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Abstract. For z ∈ ∂Bn, the boundary of the unit ball in � n , let Λ(z) = {λ : |λ| 6 1}. If
f ∈ � (Bn ) then we call E(f) = {z ∈ ∂Bn : � Λ(z) |f(z)|2 dΛ(z) = ∞} the exceptional set
for f . In this note we give a tool for describing such sets. Moreover we prove that if E is
a Gδ and Fσ subset of the projective (n− 1)-dimensional space 	 n−1 = 	 ( � n ) then there
exists a holomorphic function f in the unit ball Bn so that E(f) = E.
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1. Introduction

Let 
 denote the unit sphere in the complex space � n . Wojtaszczyk constructed in

[6, Theorem 1] a sequence of homogeneous polynomials in � n with special properties
on the boundary of the unit ball � n in � n . By means of those polynomials he could

give an example of a function f ∈  ( � n ), the space of holomorphic functions in � n ,
such that |f | is not integrable with any power p, 1 6 p < ∞, on any slice of the form
Λ(z) = � z ∩ � n , where z ∈ 
 (see [6]).
In this note we focus our attention on another related problem. Suppose now

that f is a holomorphic function in the unit ball � n in � n . Let Π1 be the set of all

complex one-dimensional linear subspaces of � n . Let

E(f) = {Λ ∈ Π1 : f |Λ∩ � n is not L2-integrable on Λ ∩ � n}.

It turns out that E(f) is a Gδ-set in the natural topology in Π1. Note that Π1

can be identified with the projective (n− 1)-dimensional space � n−1 = � ( � n ). Now
let E be a given arbitrary Gδ-subset of � n−1. We try to construct f ∈  ( � n )

55



such that E = E(f). Such function can be obtained (see Theorem 3.6 below) by
means of modified Wojtaszczyk polynomials; the construction of those polynomials
is performed in Theorem 3.5.

We give also examples of functions holomorphic in the unit ball with another kind

of bad behavior on one-dimensional slices (Proposition 4.1).

Note that other examples of functions with bad behavior on lower-dimensional

subsets of � n were given by several authors; see e.g. [2], [3], [4], [6].

2. Slices

There is a natural, unitarily invariant (Lebesgue) measure on 
 . We normalize
it so that the measure of the whole sphere 
 equals 1 and we denote this measure
by σ. Moreover there exists a natural (Lebesgue) measure on � n−1. We denote this
measure by σ � . First we prove a result about the relation between homogeneous
polynomials and slices Λ(z).

Proposition 2.1. Let f ∈  (Bn ) and f(z) =
∑

m∈ � pm(z) where pm(z) is a

sequence of homogeneous polynomials of the degree m. If for z ∈ 
 we denote Λ =
Λ(z) = � z ∩ � n then

∫

Λ

|f |2 dΛ < ∞⇔
∞∑

m=1

|pm(z)|2
m

< ∞.

Moreover ∫

� n |f(y)|2 dy < ∞⇔
∞∑

m=1

∫

w∈ � n−1

|pm(w)|2
m

dσ � < ∞.

���������
. For z ∈ ∂ � n let Λ = Λ(z) = � z ∩ � n . We can calculate

∫

Λ

|f |2 dΛ =
∫

|λ|61

|f(λz)|2 dλ =
∞∑

m=1

∫

|λ|61

|pm(z)|2|λ|2m dλ

= 2π
∞∑

m=1

∫

06r61

|pm(z)|2r2m+1 dr = π
∞∑

m=1

|pm(z)|2
m + 1

.

From this follows ∫

Λ

|f |2 dΛ < ∞⇔
∞∑

m=1

|pm(z)|2
m

< ∞.
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To prove the second part, first we can easily prove that there exist constants c, c̃ > 0
independent of the choice of the function f such that

c

∫

� n |f(y)|2 dy 6
∞∑

m=1

∫

w∈ � n−1

∫

|λ|61

|pm(w)|2|λ|2m dλσ � 6 c̃

∫

� n |f(y)|2 dy.

Now because

∞∑

m=1

∫

w∈ � n−1

∫

|λ|61

|pm(w)|2|λ|2m dλ dσ � = π
∞∑

m=1

∫

w∈ � n−1

|pm(w)|2
m + 1

dσ �

we conclude that

∫

� n |f(y)|2 dy < ∞⇔
∞∑

m=1

∫

w∈ � n−1

|pm(w)|2
m

dσ � < ∞.

�

Proposition 2.2. If f ∈  ( � n ) then E(f) is a Gδ subset of the projective space

� n−1.

���������
. Let f ∈  (Bn ). There exists a sequence of homogeneous polynomi-

als pm(z) such that pm(z) is of degree m for every m and f(z) =
∞∑

k=0

pk(z). Let

ht(z) =
∞∑

k=1

|pk(z)|2k−1t2k. For t < s < 1 we define gs(z; λ) =
∞∑

k=0

pk(zs)λk . There

exists Ms > 0 such that if |λ| 6 1, z ∈ � n then |gs(z; λ)| 6 Ms. Therefore by

Cauchy’s inequality it follows that |pk(zs)| 6 Ms for z ∈ � n . From this it follows
that |pk(z)| 6 s−kMs for z ∈ � n . Now, it is clear that ht is continuous. We define

h(z) = sup
t<1

ht(z). Because E(f) = h−1(∞), therefore it is enough to prove that

h−1(∞) =
⋂

M∈ �
⋃

t<1

h−1
t ((M ;∞)).

Let z ∈ � n be such that h(z) = ∞. Let M ∈ � . There exists t < 1 such that
ht(z) > M and therefore z ∈ ⋃

t<1
h−1

t ((M ;∞)). Moreover if h(z) < ∞ for some

z ∈ � n then for M > h(z) we have z /∈ ⋃
t<1

h−1
t ((M ;∞)). The proof is complete. �
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3. Homogeneous polynomials

Definition 3.1. In the complex n-dimensional space � n we will always consider

the usual scalar product 〈·, ·〉. On the unit sphere 
 we will consider a unitary
invariant pseudo-metric %:

%(z1, z2) :=
√

1− |〈z1, z2〉|.

As usual, we denote the open ball with center z0 ∈ 
 and radius r

B(z0; r) := {z ∈ 
 : %(z0, z) < r}.

There is a natural, unitarily invariant (Lebesgue) measure on 
 . We normalize it so
that the measure of the whole sphere 
 equals 1 and we denote this measure by σ.
As in the paper [6] using (1.4.5) of [5] we easily compute that

r2n−2 6 σ(B(z0; r)) 6 2n−1r2n−2.

A subset A ⊂ 
 is called α-separated if %(z1, z2) > α for all distinct elements z1 and

z2 of A.

Lemma 3.2. Suppose that {ζ1, . . . , ζs} is a C/
√

N -separated subset of 
 . Then
for C > 2 we have s 6 Nn−1.

���������
. Since the balls B(ζj ; C/(2

√
N)) are disjoint we get

s
C2n−2

22n−2Nn−1
6

s∑

j=1

σ

(
B

(
ζj ;

C

2
√

N

))
6 1

so s 6 Nn−1. �

Now we need the following Lemmas from the paper [6]:

Lemma 3.3 [6, Lemma 2]. If A ⊂ 
 is α/
√

N-separated then for each β > α

there exists an integer K = K(α, β) such that A can be partitioned into K disjoint

β/
√

N -separated sets.
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Lemma 3.4 [6, Proposition 1]. There exists a constant C > 2 such that for all
integers N large enough, for each C/

√
N -separated subset {ξ1, . . . , ξs} of 
 and each

integer k with N 6 k 6 2N the polynomial

pk(z) :=
s∑

j=1

〈z, ξj〉k

satisfies

1. |pk(z)| 6 2 for all z ∈ 
 ,
2. |pk(z)| > 0.5 for each z ∈ 
 such that %(z, ξj) 6 1/(4

√
N) for some j = 1, . . . , s.

Now we are ready to prove the following result (compare: [6, Theorem 1]).

Theorem 3.5. There exists K ∈ � such that for 0 < ε < 1 and for each pair of
closed subsets D, T of 
 such that %(z, w) > 0 for all z ∈ D and all w ∈ T we can

choose m0 = m0(D, T, ε) ∈ � and a sequence pm(z) of homogeneous polynomials of
degree m which satisfy

1. |pm(z)| 6 2 for all z ∈ 
 ,m > m0,

2.
K(m+1)−1∑

i=Km

|pi(z)| > 0.5 for all z ∈ T , m > m0,

3.
K(m+1)−1∑

i=Km

|pi(z)| 6 2−(Km)1−ε

for all z ∈ D, m > m0.

���������
. Let C be as in Lemma 3.4. Let K = K(α, β) be as in Lemma 3.3 for

α = 0.25 and β = C. For N = Km fix a maximal 1/
(
4
√

N
)
-separated subset A ⊂ T .

Using Lemma 3.3 we can divide A into at least K disjoint C/
√

N-separated subsets
A0, A1, . . . , AK−1. We define

pKm+j(z) :=
∑

ξ∈Aj

〈z, ξ〉Km+j

for j = 0, 1, . . . , K − 1. From Lemma 3.4 we infer that there exists m0 so large that

for m > m0 we have |pKm+j(z)| 6 2 for all z ∈ 
 and |pKm+j(z)| > 0.5 for

z ∈
⋃

ξ∈Aj

B

(
ξ;

1
4
√

N

)
.

Since A =
K−1⋃
l=0

Al is a maximal 1/
(
4
√

N
)
-separated subset of T we conclude that

K−1⋃

j=0

⋃

ξ∈Aj

B

(
ξ;

1
4
√

N

)
=

⋃

ξ∈A

B

(
ξ;

1
4
√

N

)
⊃ T
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and from this it follows that

K(m+1)−1∑

i=Km

|pi(z)| > 0.5 for all z ∈ T, m > m0.

Without loss of generality we can assume that m0 is so large that %(z, w) >
√

1/Nε

for all z ∈ D and w ∈ T . Using Lemma 3.2 we have for m0 large enough, m > m0,

N = Km and z ∈ D

K−1∑

j=0

|pKm+j(z)| 6
K−1∑

j=0

∑

ξ∈Aj

|〈z, ξ〉|Km+j 6
∑

ξ∈A

|〈z, ξ〉|N

6
∑

ξ∈A

(
1− 1

Nε

)N

6 Nn−1

(
1− 1

Nε

)NεN1−ε

6 Nn−1

2.5N1−ε 6 1
2N1−ε .

�

Now we prove the main Theorem of this note.

Theorem 3.6. If E is a Gδ and Fσ subset of � n−1 then we can choose a function

f ∈  (Bn ) such that E = E(f).
���������

. There exist sequences Di and Si of closed subsets of � n−1 such that

Si ⊂ Si+1,
⋃

Si = E and Di ⊂ Di+1,
⋃

Di = � n−1 \E. If z, w ∈ 
 and 〈z; w〉 ∈ � +

then we have

√
2%(z; w) =

√
2− 2|〈z; w〉| =

√
〈z; z〉+ 〈w; w〉 − 2〈z; w〉

= ‖z − w‖.

Therefore because Di ∩ Si = ∅ we conclude that %(z; w) > 0 for each z ∈ Di

and each w ∈ Si. By Theorem 3.5 there exist K ∈ � , c ∈ � + , a sequence

of numbers mi such that Kmi + K 6 Kmi+1, and homogeneous polynomials
pKmi+0(z), . . . , pKmi+K−1(z) satisfying

1.
K(mi+1)−1∑

v=Kmi

|pv(z)|2 > 1 for all z ∈ Si,

2.
K(mi+1)−1∑

v=Kmi

|pv(z)|2 6 1/2i for all z ∈ Di,

3. |pν(z)| 6 c for all z ∈ 
 and ν = Kmi + j, i ∈ � , j = 0, 1, . . . , K − 1.
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Let � = {Kmi + j : i ∈ � , j = 0, . . . , K − 1}. We define f(z) :=
∑

v∈ � v1/2pv(z).

Because |pv(z)| 6 c|z|v for all z ∈ Bn we have f ∈  (Bn ). If z /∈ E then there exists
j0 ∈ � such that z ∈ Dj for all j > j0 and therefore we have

∑

v∈ � |pv(z)|2 6
∑

v∈ � ,v<Kmj0

|pv(z)|2 +
∞∑

k=j0

1
2k

< ∞

and we conclude that
∫ �

z∩ � n |f |2 < ∞.
If z ∈ E then there exists i0 such that z ∈ Si for all i > i0. Therefore:

∑

v∈ � |pv(z)|2 >
∞∑

k=i

1 = ∞.

Now it is clear that
∫ �

z∩ � n |f |2 = ∞. It follows therefore that E = E(f). �

4. Highly nonintegrable functions

We give a nontrivial example of a highly nonintegrable function in the unit ball
as another application of Theorem 3.5 .

Proposition 4.1. There exists a function f ∈  (Bn ) such that f |
�
z∩ � n is

bounded for all z ∈ 
 and ∫ � n |f |2 = ∞.
���������

. There exists a sequence of numbers εi > 0, a sequence Si of closed sub-

sets, and a sequence Ui of open subsets of � n−1 which have the following properties:
1. Si ⊂ Ui,

2. Ui ∩ Uj = ∅ for i 6= j,
3. %(z, w) > εi for all z ∈ 
 \ Ui and w ∈ Si,

4. σ(Sj) > 0 for all j ∈ � .
If we define Di = � n−1\Ui, then Di are closed in � n−1 and %(z, w) > 0 for all z ∈ Di

and all w ∈ Si. Because

K∑

i=1

a2
i 6

( K∑

i=1

ai

)2

=
K∑

i=1

K∑

j=1

aiaj 6
K∑

i=1

K∑

j=1

(a2
i + a2

j ) = 2K

K∑

i=1

a2
i

for K ∈ � and ai > 0, by Theorem 3.5 there exist K ∈ � , c ∈ � + , a sequence of
numbers mj (j ∈ � ) so that Kmj + K 6 Kmj+1 and a sequence of homogeneous

polynomials pm(z) of degree m such that
1. |pm(z)| 6 c for all z ∈ 
 ,
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2.
K(mj+1)−1∑

v=Kmj

|pv(z)|2 > 1 for all z ∈ Sj ,

3.
K(mj+1)−1∑

v=Kmj

|pv(z)| 6 2−
√

mj 6 m−1
j for all z ∈ 
 \ Uj .

We can assume that mj is so large that

√
σ(Sj)mj > 2j

√
Kmj + K

for all j ∈ � .
We define

f(z) :=
∑

j∈ �
K(mj+1)−1∑

v=Kmj

√
vpv(z)√
σ(Sj)

.

Because √
v|pv(z)|√
σ(Sj)

6
c
√

Kmj + K√
σ(Sj)

|z|Kmj 6 cmj

2j
|z|Kmj

for v = Kmj + i, i = 0, 1, . . . , K− 1, j ∈ � , z ∈ � n , it is easy to see that f ∈  (Bn ).
Let z ∈ 
 , λ ∈ � where |λ| = 1. Because Ui ∩Uj = ∅ for i 6= j there exists j0 ∈ � so
that z ∈ 
 \ ⋃

j>j0

Uj . Now we have

|f(λz)| −
∑

j6j0

K(mj+1)−1∑

v=Kmj

√
v|pv(z)|√
σ(Sj)

6
∑

j>j0

K(mj+1)−1∑

v=Kmj

√
v|pv(z)|√
σ(Sj)

6
∑

j>j0

√
Kmj + K

mj

√
σ(Sj)

6
∑

j>j0

1
2j

< ∞

and we conclude that f |
�
z∩ � n is bounded.

Moreover we can write

∑

j∈ �
K(mj+1)−1∑

v=Kmj

∫

� n−1

v|pv(z)|2
vσ(Sj)

>
∑

j∈ �
∫

Sj

1
σ(Sj)

= ∞

and we conclude by Proposition 2.1 that
∫ � n |f |2 = ∞. �
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