Czechoslovak Mathematical Journal

Andrzej Walendziak
Relations between some dimensions of semimodular lattices

Czechoslovak Mathematical Journal, Vol. 54 (2004), No. 1, 73-77
Persistent URL: http://dml.cz/dmlcz/127865

Terms of use:

(C) Institute of Mathematics AS CR, 2004

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

RELATIONS BETWEEN SOME DIMENSIONS OF SEMIMODULAR LATTICES

Andrzej Walendziak, Warsaw

(Received April 6, 2001)

Abstract. The aim of this paper is to present relations between Goldie, hollow and Kurosh-Ore dimensions of semimodular lattices. Relations between Goldie and Kurosh-Ore dimensions of modular lattices were studied by Grzeszczuk, Okiński and Puczyłowski.

Keywords: semimodular lattice, Goldie dimension, hollow dimension, Kurosh-Ore dimension

MSC 2000: 06C10

1. Preliminaries

Let L be a lattice of finite length. We will denote by L^{*} the dual of L. For elements $a, b \in L(a \leqslant b)$ we define the interval $[a, b]$ to be the set of all $c \in L$ such that $a \leqslant c \leqslant b$. We say that b covers a if $a<b$ and $[a, b]=\{a, b\}$; in this case we write $a \prec b$. If $p \in L$ covers 0 , then p is an atom of L. Let $A(L)$ be the set of all atoms of L. Define a lattice L to be upper semimodular (briefly: semimodular) if it satisfies the following condition:

$$
a \wedge b \prec a \text { implies } b \prec a \vee b .
$$

L is lower semimodular if its dual lattice is semimodular.
Let $T \subseteq L-\{0\} . T$ is called join independent if for every finite subset $S \subseteq T$ and each element $t \in T-S, t \wedge \bigvee S=0$. The Goldie dimension $d_{\mathrm{G}}(L)$ of L is defined (see [1]) as

$$
d_{\mathrm{G}}(L)=\max \{|T|: T \text { is a join independent subset of } L\} .
$$

The Goldie dimension of the lattice L^{*} is called the hollow dimension and denoted by $d_{\mathrm{H}}(L)$ (see [2]). We have $d_{\mathrm{H}}(L)=d_{\mathrm{G}}\left(L^{*}\right)$.

An element $m \in L-\{1\}$ is meet irreducible if $m=x \wedge y$ implies that $m=x$ or $m=y$. Dually, an element $u \in L-\{0\}$ is join irreducible if $u=x \vee y$ implies that $u=x$ or $u=y$. By $M(L)$ (resp. $J(L)$) we denote the set of all meet irreducible (resp. join irreducible) elements of the lattice L. A subset T of L is said to be meet irredundant (resp. join irredundant) if for each element $t \in T, \bigwedge(T-\{t\}) \notin t$ (resp. $t \nless \bigvee(T-\{t\})$).

If $a=x_{1} \wedge x_{2} \wedge \ldots \wedge x_{m}$ for $a \in L$ and $x_{1}, x_{2}, \ldots, x_{m} \in M(L)$, then we say that $x_{1} \wedge x_{2} \wedge \ldots \wedge x_{m}$ is a \wedge-decomposition of a. A \wedge-decomposition $x_{1} \wedge x_{2} \wedge \ldots \wedge x_{m}$ of a is called irredundant if the set $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ is meet irredundant. Dually, if $a=x_{1} \vee x_{2} \vee \ldots \vee x_{m}$ and $x_{1}, x_{2}, \ldots, x_{m} \in J(L)$, then we say that $x_{1} \vee x_{2} \vee \ldots \vee$ x_{m} is a \vee-decomposition of a. This \vee-decomposition of a is irredundant if the set $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ is join irredundant.

The following classical result is referred to as the Kurosh-Ore Theorem:
Theorem. If L is a modular lattice and if $a=x_{1} \wedge x_{2} \wedge \ldots \wedge x_{m}=y_{1} \wedge y_{2} \wedge \ldots \wedge y_{n}$ are two irredundant \wedge-decomposition of $a \in L$, then $m=n$. Dually, the number of join irreducible elements in any irredundant finite \vee-decomposition of a is unique.

Figure 1.

The lattice of Fig. 1 shows that for semimodular lattices, the Kurosh-Ore Theorem does not hold.

We say that the Kurosh-Ore dimension (for \wedge-decompositions) of L equals n, and write $d_{\wedge}(L)=n$ if there exists a meet irredundant subset $\left\{a_{1}, \ldots, a_{n}\right\}$ of $M(L)$ such that $0=a_{1} \wedge \ldots \wedge a_{n}$ and for every irredundant \wedge-decomposition $0=\wedge T$ of $0,|T| \leqslant n$. By dualizing we get the concept of Kurosh-Ore dimension for \vee-decompositions. We have $d_{\vee}(L)=n$ if and only if $d_{\wedge}\left(L^{*}\right)=n$. Obviously,

$$
d_{\wedge}(L)=1 \Leftrightarrow 0 \in M(L) \text { and } d_{\vee}(L)=1 \Leftrightarrow 1 \in J(L)
$$

2. Results

Let L be a semimodular lattice of finite length and let $x \in L$ The height of $[0, x]$ will be denoted by $h(x)$ and called the height of $x(h(x)=|C|-1$, where C is a maximal chain in $[0, x]$). Write $h(L)=h(1)$. It is easy to see that the following three lemmas hold.

Lemma 1. Let L be a semimodular lattice of finite length. If $\left\{b_{1}, \ldots, b_{n}\right\}$ is a join irredundant subset of L, then $h\left(b_{1} \vee \ldots \vee b_{n}\right) \geqslant n$.

Lemma 2. Let L be a lattice of finite length. If $d_{\mathrm{G}}(L)=n$, then there exists a join independent set of n atoms of L.

Lemma 3 ([4], Theorem 1.9.3). If L is a semimodular lattice and 1 is a join of a finite join independent set, containing, say, n atoms, then $h(L)=n$.

Theorem 1. If L is a semimodular lattice of finite length, then $d_{\wedge}(L)=d_{\mathrm{G}}(L)$.
Proof. Let $d_{\wedge}(L)=n$ and let $0=a_{1} \wedge a_{2} \wedge \ldots \wedge a_{n}$ be an irredundant \wedge-decomposition of 0 . Set $b_{i}=\bigwedge\left\{a_{j}: j \neq i\right\}$ for $i \in I=\{1,2, \ldots, n\}$. Since the set $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is meet irredundant, we conclude that $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\} \subseteq L-\{0\}$. Observe that

$$
b_{i} \wedge \bigvee\left\{b_{j}: j \neq i\right\}=0
$$

for each $i \in I$. Indeed,

$$
b_{i} \wedge \bigvee\left\{b_{j}: j \neq i\right\} \leqslant b_{i} \wedge a_{i}=a_{1} \wedge a_{2} \wedge \ldots \wedge a_{n}=0
$$

Therefore, $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ is a join independent subset of L. Hence $d_{\mathrm{G}}(L) \geqslant n$.
Suppose that $d_{\mathrm{G}}(L)>n$. By Lemma 2, there is a join independent set $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\} \subseteq A(L)$ with $k>n$. For $1 \leqslant i \leqslant k$, we put $c_{i}=\bigvee\left\{p_{j}: j \neq i\right\}$. We prove that

$$
\begin{equation*}
c_{1} \wedge c_{2} \wedge \ldots \wedge c_{k}=0 \tag{1}
\end{equation*}
$$

Assume that $c_{1} \wedge c_{2} \wedge \ldots \wedge c_{k}>0$, and let q be an atom of L such that $q \leqslant$ $c_{1} \wedge c_{2} \wedge \ldots \wedge c_{k}$. Obviously,

$$
q \nless p_{2} \text { and } q \leqslant c_{1}=p_{2} \vee p_{3} \vee \ldots \vee p_{k} .
$$

Therefore,

$$
q \leqslant p_{2} \vee p_{3} \vee \ldots \vee p_{i+1} \text { and } q \nless p_{2} \vee p_{3} \vee \ldots \vee p_{i}
$$

for some $2 \leqslant i<k$. We have $p_{i+1} \wedge\left(p_{2} \vee p_{3} \vee \ldots \vee p_{i}\right)=0 \prec p_{i+1}$ and hence, by semimodularity,

$$
p_{2} \vee \ldots \vee p_{i} \prec p_{2} \vee \ldots \vee p_{i} \vee p_{i+1} .
$$

Consequently, $q \vee p_{2} \vee \ldots \vee p_{i}=p_{2} \vee \ldots \vee p_{i} \vee p_{i+1}$. Then $p_{i+1} \leqslant q \vee p_{2} \vee \ldots \vee p_{i} \leqslant c_{i+1}$, a contradiction. Thus (1) holds.

Let $1 \leqslant j \leqslant k$. It follows that

$$
c_{1} \wedge \ldots \wedge c_{j-1} \wedge c_{j+1} \wedge \ldots \wedge c_{k} \nless c_{j}
$$

since otherwise $p_{j} \leqslant c_{j}$, contradicting our assumption that $\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$ is a join independent subset of L. Therefore, the set $\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$ is meet irredundant. Take a \wedge-decomposition $c_{i}=\bigwedge T_{i}$ of c_{i}. For $1 \leqslant i \leqslant k$, let T_{i}^{\prime} be a subset of T_{i} such that $T=T_{1}^{\prime} \cup T_{2}^{\prime} \cup \ldots \cup T_{k}^{\prime}$ is a meet irredundant set and $0=\bigwedge T$. Since the set $\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$ is meet irredundant, we conclude that $|T|>k>n$. Thus $d_{\wedge}(L)>n$, a contradiction. From this we see that $d_{\mathrm{G}}(L)=n$.

Theorem 2. Let L be a semimodular lattice of finite length. Then the following conditions are equivalent:
(i) 1 is a join of atoms.
(ii) $d_{\mathrm{G}}(L)=d_{\vee}(L)=h(L)$.

Proof. (i) \Rightarrow (ii). Let 1 be a join of a finite join independent set, containing, say, n atoms. Then $d_{\mathrm{G}}(L) \geqslant n=h(L)$ (see Lemma 3). Let $d_{\mathrm{G}}(L)=k$. By Lemma 2, there exists a join independent set $\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$ of k atoms of L. From (i) it follows that there are atoms $q_{1}, q_{2}, \ldots, q_{m}$ such that

$$
1=p_{1} \vee p_{2} \vee \ldots \vee p_{k} \vee q_{1} \vee q_{2} \vee \ldots \vee q_{m}
$$

and the set $\left\{p_{1}, p_{2}, \ldots, p_{k}, q_{1}, q_{2}, \ldots, q_{m}\right\}$ is join irredundant. By the definition of $d_{\vee}(L), d_{\vee}(L) \geqslant m+k \geqslant k$, i.e., $d_{\mathrm{G}}(L) \leqslant d_{\vee}(L)$. From Lemma 1 we conclude that $d_{\vee}(L) \leqslant h(L)$. Thus we have (ii).
(ii) \Rightarrow (i). Let $d_{\mathrm{G}}(L)=d_{\vee}(L)=h(L)=n$. By Lemma 2, there exists a join independent set $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ of n atoms of L. It follows that

$$
1=a_{1} \vee a_{2} \vee \ldots \vee a_{n}
$$

since otherwise $h(L)>h\left(a_{1} \vee a_{2} \vee \ldots \vee a_{n}\right) \geqslant n$, contradicting our assumption that $h(L)=n$.

An immediate consequence of Theorems 1 and 2 is

Corollary 1. Let L be a semimodular lattice of finite length. If 1 is a join of atoms, then $d_{\wedge}(L)=d_{\vee}(L)=d_{\mathrm{G}}(L)=h(L)$.

Recall that a lattice L is atomistic if every element of L is a join of atoms (note that 0 is the join of the empty set of atoms). A geometric lattice is a finite semimodular atomistic lattice.

From Corollary 1 we have

Corollary 2. If L is a geometric lattice, then $d_{\wedge}(L)=d_{\vee}(L)=d_{\mathrm{G}}(L)=h(L)$.
The dual of Theorem 1 yields

Corollary 3. If L is a lower semimodular lattice of finite length, then $d_{\vee}(L)=$ $d_{\mathrm{H}}(L)$.

Combining Corollary 1 and Corollary 2 we get

Corollary 4. Let L be an atomistic modular lattice of finite length. Then $d_{\wedge}(L)=d_{\vee}(L)=d_{\mathrm{G}}(L)=d_{\mathrm{H}}(L)=h(L)$.

In particular, we have

Corollary 5. If L is a modular geometric lattice, then $d_{\wedge}(L)=d_{\vee}(L)=d_{\mathrm{G}}(L)=$ $d_{\mathrm{H}}(L)=h(L)$.

References

[1] P. Grzeszczuk and E. R. Puczytowski: On Goldie and dual Goldie dimensions. J. Pure Appl. Algebra 31 (1984), 47-54.
[2] P. Grzeszczuk and E. R. Puczylowski: Goldie dimension and chain conditions for modular lattices with finite group actions. Canad. Math. Bull. 29 (1986), 274-280.
[3] P. Grzeszczuk, J. Okiński and E. R. Puczytowski: Relations between some dimensions of modular lattices. Comm. Algebra 17 (1989), 1723-1737.
[4] M. Stern: Semimodular Lattices: Theory and Applications. University Press, Cambridge, 1999.

Author's address: Warsaw School of Information Technology, Newelska 6, 01-447 Warszawa, Poland, e-mail: walent@interia.pl.

