Czechoslovak Mathematical Journal

Piotr Kor
 Description of simple exceptional sets in the unit ball

Czechoslovak Mathematical Journal, Vol. 54 (2004), No. 1, 55-63
Persistent URL: http://dml.cz/dmlcz/127863

Terms of use:

© Institute of Mathematics AS CR, 2004

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

DESCRIPTION OF SIMPLE EXCEPTIONAL SETS
 IN THE UNIT BALL

Piotr Kot, Kraków

(Received March 21, 2001)

Abstract. For $z \in \partial B^{n}$, the boundary of the unit ball in \mathbb{C}^{n}, let $\Lambda(z)=\{\lambda:|\lambda| \leqslant 1\}$. If $f \in \mathbb{O}\left(B^{n}\right)$ then we call $E(f)=\left\{z \in \partial B^{n}: \int_{\Lambda(z)}|f(z)|^{2} \mathrm{~d} \Lambda(z)=\infty\right\}$ the exceptional set for f. In this note we give a tool for describing such sets. Moreover we prove that if E is a G_{δ} and F_{σ} subset of the projective $(n-1)$-dimensional space $\mathbb{P}^{n-1}=\mathbb{P}\left(\mathbb{C}^{n}\right)$ then there exists a holomorphic function f in the unit ball B^{n} so that $E(f)=E$.

Keywords: boundary behavior of power series, exceptional set
MSC 2000: 30B30

1. Introduction

Let \mathbb{S} denote the unit sphere in the complex space \mathbb{C}^{n}. Wojtaszczyk constructed in [6, Theorem 1] a sequence of homogeneous polynomials in \mathbb{C}^{n} with special properties on the boundary of the unit ball \mathbb{B}^{n} in \mathbb{C}^{n}. By means of those polynomials he could give an example of a function $f \in \mathbb{D}\left(\mathbb{B}^{n}\right)$, the space of holomorphic functions in \mathbb{B}^{n}, such that $|f|$ is not integrable with any power $p, 1 \leqslant p<\infty$, on any slice of the form $\Lambda(z)=\mathbb{C} z \cap \mathbb{B}^{n}$, where $z \in \mathbb{S}($ see $[6])$.

In this note we focus our attention on another related problem. Suppose now that f is a holomorphic function in the unit ball \mathbb{B}^{n} in \mathbb{C}^{n}. Let Π_{1} be the set of all complex one-dimensional linear subspaces of \mathbb{C}^{n}. Let

$$
E(f)=\left\{\Lambda \in \Pi_{1}:\left.f\right|_{\Lambda \cap \mathbb{B}^{n}} \text { is not } L^{2} \text {-integrable on } \Lambda \cap \mathbb{B}^{n}\right\} .
$$

It turns out that $E(f)$ is a G_{δ}-set in the natural topology in Π_{1}. Note that Π_{1} can be identified with the projective $(n-1)$-dimensional space $\mathbb{P}^{n-1}=\mathbb{P}\left(\mathbb{C}^{n}\right)$. Now let E be a given arbitrary G_{δ}-subset of \mathbb{P}^{n-1}. We try to construct $f \in \mathbb{O}\left(\mathbb{B}^{n}\right)$
such that $E=E(f)$. Such function can be obtained (see Theorem 3.6 below) by means of modified Wojtaszczyk polynomials; the construction of those polynomials is performed in Theorem 3.5.

We give also examples of functions holomorphic in the unit ball with another kind of bad behavior on one-dimensional slices (Proposition 4.1).

Note that other examples of functions with bad behavior on lower-dimensional subsets of \mathbb{B}^{n} were given by several authors; see e.g. [2], [3], [4], [6].

2. Slices

There is a natural, unitarily invariant (Lebesgue) measure on \mathbb{S}. We normalize it so that the measure of the whole sphere \mathbb{S} equals 1 and we denote this measure by σ. Moreover there exists a natural (Lebesgue) measure on \mathbb{P}^{n-1}. We denote this measure by $\sigma_{\mathbb{P}}$. First we prove a result about the relation between homogeneous polynomials and slices $\Lambda(z)$.

Proposition 2.1. Let $f \in \mathbb{D}\left(B^{n}\right)$ and $f(z)=\sum_{m \in \mathbb{N}} p_{m}(z)$ where $p_{m}(z)$ is a sequence of homogeneous polynomials of the degree m. If for $z \in \mathbb{S}$ we denote $\Lambda=$ $\Lambda(z)=\mathbb{C} z \cap \mathbb{B}^{n}$ then

$$
\int_{\Lambda}|f|^{2} \mathrm{~d} \Lambda<\infty \Leftrightarrow \sum_{m=1}^{\infty} \frac{\left|p_{m}(z)\right|^{2}}{m}<\infty
$$

Moreover

$$
\int_{\mathbb{B}^{n}}|f(y)|^{2} \mathrm{~d} y<\infty \Leftrightarrow \sum_{m=1}^{\infty} \int_{w \in \mathbb{P}^{n-1}} \frac{\left|p_{m}(w)\right|^{2}}{m} \mathrm{~d} \sigma_{\mathbb{P}}<\infty .
$$

Proof. For $z \in \partial \mathbb{B}^{n}$ let $\Lambda=\Lambda(z)=\mathbb{C} z \cap \mathbb{B}^{n}$. We can calculate

$$
\begin{aligned}
\int_{\Lambda}|f|^{2} \mathrm{~d} \Lambda & =\int_{|\lambda| \leqslant 1}|f(\lambda z)|^{2} \mathrm{~d} \lambda=\sum_{m=1}^{\infty} \int_{|\lambda| \leqslant 1}\left|p_{m}(z)\right|^{2}|\lambda|^{2 m} \mathrm{~d} \lambda \\
& =2 \pi \sum_{m=1}^{\infty} \int_{0 \leqslant r \leqslant 1}\left|p_{m}(z)\right|^{2} r^{2 m+1} \mathrm{~d} r=\pi \sum_{m=1}^{\infty} \frac{\left|p_{m}(z)\right|^{2}}{m+1} .
\end{aligned}
$$

From this follows

$$
\int_{\Lambda}|f|^{2} \mathrm{~d} \Lambda<\infty \Leftrightarrow \sum_{m=1}^{\infty} \frac{\left|p_{m}(z)\right|^{2}}{m}<\infty
$$

To prove the second part, first we can easily prove that there exist constants $c, \widetilde{c}>0$ independent of the choice of the function f such that

$$
c \int_{\mathbb{B}^{n}}|f(y)|^{2} \mathrm{~d} y \leqslant \sum_{m=1}^{\infty} \int_{w \in \mathbb{P}^{n-1}} \int_{|\lambda| \leqslant 1}\left|p_{m}(w)\right|^{2}|\lambda|^{2 m} \mathrm{~d} \lambda \sigma_{\mathbb{P}} \leqslant \widetilde{c} \int_{\mathbb{B}^{n}}|f(y)|^{2} \mathrm{~d} y .
$$

Now because

$$
\sum_{m=1}^{\infty} \int_{w \in \mathbb{P}^{n-1}} \int_{|\lambda| \leqslant 1}\left|p_{m}(w)\right|^{2}|\lambda|^{2 m} \mathrm{~d} \lambda \mathrm{~d} \sigma_{\mathbb{P}}=\pi \sum_{m=1}^{\infty} \int_{w \in \mathbb{P}^{n-1}} \frac{\left|p_{m}(w)\right|^{2}}{m+1} \mathrm{~d} \sigma_{\mathbb{P}}
$$

we conclude that

$$
\int_{\mathbb{B}^{n}}|f(y)|^{2} \mathrm{~d} y<\infty \Leftrightarrow \sum_{m=1}^{\infty} \int_{w \in \mathbb{P}^{n-1}} \frac{\left|p_{m}(w)\right|^{2}}{m} \mathrm{~d} \sigma_{\mathbb{P}}<\infty .
$$

Proposition 2.2. If $f \in \mathbb{O}\left(\mathbb{B}^{n}\right)$ then $E(f)$ is a G_{δ} subset of the projective space \mathbb{P}^{n-1}.

Proof. Let $f \in \mathbb{O}\left(B^{n}\right)$. There exists a sequence of homogeneous polynomials $p_{m}(z)$ such that $p_{m}(z)$ is of degree m for every m and $f(z)=\sum_{k=0}^{\infty} p_{k}(z)$. Let $h_{t}(z)=\sum_{k=1}^{\infty}\left|p_{k}(z)\right|^{2} k^{-1} t^{2 k}$. For $t<s<1$ we define $g_{s}(z ; \lambda)=\sum_{k=0}^{\infty} p_{k}(z s) \lambda^{k}$. There exists $M_{s}>0$ such that if $|\lambda| \leqslant 1, z \in \mathbb{B}^{n}$ then $\left|g_{s}(z ; \lambda)\right| \leqslant M_{s}$. Therefore by Cauchy's inequality it follows that $\left|p_{k}(z s)\right| \leqslant M_{s}$ for $z \in \mathbb{B}^{n}$. From this it follows that $\left|p_{k}(z)\right| \leqslant s^{-k} M_{s}$ for $z \in \mathbb{B}^{n}$. Now, it is clear that h_{t} is continuous. We define $h(z)=\sup _{t<1} h_{t}(z)$. Because $E(f)=h^{-1}(\infty)$, therefore it is enough to prove that

$$
h^{-1}(\infty)=\bigcap_{M \in \mathbb{N}} \bigcup_{t<1} h_{t}^{-1}((M ; \infty))
$$

Let $z \in \mathbb{B}^{n}$ be such that $h(z)=\infty$. Let $M \in \mathbb{N}$. There exists $t<1$ such that $h_{t}(z)>M$ and therefore $z \in \bigcup_{t<1} h_{t}^{-1}((M ; \infty))$. Moreover if $h(z)<\infty$ for some $z \in \mathbb{B}^{n}$ then for $M>h(z)$ we have $z \notin \bigcup_{t<1} h_{t}^{-1}((M ; \infty))$. The proof is complete.

3. Homogeneous polynomials

Definition 3.1. In the complex n-dimensional space \mathbb{C}^{n} we will always consider the usual scalar product $\langle\cdot, \cdot\rangle$. On the unit sphere \mathbb{S} we will consider a unitary invariant pseudo-metric ϱ :

$$
\varrho\left(z_{1}, z_{2}\right):=\sqrt{1-\left|\left\langle z_{1}, z_{2}\right\rangle\right|} .
$$

As usual, we denote the open ball with center $z_{0} \in \mathbb{S}$ and radius r

$$
B\left(z_{0} ; r\right):=\left\{z \in \mathbb{S}: \varrho\left(z_{0}, z\right)<r\right\}
$$

There is a natural, unitarily invariant (Lebesgue) measure on \mathbb{S}. We normalize it so that the measure of the whole sphere \mathbb{S} equals 1 and we denote this measure by σ. As in the paper [6] using (1.4.5) of [5] we easily compute that

$$
r^{2 n-2} \leqslant \sigma\left(B\left(z_{0} ; r\right)\right) \leqslant 2^{n-1} r^{2 n-2}
$$

A subset $A \subset \mathbb{S}$ is called α-separated if $\varrho\left(z_{1}, z_{2}\right)>\alpha$ for all distinct elements z_{1} and z_{2} of A.

Lemma 3.2. Suppose that $\left\{\zeta_{1}, \ldots, \zeta_{s}\right\}$ is a C / \sqrt{N}-separated subset of \mathbb{S}. Then for $C>2$ we have $s \leqslant N^{n-1}$.

Proof. Since the balls $B\left(\zeta_{j} ; C /(2 \sqrt{N})\right)$ are disjoint we get

$$
s \frac{C^{2 n-2}}{2^{2 n-2} N^{n-1}} \leqslant \sum_{j=1}^{s} \sigma\left(B\left(\zeta_{j} ; \frac{C}{2 \sqrt{N}}\right)\right) \leqslant 1
$$

so $s \leqslant N^{n-1}$.
Now we need the following Lemmas from the paper [6]:

Lemma 3.3 [6, Lemma 2]. If $A \subset \mathbb{S}$ is α / \sqrt{N}-separated then for each $\beta>\alpha$ there exists an integer $K=K(\alpha, \beta)$ such that A can be partitioned into K disjoint β / \sqrt{N}-separated sets.

Lemma 3.4 [6, Proposition 1]. There exists a constant $C>2$ such that for all integers N large enough, for each C / \sqrt{N}-separated subset $\left\{\xi_{1}, \ldots, \xi_{s}\right\}$ of \mathbb{S} and each integer k with $N \leqslant k \leqslant 2 N$ the polynomial

$$
p_{k}(z):=\sum_{j=1}^{s}\left\langle z, \xi_{j}\right\rangle^{k}
$$

satisfies

1. $\left|p_{k}(z)\right| \leqslant 2$ for all $z \in \mathbb{S}$,
2. $\left|p_{k}(z)\right| \geqslant 0.5$ for each $z \in \mathbb{S}$ such that $\varrho\left(z, \xi_{j}\right) \leqslant 1 /(4 \sqrt{N})$ for some $j=1, \ldots, s$.

Now we are ready to prove the following result (compare: [6, Theorem 1]).
Theorem 3.5. There exists $K \in \mathbb{N}$ such that for $0<\varepsilon<1$ and for each pair of closed subsets D, T of \mathbb{S} such that $\varrho(z, w)>0$ for all $z \in D$ and all $w \in T$ we can choose $m_{0}=m_{0}(D, T, \varepsilon) \in \mathbb{N}$ and a sequence $p_{m}(z)$ of homogeneous polynomials of degree m which satisfy

1. $\left|p_{m}(z)\right| \leqslant 2$ for all $z \in \mathbb{S}, m>m_{0}$,
$\sum_{i=K m}^{K(m+1)-1}\left|p_{i}(z)\right| \geqslant 0.5$ for all $z \in T, m>m_{0}$,
2. $\sum_{i=K m}^{K(m+1)-1}\left|p_{i}(z)\right| \leqslant 2^{-(K m)^{1-\varepsilon}}$ for all $z \in D, m>m_{0}$.

Proof. Let C be as in Lemma 3.4. Let $K=K(\alpha, \beta)$ be as in Lemma 3.3 for $\alpha=0.25$ and $\beta=C$. For $N=K m$ fix a maximal $1 /(4 \sqrt{N})$-separated subset $A \subset T$. Using Lemma 3.3 we can divide A into at least K disjoint C / \sqrt{N}-separated subsets $A_{0}, A_{1}, \ldots, A_{K-1}$. We define

$$
p_{K m+j}(z):=\sum_{\xi \in A_{j}}\langle z, \xi\rangle^{K m+j}
$$

for $j=0,1, \ldots, K-1$. From Lemma 3.4 we infer that there exists m_{0} so large that for $m>m_{0}$ we have $\left|p_{K m+j}(z)\right| \leqslant 2$ for all $z \in \mathbb{S}$ and $\left|p_{K m+j}(z)\right| \geqslant 0.5$ for

$$
z \in \bigcup_{\xi \in A_{j}} B\left(\xi ; \frac{1}{4 \sqrt{N}}\right)
$$

Since $A=\bigcup_{l=0}^{K-1} A_{l}$ is a maximal $1 /(4 \sqrt{N})$-separated subset of T we conclude that

$$
\bigcup_{j=0}^{K-1} \bigcup_{\xi \in A_{j}} B\left(\xi ; \frac{1}{4 \sqrt{N}}\right)=\bigcup_{\xi \in A} B\left(\xi ; \frac{1}{4 \sqrt{N}}\right) \supset T
$$

and from this it follows that

$$
\sum_{i=K m}^{K(m+1)-1}\left|p_{i}(z)\right| \geqslant 0.5 \text { for all } z \in T, m>m_{0}
$$

Without loss of generality we can assume that m_{0} is so large that $\varrho(z, w)>\sqrt{1 / N^{\varepsilon}}$ for all $z \in D$ and $w \in T$. Using Lemma 3.2 we have for m_{0} large enough, $m>m_{0}$, $N=K m$ and $z \in D$

$$
\begin{aligned}
\sum_{j=0}^{K-1}\left|p_{K m+j}(z)\right| & \leqslant \sum_{j=0}^{K-1} \sum_{\xi \in A_{j}}|\langle z, \xi\rangle|^{K m+j} \leqslant \sum_{\xi \in A}|\langle z, \xi\rangle|^{N} \\
& \leqslant \sum_{\xi \in A}\left(1-\frac{1}{N^{\varepsilon}}\right)^{N} \leqslant N^{n-1}\left(1-\frac{1}{N^{\varepsilon}}\right)^{N^{\varepsilon} N^{1-\varepsilon}} \\
& \leqslant \frac{N^{n-1}}{2.5^{N^{1-\varepsilon}}} \leqslant \frac{1}{2^{N^{1-\varepsilon}}}
\end{aligned}
$$

Now we prove the main Theorem of this note.

Theorem 3.6. If E is a G_{δ} and F_{σ} subset of \mathbb{P}^{n-1} then we can choose a function $f \in \mathbb{O}\left(B^{n}\right)$ such that $E=E(f)$.

Proof. There exist sequences D_{i} and S_{i} of closed subsets of \mathbb{P}^{n-1} such that $S_{i} \subset S_{i+1}, \bigcup S_{i}=E$ and $D_{i} \subset D_{i+1}, \bigcup D_{i}=\mathbb{P}^{n-1} \backslash E$. If $z, w \in \mathbb{S}$ and $\langle z ; w\rangle \in \mathbb{R}_{+}$ then we have

$$
\begin{aligned}
\sqrt{2} \varrho(z ; w) & =\sqrt{2-2|\langle z ; w\rangle|}=\sqrt{\langle z ; z\rangle+\langle w ; w\rangle-2\langle z ; w\rangle} \\
& =\|z-w\|
\end{aligned}
$$

Therefore because $D_{i} \cap S_{i}=\emptyset$ we conclude that $\varrho(z ; w)>0$ for each $z \in D_{i}$ and each $w \in S_{i}$. By Theorem 3.5 there exist $K \in \mathbb{N}, c \in \mathbb{R}_{+}$, a sequence of numbers m_{i} such that $K m_{i}+K \leqslant K m_{i+1}$, and homogeneous polynomials $p_{K m_{i}+0}(z), \ldots, p_{K m_{i}+K-1}(z)$ satisfying

1. $\sum_{v=K m_{i}}^{K\left(m_{i}+1\right)-1}\left|p_{v}(z)\right|^{2} \geqslant 1$ for all $z \in S_{i}$,
2. $\sum_{v=K m_{i}}^{K\left(m_{i}+1\right)-1}\left|p_{v}(z)\right|^{2} \leqslant 1 / 2^{i}$ for all $z \in D_{i}$,
3. $\left|p_{\nu}(z)\right| \leqslant c$ for all $z \in \mathbb{S}$ and $\nu=K m_{i}+j, i \in \mathbb{N}, j=0,1, \ldots, K-1$.

Let $\mathbb{A}=\left\{K m_{i}+j: i \in \mathbb{N}, j=0, \ldots, K-1\right\}$. We define $f(z):=\sum_{v \in \mathbb{A}} v^{1 / 2} p_{v}(z)$. Because $\left|p_{v}(z)\right| \leqslant c|z|^{v}$ for all $z \in B^{n}$ we have $f \in \mathbb{O}\left(B^{n}\right)$. If $z \notin E$ then there exists $j_{0} \in \mathbb{N}$ such that $z \in D_{j}$ for all $j \geqslant j_{0}$ and therefore we have

$$
\sum_{v \in \mathbb{A}}\left|p_{v}(z)\right|^{2} \leqslant \sum_{v \in \mathbb{A}, v<K m_{j_{0}}}\left|p_{v}(z)\right|^{2}+\sum_{k=j_{0}}^{\infty} \frac{1}{2^{k}}<\infty
$$

and we conclude that $\int_{\mathbb{C} \cap \mathbb{B}^{n}}|f|^{2}<\infty$.
If $z \in E$ then there exists i_{0} such that $z \in S_{i}$ for all $i \geqslant i_{0}$. Therefore:

$$
\sum_{v \in \mathbb{A}}\left|p_{v}(z)\right|^{2} \geqslant \sum_{k=i}^{\infty} 1=\infty
$$

Now it is clear that $\int_{\mathbb{C} z \cap \mathbb{B}^{n}}|f|^{2}=\infty$. It follows therefore that $E=E(f)$.

4. Highly nonintegrable functions

We give a nontrivial example of a highly nonintegrable function in the unit ball as another application of Theorem 3.5.

Proposition 4.1. There exists a function $f \in \mathbb{O}\left(B^{n}\right)$ such that $\left.f\right|_{\mathbb{C} z \mathbb{B}^{n}}$ is bounded for all $z \in \mathbb{S}$ and $\int_{\mathbb{B}^{n}}|f|^{2}=\infty$.

Proof. There exists a sequence of numbers $\varepsilon_{i}>0$, a sequence S_{i} of closed subsets, and a sequence U_{i} of open subsets of \mathbb{P}^{n-1} which have the following properties:

1. $S_{i} \subset U_{i}$,
2. $U_{i} \cap U_{j}=\emptyset$ for $i \neq j$,
3. $\varrho(z, w)>\varepsilon_{i}$ for all $z \in \mathbb{S} \backslash U_{i}$ and $w \in S_{i}$,
4. $\sigma\left(S_{j}\right)>0$ for all $j \in \mathbb{N}$.

If we define $D_{i}=\mathbb{P}^{n-1} \backslash U_{i}$, then D_{i} are closed in \mathbb{P}^{n-1} and $\varrho(z, w)>0$ for all $z \in D_{i}$ and all $w \in S_{i}$. Because

$$
\sum_{i=1}^{K} a_{i}^{2} \leqslant\left(\sum_{i=1}^{K} a_{i}\right)^{2}=\sum_{i=1}^{K} \sum_{j=1}^{K} a_{i} a_{j} \leqslant \sum_{i=1}^{K} \sum_{j=1}^{K}\left(a_{i}^{2}+a_{j}^{2}\right)=2 K \sum_{i=1}^{K} a_{i}^{2}
$$

for $K \in \mathbb{N}$ and $a_{i}>0$, by Theorem 3.5 there exist $K \in \mathbb{N}, c \in \mathbb{R}_{+}$, a sequence of numbers $m_{j}(j \in \mathbb{N})$ so that $K m_{j}+K \leqslant K m_{j+1}$ and a sequence of homogeneous polynomials $p_{m}(z)$ of degree m such that

1. $\left|p_{m}(z)\right| \leqslant c$ for all $z \in \mathbb{S}$,
2. $\sum_{v=K m_{j}}^{K\left(m_{j}+1\right)-1}\left|p_{v}(z)\right|^{2} \geqslant 1$ for all $z \in S_{j}$,
3. $\sum_{v=K m_{j}}^{K\left(m_{j}+1\right)-1}\left|p_{v}(z)\right| \leqslant 2^{-\sqrt{m_{j}}} \leqslant m_{j}^{-1}$ for all $z \in \mathbb{S} \backslash U_{j}$.

We can assume that m_{j} is so large that

$$
\sqrt{\sigma\left(S_{j}\right)} m_{j} \geqslant 2^{j} \sqrt{K m_{j}+K}
$$

for all $j \in \mathbb{N}$.
We define

$$
f(z):=\sum_{j \in \mathbb{N}} \sum_{v=K m_{j}}^{K\left(m_{j}+1\right)-1} \frac{\sqrt{v} p_{v}(z)}{\sqrt{\sigma\left(S_{j}\right)}}
$$

Because

$$
\frac{\sqrt{v}\left|p_{v}(z)\right|}{\sqrt{\sigma\left(S_{j}\right)}} \leqslant \frac{c \sqrt{K m_{j}+K}}{\sqrt{\sigma\left(S_{j}\right)}}|z|^{K m_{j}} \leqslant \frac{c m_{j}}{2^{j}}|z|^{K m_{j}}
$$

for $v=K m_{j}+i, i=0,1, \ldots, K-1, j \in \mathbb{N}, z \in \mathbb{B}^{n}$, it is easy to see that $f \in \mathbb{O}\left(B^{n}\right)$.
Let $z \in \mathbb{S}, \lambda \in \mathbb{C}$ where $|\lambda|=1$. Because $U_{i} \cap U_{j}=\emptyset$ for $i \neq j$ there exists $j_{0} \in \mathbb{N}$ so that $z \in \mathbb{S} \backslash \bigcup_{j \geqslant j_{0}} U_{j}$. Now we have

$$
\begin{aligned}
|f(\lambda z)|-\sum_{j \leqslant j_{0}} \sum_{v=K m_{j}}^{K\left(m_{j}+1\right)-1} \frac{\sqrt{v}\left|p_{v}(z)\right|}{\sqrt{\sigma\left(S_{j}\right)}} & \leqslant \sum_{j \geqslant j_{0}} \sum_{v=K m_{j}}^{K\left(m_{j}+1\right)-1} \frac{\sqrt{v}\left|p_{v}(z)\right|}{\sqrt{\sigma\left(S_{j}\right)}} \\
& \leqslant \sum_{j \geqslant j_{0}} \frac{\sqrt{K m_{j}+K}}{m_{j} \sqrt{\sigma\left(S_{j}\right)}} \leqslant \sum_{j \geqslant j_{0}} \frac{1}{2^{j}}<\infty
\end{aligned}
$$

and we conclude that $\left.f\right|_{\mathbb{C} \cap \mathbb{B}^{n}}$ is bounded.
Moreover we can write

$$
\sum_{j \in \mathbb{N}} \sum_{v=K m_{j}}^{K\left(m_{j}+1\right)-1} \int_{\mathbb{P}^{n-1}} \frac{v\left|p_{v}(z)\right|^{2}}{v \sigma\left(S_{j}\right)} \geqslant \sum_{j \in \mathbb{N}} \int_{S_{j}} \frac{1}{\sigma\left(S_{j}\right)}=\infty
$$

and we conclude by Proposition 2.1 that $\int_{\mathbb{B}^{n}}|f|^{2}=\infty$.

References

[1] J. Globevink: Holomorphic functions which are highly nonintegrable at the boundary. Israel J. Math. To appear.
[2] J. Globevnik and E. L. Stout: Highly noncontinuable functions on convex domains. Bull. Sci. Math. 104 (1980), 417-439.
[3] J. Globevnik and E. L. Stout: Holomorphic functions with highly noncontinuable boundary behavior. J. Anal. Math. 41 (1982), 211-216.
[4] J. Siciak: Highly noncontinuable functions on polynomially convex sets. Zeszyty Naukowe Uniwersytetu Jagiellonskiego 25 (1985), 95-107.
[5] W. Rudin: Function Theory in the Unit Ball of \mathbb{C}^{n}. Springer, New York, 1980.
[6] P. Wojtaszczyk: On highly nonintegrable functions and homogeneous polynomials. Ann. Pol. Math. 65 (1997), 245-251.

Author's address: Politechnika Krakowska, Instytut Matematyki, ul. Warszawska 24, 31-155 Kraków, Poland, e-mail: pkot@usk.pk.edu.pl.

