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Abstract. In this paper, oscillattion and nonoscillation criteria are established for neutral
differential equations with positive and negative coefficients. Owur criteria improve and
extend many results known in the literature.

Keywords: oscillation, neutral differential equations, positive and negative coefficients

MSC 2000: 34K15, 34K40, 34C10

1. INTRODUCTION

Consider the neutral delay differential equation with positive and negative coeffi-

cients
(L) [a(t) — R@®)a(t —r)) + Y Pi(t)x(t — 7) ZQJ a(t—o;5) =0, t=to,

where P;, Q;, R € C([tg,),RT), r € (0,00) and 74,0; € R" fori=1,2,...,m and
i=1,2,....n
When m =n =1, Eq. (1.1) reduces to

(1.2) [(t) — R(t)z(t — 1)) + P(t)z(t — 7) — Q(t)z(t — o) =0, > to,

where P,Q, R € C([tg,00),R"), 7 € (0,00) and 7,0 € R". In recent years, the
oscillation of Eq. (1.2) has been investigated by many authors. See, for example, [2],
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[4]-16], [9], [10], [12], [16] and the references cited therein. However, to the best of our
knowledge, there is little in the way of results for the oscillation and nonoscillation of
neutral differential equations with positive and negative coeflficients with more than
one delay.
Our aim in this paper is to establish oscillation and also nonoscillation criteria for
Eq. (1.1). Our results improve and extend many results known in the literature.
The following assumptions will be used throughout the paper without further
notice.
(A1) There exist a positive integer number p < m and a partition of the set
{1,2,...,n} into p disjoint subsets Ji, Ja,...,Jp such that j € J; implies
that o; < 73
(A2) H;(t) :=Pi(t) — Z Qrt—7i+o0k) =20 (£0)fori=1,2,...,p, Hi(t) :=

Pi(t) fori:p—&—l,...7 m;
(A3) o= max{r Ti,05: 1<i<m, 1<j<n}and d=min{r,7n,0;: 1 <i<
m, 1<j<n}

A function z(t ) € C([t1 — 0,00), R) is said to be a solution of Equation (1.1)
for some t; > tg if 2(t) — R(¢)x(t — r) is continuously differentiable on [t1,00) and
satisfies (1.1) for ¢ > ¢;.

As is customary, a solution of (1.1) is said to be nonoscillatory if it is eventually
positive or eventually negative. Otherwise, it will be called oscillatory.

For convenience, we will assume that all inequalities concerning the values of
functions are satisfied eventually for all large .

2. LEMMAS

We need the following lemmas for the proofs of our main results.

Lemma 2.1. Assume that
(2.1) )+ Z > / ds < 1.
i=1 keJ; Tz+0k

Let x(t) be an eventually positive solution of the differential inequality

(2.2) [z(t) — R(t)z(t — )] + ZPZ( z(t — 1) Z z(t —a;) <0

and set

(2.3)  z(t) = z(t) — R(t)z(t —r) Z > / )i (s — o) ds.
i=1 keJ; Tﬁ"k
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Then
(2.4) 2'(t) <0, =z()>0, and 2'(t)+ iHl(t)z(t —7) <0.

=1

Proof. Assume that ¢t; > to + o is such that x(t) is positive for ¢ > ¢;. Then
by (2.2) and (2.3), we get

(2.5) ZP ot —7) +ZZth*Tz+0k) (t =)
i=1 keJ;
- Z z(t — 7).

_p+1

In view of x(t) > z(t), (2.5) yields

m

2'(t) + Z H;(t)z(t — ;) <0.

i=1

Now we prove z(t) > 0. For otherwise, there would exist a 2 > t; such that z(t2) < 0.
Then eventually z(¢) < 0 because z’(t) < 0 and so there exist t3 > to and p > 0 such
that z(t) < —p for t > t5. Hence

z(t) < —p+ R(t)x(t —7) —I—ZZ/ Jx(s — o) ds

i=1 keJ; Tz+0k

<—pr(r0+y > [

i=1keJ; T1+U’“

s) max_ (s)

t—o<s<t

<
S THRT, I?ffgtx(s)

Lemma 1.5.4 in [6] implies that z(¢) cannot be a nonnegative function on [t3, c0),
thus contradicting x(t) > 0. The proof is complete. O

Lemma 2.2. Assume that

(2.6) +ZZ/ ds > 1.

i=1 keJ; TH‘Uk

Let x(t) be an eventually positive solution of (2.2) and let z(t) be defined by (2.3).
Then the oscillation of all solutions of the second order ordinary differential equation

(2.7) ')+ o7t Y Hi(t)y(t) =0, t=>to

implies that z'(t) < 0 and z(t) < 0 eventually.
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Proof. From (2.5) we have

m

(2.8) Z(t) < =Y Hi(t)a(t —7;) <O0.

i=1
Therefore, if z(t) < 0 does not hold eventually, then z(t) > 0 eventually. Let
t1 > to+ o0 be such that x(t—p) > 0, 2(t) > 0 for t > t1. Set M = 27 min{x(t): t; =
0 <t<t1}. Then x(t) > M for t; — 0 < t < t;. We claim that

(2.9) a(t) > M, t>t.

If (2.9) does not hold, then there exists a t* > t; such that z(t) > M fort; —p <t < t*
and z(t*) = M. By (2.3) and (2.6) we get

M =x(t") =2(t") + R(t)x(t — r) +ZZ/ Yx(s — o) ds
i=1 keJ; Tﬂr”k
S(ros 2y [

ds) > M.
i=1 keJ; Tz+0k

This is a contradiction and so (2.9) holds. Let lim z(#) = a. There exist two possible

t—o0
cases:
Case I. a = 0. There exists a T > t; such that z(¢t) < M/2 for ¢ > T;. Then for

any t > T1, we have

1 t+o B
—/ z(s)ds < M < z(t), teltt+ ol
0 Jg

Case II. a > 0. Then z(t) > a for t > t;. From (2.3) and (2.9) we get
z(t) = a+ Rt)x(t —r) +ZZ/ Jr(s —op)ds = a+ M, t>t;.
i=1 keJ; TH‘Uk
By induction, it is easy to see that z(t) > ka + M for t > t; + (k — 1)p and so

lim 2(t) = oo, which implies that there exists a T' > T3 such that

t—o0

t+o
%/T 2(s)ds < 22(T) < w(t), te [T, T+

Combining the cases I and II we see that
1 [tte
2(t) > —/ (s)ds, te[T,T+ad.
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Now we prove that
1 t+o
(2.10) () > —/ A(s)ds, t>T+o.

Otherwise, there would exist a t* > T + p such that
t*+o

a(t*) = —/ 2(s)ds,

T

1 t+o
:c(t)>—/ As)ds for te(T+ot").

t*+o
1/ z(s)ds = z(t*) + R(t")x(t* — r +ZZ/ Yz(s — op)ds

eJr i=1 keJ; —n+ak
1 rtte P t* t*
>—/ ()ds+<R( )JrZZ/ Q()ds) / z(s)ds
0 Ji* im1 ke, Yt Titow T
1 t*+o
—/ z(s)ds
eJr

This is a contradiction and so (2.10) holds. Thus, for ¢ > T + p, we obtain

(2.11) x(t — 1) > l/ z(s)ds.

eJr

Substituting (2.11) into (2.8) leads to

Set

1
y'(t) + EZHZ-(wy(t) <0, t>T+o.
=1

By Lemma 2.4 in [11], Eq. (2.7) has an eventually positive solution. This is a
contradiction and the proof is complete. O
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Lemma 2.3. Assume that

(2.12) IHOESSY / Qr(s)ds = 1.

i=1 keJ; /1 Titok

Then the fact that the inequality (2.2) has an eventually positive solution x(t) implies
that Eq. (1.1) has a solution Z(t) which satisfies 0 < ZT(t) < x(t) eventually.

Proof. Let z(t) be defined by (2.3). By Lemma 2.1 there exists a t; > to such
that z(t — o) > 0, 2(t) > 0 and 2/(t) < 0 for t > t1. Set M = 27  min{x(t): t; =
0 <t<t1}. Then z(t) > M for t >t — p. From (2.3) and (2.4) we have

(2.13) w(t) > Rt -1 + 3% / Qu(s)x(s — o) ds

i=1 keJ; VE-Titok
co m
Jr/ Z Hi(s)x(s —1;)ds, t>=t;.
to=1

Define a sequence of functions {x,(t)} by zo(t) = «(¢) and for v =1,2,... by

(214)  2o(t) = Rz (-1 + > Y / Qn(5)T01 (5 — o%) ds

i=1keJ; /I Titok

+/ ZHi(S)zvfl(siTi)dsv t>t1 +Qv
b=

xv(tl + Q) -M

zo(t) = M+ z(ti +0)— M

(z(t) = M), t1 <t<ti+o.
Then, from (2.13) and (2.14), we have for t > t1 + ¢

xo(t) = x(t) > 21(t)

= R(t)x(t—r)+ Z Z / Qr(s)z(s —ox)ds

i=1 keJ; Y t=Titok

Jr/tooiHi(s)x(sn)ds
> (R<t>+i2/t Qk<s>ds)M=M-

i=1keJ; VtTTitok
For t; <t < t; 4+ o we have

ri(ti+0) - M

xo(t) =x(t) > M + P —

(x(t) — M) =x1(t) = M.
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Thus, z¢(t) = z1(t) > M for ¢t > t1. By induction, one can easily prove that
To(t) = o1 (t) = M, t>t1, v=1,2,...

Therefore, {z,(t)} has a pointwise limit function Z(¢) with 0 < M < lim x,(t) =

vV— 00

Z(t) < z(t) for t > ¢;. By the Monotone Convegence Theorem we have

T(t) = T(t—r) +ZZ/ (s)Z(s — o) ds

i=1keJ; Tz+‘7k
/ T(s—1i)ds, t=t1+o0.
This implies that
[f(t)—R(t)f(t—r)]’—i—iP HZ(t —77) ZQ] 0;)=0, t=t +o.
i=1
The proof is complete. ]

Lemma 2.4. Assume that (2.12) holds with 6 > 0. Then Eq. (1.1) has an
eventually positive solution if the second order ordinary differential equation

(2.15) y'(t) 4+ 67! i H;(t)y(t) =0, t>tg

has an eventually positive solution.

Proof. Let y(t) be an eventually positive solution of (2.15). Then there exists
at1 > to such that y(t) > 0, y”(t) < 0and y'(¢) > 0 for t > t;. Define a function z(¢)
by

“ly(t), t<t<ti+o—0,
Ayt +(t—t1—o+ 0y (t1 +0)], ti+o—0<t <t +o,

and

«(t) = ¢/() + R(t) t—r+ZZ/ (s — op) ds,

i=1 keJ; Tz+(7k
ti4+o+l6<t<ti+o+(+1)5 1=0,1,....
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Then z(t) is continuous and positive for ¢ > t1, and

(2.16) y'(t) = 2(t) — R()a(t — 1) ZZ/ Jo(s — ox)ds, 131,

i=1 keJ; ﬂ+"k
Since y'(t) > 0 and y”(t) <0, we have for t; + o —d <t <t1+
y(t) —y(t) =y' (Ot —t1) 2y (i + o)t —t1) > (t—t1 — 0o+ 0)y'(t1 + 0),

and so
x(t) < gy(t), t1 <t<t+o.

Forti + o<t <ty +o0+9, we have

z(t) = y'(t) + R(t) t—r+zz/ )z(s — o)) ds

i=1 keJ; Tﬁ"k
1 1
< <(y(t) —y(t — o) )+ <y(t —9)
0 4 4 ( ZZIICEZJ / 7',-i—a';c )5
= %y(t)-

Therefore )
() < sy(t), t>h
and so
1 1 .
(2.17) x(t—m7) < gy(t—ﬁ-) < gy(t), t=>t1+o0, i=1,2,...,m.

Substituting (2.16) and (2.17) into (2.15) we obtain
[z(t) = Rzt — 1)) + > _ Pi(t)z(t — ) Z Q;(D)z(t — o) <0.

i=1

By Lemma 2.3, Eq. (1.1) has an eventually positive solution. The proof is complete.
O
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Lemma 2.5 ([1], [7]). Consider the ordinary differential equation

(2.18) y'(t) +p(t)y(t) =0, &= to,

where p(t) € C([to, ), RT). Then
(i) All solutions of (2.18) oscillate if

> 1
lim inft/ p(s)ds > —.
+ 4
(ii) Eq. (2.18) has an eventually positive solution if

for large t.

el

t/ p(s)ds <
t

3. RESULTS AND PROOFS

Theorem 3.1. Assume that (2.1) holds, 7, = max{7i,7s,...,Tm} and

t+7p
lim sup/ H,(s)ds > 0.
t

t—o0

i /t+'ri - ds)

=1

o
ol o

then all solutions of (1.1) oscillate.

(3.1) /

~

Proof. On the contrary, assume that (1.1) has an eventually positive solu-
tion x(t) and let z(¢) be defined by (2.3). It follows from Lemma 2.1 that (2.4) holds.
From Corollary 3.2.2 in [6], we have that the delay differential equation

m

(3.2) y'(t)+ ) Hilt)y(t —7) =0

i=1
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has an eventually positive solution y(t). Let A(t) = —y'(t)/y(t). Then A(¢) > 0 and
it satisfies

(3.3) N0 = 3 Hi(t) exp ( /t tn AGs) ds)

Wy [ = (3 [ ) ([ o).

One can easily show that
(3.4) o(u)ue® = p(u)z + o(u)In(eu + 1 —sgnu) for v >0 and x € R,

where ¢(0) = 0 and p(u) > 0 for u > 0.
Employing inequality (3.4) on the right-hand side of (3.3) we get

m t+T;
A /t H;(s)ds >

\oE
Jas
—~
=

T
2
>

D
o,
V)

i +§;Hl(t) In [e(zi /ttm Hi(s)d ) o _Sgn<: /tHﬂ HZ(S)dS)}

(3.5) )\(t)é / H” dszH /t . A(s)ds
>3 m[ (Z/”“ i)

+1-— sgn(; /tml Hi(s)ds)].

~

Then for N > T

(3.6) / Z /Hn s)dsd — / /t tn )ds dt
> /T Eﬂi(t)m{e(; /t o Hi(s)ds>

+1—sgn (il /t o Hi(s) ds)] dt.
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By interchanging the order of integration, we find that

=Léf ﬂA@{[”“fﬂ@ﬁhdﬁ
From (3.6) and (3.7) it follows that
(3) ﬁf[jﬂA@p/Hn Hy(s) ds dt
[ Bl o)
. (z [ nioras)

On the other hand, since (3.2) has an eventually positive solution, by Lemma 2 in [8]

we have

t+T7;
(3.9) / Hi(s)ds<1l, i=1,2,...,m
t

eventually. Then by (3.8) and (3.9) we obtain

3, ooz [ 73 monle(y [ moa)

=1
m t+7;
Jrlsgn(Z/ H;(s)ds )]dt
i=17t
or
s S (3 [
In > H;(t)ln|e H;(s)ds
; y(N) T ; ; t
mo ot
+1—sgn(2/ H;( )d)] dt
=1 t
By the assumption
s y(t —mi)
lim
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This implies

(3.10) lim 2 —70) _

However, by Lemma 1 in [8] we have

lim inf M

< .
t—oo  y(t) >

This contradicts (3.10) and completes the proof. O

Remark 3.1. We note that when R(t) = 0, Theorem 3.1 improves Theorem 3.2
n [3] because the condition Z /; "7 Hi(s)ds > 0 is no longer required.

Theorem 3.2. Assume that (2.12) holds and that
(3.11) hmlnft/ s)ds > -

Then all solutions of (1.1) oscillate.

Proof. Suppose that Eq. (1.1) has an eventually positive solution x(¢). Let
z(t) be defined by (2.3). Then by Lemma 2.1 we have z(t) > 0 eventually. On the
other hand, by Lemma 2.5, (3.11) implies that all solutions of Eq. (2.7) oscillate. By
Lemma 2.2, it follows that z(¢) < 0. This contradiction completes the proof. O

Theorem 3.3. Assume that (2.6) and (3.11) hold and that
(3.12) R(t—m)H;(t) < hH;i(t —7r), i=1,2,...,m.
Also suppose that H;(t)/Q;(t — 7; + o) is nonincreasing and satisfies
(2.13) Hi()Q,(t — ) <hjHi(t— o), i=1,2,....m, j=1,2,...,n,

where h, h; (j =1,2,...,n) are nonnegative constants satisfying
(3.14) h+z > hi(ri —on)

i=1keJ;
Then every solution of (1.1) oscillates.
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Proof. Assume the contrary. Eq. (1.1) has an eventually positive solution z(t).
Let z(t) be defined by (2.3). Then by Lemma 2.2 we have z(t) < 0 eventually.

From (2.8), (3.12) and (3.13) we have

2'(t) < —ZH x(t —7;)

[
M
::

2(t—7)+ Rt —m)z(t—r—m)

JrZZ/ Qr(s — 1i)x(s — 1, — o) ds]

=1 keJ, T+ Ok

>—ZH z2(t—7) — hint—r (t—r—m)
=1

*ZZthQk [ Qe mals == o) ds

= 1k€]ll 1

>—ZH 2(t—7) +h(t—7)

_Zzth/ Hi(s — ox)x(s — 7 — op) ds

1=1keJ, i=1 Ti+ok

=1 keJ, t=Titok

—ZH 2(t —7) +h(t—7) —i—Zth/ 2'(s — op)ds

:—ZH 2(t—T1)+h(t—7) Jrtht—aJ ithz(tfn).

j=1 =1 keJ;

Define P;(t) by
Pi(t):Hi(t)-i-th, 1=1,2,...,p,
keJ;

Pi(t)=H;(t), i=p+1,p+2,....,m

We obtain

[z(t)—hz(t—r)]’—i—zpl 2(t — 1) Zh 2(t

=1

This implies that —z(¢) is a positive solution of the inequality

[y(t) = hy(t = 7)) + 3 Pit)y(t = 7:) = 3 hy(t = 03) <O,
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which yields a contradiction by Lemmas 2.1 and 2.2. The proof is complete. (I

Next we give a criterion for nonoscillation.

Theorem 3.4. Assume that (2.12) holds with § > 0 and that
(3.17) t/oo in(S) ds < 0 for large t.
e 4

Then Eq. (1.1) has an eventually positive solution.

Proof. The conclusion of Theorem 3.4 is an immediate consequence of
Lemma 2.4 and Lemma 2.5. (Il

Example ([14]). Consider the equation
(318)  [z(t)— (1 -zt —7)]) +(a+t D@t —7)—azx(t—0)=0, t>1,

where 0 < a <1, —co< <2, 7=0+1,0 >0 and r > 0. All conditions of
Theorem 3.2 are satisfied when —oo < 3 < 2 or § = 2 and ¢ < 4. Thus, all solutions
of (3.18) oscillate when —co < f < 2 or § = 2 and ¢ < 4. On the other hand, by
Theorem 3.4, Eq. (3.18) has an eventually positive solution when 3 > 2 or § = 2
and 6 > 4.

Remark 3.2. It should be noted that condition (11) in [14] is not satisfied for
Eq. (3.18) when 3/2 < 8 < 2. Thus our condition (3.11) is better than condition (11)
in [14], and so Theorem 3.2 and Theorem 3.3 improve and extend Theorem 1 and
Theorem 3 in [14], respectively.
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