), s = 1, . . . , r.

We show that analogously to Proposition 5, each such torsion can be expressed in
the form τs = τLs

s + τ∗s .

We first construct the terms τLs
s . Let Ar

s : T r∗M → T r∗M be the s-th power
natural transformation from Lemma 2. Multiplying by a real number t, we obtain a

smooth one-parameter family of natural transformations. Denote by

Ls : T r∗M → V T r∗M

the natural vector field generated by this smooth one-parameter family, see Example.
Then L1 is the classical Liouville vector field. The vector field Ls can be also defined

as a map T r∗M → T r∗M ⊕ T r∗M ∼= V T r∗M of the form u 7→ (u, Ar
s(u)). In

coordinates,

Ls = ui1 . . . uis

∂

∂ui1...is

+ . . . +
r!

(s− 1)! (r − s + 1)!
u(i1 . . . uis−1uis...ir)

∂

∂ui1...ir

.
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Now it suffices to modify (18) by

(19) τLs
s (u) = (σ̃ ◦ Γ)(u)⊗ Ls(u), s = 1, . . . , r.

In coordinates, τLs
s = Γi,j(dxi ∧ dxj)⊗ Ls.

It remains to construct τ∗s . Write fs := Ar
s : T r∗M → T r∗M for the s-th power

natural transformation. Let Γfs be the connection on T r∗M defined by (14) by means
of the vector bundle morphism f = fs. Since f1 = idT r∗M , we have Γf1 = Γ. Further,
let ΓLs be the connection (13) from Proposition 3 corresponding to the natural vector
field Ls on T r∗M . Then the difference of connections Γfs and ΓLs is a section

t : T r∗M → V T r∗M ⊗ T ∗M of the associated vector bundle. Multiplication by the
Liouville one-form (uj dxj) yields an element of (V T r∗M ⊗ T ∗M)⊗ T ∗M . Finally,

using antisymmetrization ⊗2T ∗M → ∧2T ∗M we obtain τs : T r∗M → V T r∗M ⊗
∧2T ∗M . In what follows we shall need only the coordinate form of τ ∗r ,

τ∗r =
(
− ∂Γk,i

∂um1...mr

um1 . . . umr

)
uj

∂

∂uk
⊗ (dxi ∧ dxj) + . . .(20)

+
(
−∂Γk1...kr−1,i

∂um1...mr

um1 . . . umr

)
uj

∂

∂uk1...kr−1

⊗ (dxi ∧ dxj)

+
(

Γl,iδ
l
(k1

uk2 . . . ukr) −
∂Γk1...kr,i

∂um1...mr

um1 . . . umr

)
uj

× ∂

∂uk1...kr

⊗ (dxi ∧ dxj).

Using (7), (9) and (15) we prove by a direct evaluation

Proposition 6. All torsions of a connection on T r∗M are of the form

τs = τLs
s + τ∗s , s = 1, . . . , r.

By Proposition 5, τ∗1 = 0 if and only if the connection Γ is linear. We show that
the vanishing of τ∗r expresses the projectability of Γ in the following sense:

Definition. We say that a connection Γ on T r∗M is projectable if there is a

connection ∆ on T (r−1)∗M such that

J1πr,r−1
M ◦ Γ = ∆ ◦ πr,r−1

M ,

where πr,r−1
M : T r∗M → T (r−1)∗M is the bundle projection.
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Proposition 7. If τ∗r = 0, then the connection Γ is projectable.
������� �

. By (20), if τ∗r = 0, then the first (r − 1) components of Γ in the
coordinate expression (15) are independent of um1...mr . �
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